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Abstract

Conceptualization, a fundamental element of
human cognition, plays a pivotal role in human
generalizable reasoning. Generally speaking,
it refers to the process of sequentially abstract-
ing specific instances into higher-level concepts
and then forming abstract knowledge that can
be applied in unfamiliar or novel situations.
This enhances models’ inferential capabilities
and supports the effective transfer of knowl-
edge across various domains. Despite its sig-
nificance, the broad nature of this term has led
to inconsistencies in understanding conceptual-
ization across various works, as there exists dif-
ferent types of instances that can be abstracted
in a wide variety of ways. There is also a lack
of a systematic overview that comprehensively
examines existing works on the definition, ex-
ecution, and application of conceptualization
to enhance reasoning tasks. In this paper, we
address these gaps by first proposing a catego-
rization of different types of conceptualizations
into four levels based on the types of instances
being conceptualized, in order to clarify the
term and define the scope of our work. Then,
we present the first comprehensive survey of
over 150 papers, surveying various definitions,
resources, methods, and downstream applica-
tions related to conceptualization into a unified
taxonomy, with a focus on the entity and event
levels. Furthermore, we shed light on potential
future directions in this field and hope to garner
more attention from the community.

1 Introduction

“Concepts are the glue that holds our
mental world together.”— Murphy (2004)

Conceptualization has been widely recognized
as a fundamental component of human intelli-
gence, spanning fields from psychology (Kahne-
man, 2011; Evans, 2003; Bransford and Franks,
1971) to computational linguistics (Bengio et al.,
2021; Tenenbaum et al., 2011; Lachmy et al., 2022).
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Figure 1: Examples of performing conceptualization at
different semantic levels.

In the era of deep learning, numerous studies have
emerged focusing on conceptualization as a means
to achieve generalizable reasoning with (Large)
Language Models (LLMs; OpenAl, 2022, 2023;
Touvron et al., 2023a,b; Mesnard et al., 2024; Reid
et al., 2024) in areas such as commonsense reason-
ing (Wang et al., 2023b,a, 2024a), causal reason-
ing (Feder et al., 2021; Kunda et al., 1990), physical
reasoning (Bisk et al., 2020; Wang et al., 2023c;
Hong et al., 2021), and more.

In general terms, conceptualization refers to the
process of consolidating specific instances with
shared properties or characteristics into a cohe-
sive concept that represents a vast collection of in-
stances. It is a sub-type of abstraction (Giunchiglia
and Walsh, 1992), but specifically requires the
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presence of a concept as the base for such ab-
straction. With proper conceptualization, abstract
knowledge can be subsequently derived by asso-
ciating original knowledge at the instance level
with that concept. When encountering unfamil-
iar or novel scenarios, concepts in abstract knowl-
edge can be instantiated to new instances to support
downstream reasoning (Tenenbaum et al., 2011).
This process can occur at various levels, including
entity (Wu et al., 2012; Liang et al., 2017; Alukaev
et al., 2023; Liu et al., 2023c; Zhang et al., 2025),
event (He et al., 2024; Wang et al., 2024a,c), para-
graph/document (Falke and Gurevych, 2019; Falke
etal., 2017), and system levels (Subramonian et al.,
2023; Kadioglu and Kleynhans, 2024), ultimately
forming a hierarchy that contribute to a compre-
hensive understanding and representation of knowl-
edge.

Despite its significance, the field lacks a com-
prehensive and unified taxonomy to categorize ex-
isting research on conceptualization. On the one
hand, the term “conceptualization” is inherently
broad, encompassing various types of conceptual-
izations across different instances and performed
in various ways, all included under a single term.
As illustrated in Figure 1, the conceptualization
of entities and documents requires two distinct
paradigms; however, the current terminology fails
to adequately address these differences. This has
led to confusion and miscommunication among
works that apply conceptualization in their method-
ologies. On the other hand, the methods for concep-
tualizing different types of instances in a scalable
and accurate manner remain unclear. Finally, it is
essential to summarize the benefits that conceptu-
alization can bring to downstream tasks to gather
insights for future applications and new research
directions.

To address these issues, we present the first-ever
survey that systematically taxonomizes conceptu-
alization. First, in Section 2, we define four types
of conceptualization based on different semantic
levels of the instances being conceptualized: en-
tity, event, document, and system. In later sections,
we focus on two main types of conceptualization
based on the entity and event levels, as they are
largely uncharted in existing literature and play a
key role in human reasoning. We then propose a
set of objectives to select and survey papers that
feature conceptualization as their core idea, review
more than 150 papers, and organize them into three
main categories, as shown in Figure 2. We sum-

marize the main representative tasks and datasets
available for these types of conceptualization in
Section 3. Subsequently, in Section 4, we cate-
gorize conceptualization acquisition methods into
extraction, retrieval, and generative-based methods.
The downstream benefits of conceptualization are
discussed in Section 5, with a specific focus on
several reasoning tasks. Finally, in Section 6, we
propose two future directions that can benefit from
conceptualization. We hope our work can serve
as a practical handbook for researchers and pave
the way for further advancements in the field of
conceptualization.

2 Four Levels of Conceptualization

We first define four levels of conceptualization ac-
cording to the type of instances being conceptual-
ized. They are categorized into four levels: entity
level, event level, document level, and system level.
Running examples are shown in Figure 1.

Entity Level: Entity-level conceptualization in-
volves grouping multiple entities under a shared
concept (Yang et al., 2021; Peng et al., 2022). It is
the most common form of conceptualization in hu-
man cognition and is frequently applied for knowl-
edge acquisition (Carey, 1991; Murphy, 2004). For
instance, entities like “apple,” “pear,” and “grape,
can be categorized together under the broader con-
cept of “fruit.” By doing so, abstract knowledge
can be derived by reintegrating the concept into the
context of specific instances, such as the assertion
“fruit is delicious,” with “apple is delicious” serving
as the specific source. When someone encounters
an unknown fruit, they can quickly understand its
properties by associating it with the abstract knowl-
edge of fruit, such as its possible taste or nutrition.

’

Event Level: While a concept can capture the
semantic meaning of a group of entities, it can
also represent events at a higher level of concep-
tualization. Event-level conceptualization aims to
broaden the scope from entities to include events
as well (He et al., 2024; Wang et al., 2024c). It
seeks to associate different events under a shared
concept that preserves the original semantic mean-
ing to the maximum extent possible. For instance,
activities like “Sam playing with his dog,” “Alex
dancing in the club,” and “Bob doing yoga” can all
be conceptualized as “relaxing events.” Abstract
knowledge can then follow, stating that “If some-
one engages in relaxing events, they feel happy and
relaxed.” When someone encounters an unknown
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Conceptualization (§3.2)

Entity-level Miller (1995); Wu et al. (2012); Liang et al. (2017); Peng et al. (2022); Suchanek et al. (2007); Auer et al. (2007)
Speer et al. (2017); Speer and Havasi (2013, 2012b,a)

Tasks and
Datasets (§3)

Event-level
Conceptualization (§3.3)

Wang et al. (2024c); He et al. (2024); Wang et al. (2024a); He et al. (2020)

Methods (§4.1)

Parameswaran et al. (2010); Miller (1995); Wu et al. (2012); Montgomery (1982); Gelfand et al. (1998)

Retrieval-based
Methods (§4.2)

Neural Retrieval (§4.2.2)

Song et al. (2015); Zheng and Yu (2015); Chen et al. (2018); Hua et al. (2015)

{Extraction-based Wang et al. (2016); Rajagopal et al. (2013); Hovy et al. (2009); Krishnan et al. (2017); Pasca (2009) J

Semantic Retrieval (§4.2.1) ] Liu et al. (2004); Natsev et al. (2007); Koopman et al. (2012); Song et al. (2011)

Huang et al. (2019); He et al. (2024); Zhang et al. (2020, 2022)
Wang et al. (2024c); Lu et al. (2023); Wang et al. (2023b); Gao et al. (2022)
Peng et al. (2022); Becker et al. (2021)

Fine-Tuning-Based

Generative-based

Generative Methods (§4.3.1)

Wang et al. (2024b); Yuan et al. (2023); Wang et al. (2024a)

Peng et al. (2022); Wang et al. (2023b); He et al. (2024)

Methods (§4.3)

Zero-shot Generative
Methods (§4.3.2)

HWang et al. (2024a,c); Zheng et al. (2023); Zhao et al. (2024)

[Entity and Event Level Conceptualization]
I

(§5.1)

Yu et al. (2024); He et al. (2020); Zhang et al. (2020, 2022)

Downstream

Complex and Factual
Reasoning (§5.2)

Fang et al. (2024); Zheng et al. (2023); Cui et al. (2017); Ou et al. (2008); Ding et al. (2024); Xu et al. (2024)

Others (§5.3)

Choi et al. (2018); Li et al. (2022); Dai and Zeng (2023); Jiang et al. (2023); Li et al. (2023); Feng et al. (2023a)

Commonsense Reasoning He et al. (2024); Wang et al. (2023b,a, 2024a); Liu et al. (2023a); Yu et al. (2023); Bhagavatula et al. (2020) J
Dai et al. (2021); Liu et al. (2021); Onoe et al. (2021); Zhou et al. (2023); Pepe et al. (2022); Chen et al. (2020) J

Figure 2: Taxonomy of representative works in entity and event level conceptualization categorized by tasks and
datasets (§3), methods in performing conceptualization (§4), and downstream applications (§5).

or unfamiliar event, such as “Charlie likes painting
the sunset,” they can infer that painting the sunset
is a relaxing event and that Charlie feels happy and
relaxed when doing so.

Document Level: Document-level conceptualiza-
tion further extends the scope of the instance from
entities and events to paragraphs or even entire
documents. It aims to generate a summary that
captures the main ideas and essential information
while maintaining the overall semantic and context
of the original text. Previous works on abstractive
summarization (Ladhak et al., 2022; Wang et al.,
2019) have identical objectives, and earlier surveys
by Rennard et al. (2023); Lin and Ng (2019); Liu
et al. (2024) have effectively summarized these
studies. Therefore, we only mention it here to clar-
ify document-level conceptualization for readers
and will not go into further detail in later sections
to avoid overlap.

System Level: Finally, system-level conceptualiza-
tion aims to simplify the understanding of a com-
plex system by abstracting its behavior and func-
tionality into a higher-level representation. It is de-
rived from the design of operating systems (Doane
et al., 1990) and is under-studied in the domain of
NLP. The only representative example is a recent
work by Subramonian et al. (2023), where the au-
thors provide a systematic categorization of NLP
tasks based on their objectives and characteristics
while neglecting the detailed format of input/output
and the datasets on which the tasks are evaluated.
Due to the limited number of works available, we

will not survey this type of conceptualization.

In later sections, we focus specifically on entity
and event-level conceptualizations and propose a
taxonomy to categorize works into three categories.
To ensure that our search for papers is comprehen-
sive and objective in relation to our target scope,
we propose the following three objectives for se-
lecting the most relevant papers. First, we aim
for papers that adhere to the paradigm of linking
different instances together and use concepts as rep-
resentations of the formed clusters. We also seek
papers that aim to establish hierarchies between
different entities and events. Finally, we look for
papers that directly seek abstractions of entities or
events via concepts. Our proposed taxonomy is
primarily categorized into resources, methods, and
downstream applications of conceptualization, as
this is the most straightforward structure for readers
to grasp the topic.

3 Tasks and Datasets

We first survey available datasets and benchmarks,
as well as their associated tasks, for these two types
of conceptualizations. Statistical comparisons be-
tween different resources are shown in Table 1. For
datasets that also serve as evaluation benchmarks,
we mark their associated tasks with classification
task (CLS) and generation task (GEN).

3.1 Concept Linking Task

Most conceptualizations can be formulated as a
concept linking task, where the goal is to link an
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instance 7 to a concept c such that ¢ can be semanti-
cally represented by c. It is challenging due to the
infinite number of possible instance-concept pairs.
Previous approaches, such as those by Brauer et al.
(2010); Yates et al. (2015), have attempted to fur-
ther restrict the task to linking instances to a limited
set of strict ontologies using heuristic or statistical
methods. The task can also be formulated with
a generative objective, which requires a model to
generate c directly given ¢ as input.

3.2 Entity-level Conceptualization Datasets

To conceptualize different entities into concepts,
multiple large-scale concept taxnomies have been
constructed as resources for this type of concep-
tualization. WordNet (Miller, 1995) is the first
and most well-known concept taxonomy, which
is a large lexical database of English. It is a net-
work of concepts, where each concept is a set of
synonyms. Probase (Wu et al., 2012; Liang et al.,
2017) is a later built concept taxonomy, which is
a large-scale probabilistic taxonomy of concepts.
It is constructed by analyzing a large amount of
web pages and search logs. YAGO (Suchanek
et al., 2007) is a semantic knowledge base, which
is a large-scale concept taxonomy of entities and
events. It is constructed by extracting information
from Wikipedia (Merity et al., 2017) and Word-
Net. DBPedia (Auer et al., 2007) is a large-scale
knowledge base which is built by extracting struc-
tured information from Wikipedia. It also contains
structured conceptual knowledge about entities and
events. ConceptNet (Speer et al., 2017) is the most
recent concept taxonomy, featuring a large-scale
semantic network of concepts. It is constructed
by extracting structured information from various
sources, including Wikipedia, WordNet, and Open
Mind Common Sense (Singh et al., 2002). Re-
cently, Peng et al. (2022) introduced COPEN, a
entity level conceptualization benchmark that is
constructed by probing language models to retrieve
concepts of an entity from a pre-defined set of con-
cepts. All of them are important knowledge bases
that are rich in entity conceptualizations.

3.3 Event-level Conceptualization Datasets

Compared to abstracting entities, there are fewer
resources available for event-level conceptualiza-
tions. The most notable is the Abstract ATOMIC
dataset (He et al., 2024), which was constructed
by filtering head events from the ATOMIC dataset
and identifying instance candidates within each

Type | Dataset #Instance ~ #Concept. | Tasks
WordNet 82,115 84,428 N/A
Probase 10,378,743 16,285,393 | N/A
Probase+ 10,378,743 21,332,357 | N/A
Entity | YAGO 143,210 352,297 N/A
DBPedia 1,000,000 1,000,000 | N/A
ConceptNet | 21,000,000 8,000,000 N/A
COPEN 24,000 393 CLS
Abs.ATM. | 21,493 503,588 CLS, GEN
Event | Abs.Pyr. 17,000 220,797 CLS, GEN
CANDLE 21,442 6,181,391 | N/A
Table 1: Statistical comparisons between different

datasets with entity and event level conceptualizations.

event using syntactic parsing and human-defined
rules. These instances are matched against Probase
and WordNet to acquire candidate concepts using
GlossBERT (Huang et al., 2019), which are then
verified by a supervised model and human anno-
tations. AbsPyramid (Wang et al., 2024c¢) extends
the AbstractATOMIC pipeline to ASER (Zhang
et al., 2020, 2022), a large-scale eventuality knowl-
edge graph, by incorporating candidate concepts
generated by ChatGPT to complement Probase and
WordNet. It also extends coverage to verbs in ad-
dition to nouns and events, and broadens the do-
main of events from social aspects to all aspects.
Both datasets provide rich event conceptualizations
sourced from diverse origins.

4 Conceptualization Acquisition Methods

Next, we survey methods for performing or collect-
ing entity and event-level conceptualizations. We
categorize them into three paradigms: extraction,
retrieval, and generative-based methods, which are
briefly demonstrated in Figure 3. We provide more
discussions in Appendix A.

4.1 Extraction-Based Methods

Extracting concepts from text is the earliest
paradigm for systematically collecting conceptual-
izations (Montgomery, 1982; Gelfand et al., 1998).
It typically involves first extracting all possible con-
cepts from the text, followed with identifying the
relationships between these concepts. In this pro-
cess, concepts are recognized either by looking for
the most frequent words or by matching against a
predefined list of patterns, such as “is a,”, “is a type
of”, etc. Instances are then matched by looking for
the subject of these patterns in the text, which forms
instance-conceptualization pairs. The main advan-
tages of extraction-based methods (Wang et al.,
2016; Parameswaran et al., 2010; Rajagopal et al.,
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Siamese is a type of cat.
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Figure 3: Conceptual demonstration of different types of methods in performing or collecting entity and event level
conceptualizations. Instance and conceptualization pairs can be obtained at the end of each type of method.

2013; Hovy et al., 2009; Krishnan et al., 2017;
Pasca, 2009) are easy implementation, high pro-
cessing speed, and free of training data. This has
facilitated the development of many large-scale
concept taxonomies and knowledge bases, such
as WordNet (Miller, 1995), ConceptNet (Speer
et al., 2017; Speer and Havasi, 2013, 2012b,a),
Probase (Wu et al., 2012; Liang et al., 2017), and
DBpedia (Auer et al., 2007; Bizer et al., 2009).
However, these methods, while successful in ex-
tracting conceptual relationships from text, are lim-
ited by text quality, reliance on predefined concepts,
lack of semantic understanding, difficulty handling
ambiguous words, and poor generalization to new
domains or unseen concepts.

4.2 Retrieval-Based Methods

4.2.1 Semantic-Based Retrieval

Semantic-based retrieval methods aim to obtain
conceptualizations by looking at the semantic simi-
larity between the input instance and the concepts
in a pre-defined concept taxonomy. It typically in-
volves representing both the instance and a set of
concepts into a shared semantic space and calcu-
lating the similarity between them. One represen-
tative approach is to use WordNet (Miller, 1995),
a large lexical database of English words, to cal-
culate semantic similarity between two words as
their shortest path in the WordNet hierarchy (Liu
et al., 2004). Other methods (Natsev et al., 2007;
Song et al., 2011, 2015; Koopman et al., 2012;
Zheng and Yu, 2015; Chen et al., 2018; Hua et al.,
2015) also share similar aspirations and define their
own way of calculating such similarities. However,
these methods are usually limited by the need for
comprehensive and accurate knowledge bases, high
computational costs, the inability to handle unseen
concepts, and the loss of important semantic con-
text, prompting the development of neural-based
retrieval methods.

4.2.2 Neural-Based Retrieval

Neural-based retrieval methods overcome previ-
ous limitations by leveraging neural networks (or
language models) to learn the semantic represen-
tations of the input instance and the concepts in
the knowledge base or concept taxonomy. Then,
the similarity between the input instance and the
concepts can be calculated based on the learned rep-
resentation embeddings. This approach can be ben-
efitted by the advancement in language modeling,
such as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and DeBERTa (He et al., 2021, 2023).
The most representative work in neural-based con-
cept retrieval is Abstract ATOMIC (He et al., 2024).
It uses GlossBERT (Huang et al., 2019) to en-
code concepts (from WordNet and Probase) and
instances (extracted from events in ATOMIC (Sap
et al., 2019)) into embeddings and leverage co-
sine similarity and human annotations to collect
conceptualizations in a large scale manner. Other
methods (Wang et al., 2024c; Zhang et al., 2020,
2022; Lu et al., 2023; Wang et al., 2023b; Gao
et al., 2022; Becker et al., 2021) similarly adopt
different strategies in leveraging LMs as encoders,
expanding the coverage of instances,training re-
trieval models. Despite their promising results,
these methods are limited by their need for exten-
sive labeled data, reliance on the completeness and
accuracy of the knowledge base, and inability to
retrieve new concepts that are out of training data.

4.3 Generative-Based Methods
4.3.1 Fine-Tuning-Based Generative Methods

Fine-tuning-based generative methods aim to take
an entity or event as input and generate the con-
cept directly via a fine-tuned generative language
model. This approach allows the model to gener-
ate conceptualizations for new instances and offers
maximum flexibility of the input. Several meth-
ods (Peng et al., 2022; Yuan et al., 2023; He et al.,
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2024; Wang et al., 2024c¢,b, 2023b) have adopted
this paradigm in training generative conceptualiz-
ers, based on models such as GPT2 (Radford et al.,
2019), BART (Lewis et al., 2020), and TS (Raffel
et al., 2020), for automated conceptualization ac-
quisition. These methods typically train LMs on
human-annotated or pre-existing conceptualization
resources and yield outstanding results. However,
fine-tuning-based generative methods are limited
by their high computational cost, time-consuming
and resource-intensive data collection, uncertain
performance across diverse domains, and relatively
low quality of novel concepts compared to human
annotations (Liu et al., 2025). While these are
common limitations associated with fine-tuned gen-
erative models, zero-shot generative methods us-
ing powerful LLMs and advanced prompting tech-
niques potentially address these issues.

4.3.2 Zero-Shot Generative Methods

Finally, zero-shot generative-based methods lever-
age powerful LLMs (Brown et al., 2020; Ope-
nAl, 2022, 2023; Reid et al., 2024; Touvron et al.,
2023a,b) to generate the concept directly from an
input instance. They rely on the vast amount of
internal knowledge within the model and human-
crafted prompts to efficiently distill conceptualiza-
tions and abstract knowledge from the models. This
is particularly useful when training data is scarce or
when the domain is new and there are no existing
training data available. Existing methods (Wang
etal., 2024a,c; Zheng et al., 2023; Zhao et al., 2024)
all share similar aspirations in collecting concep-
tualizations. The benefits are significant, as these
methods can collect conceptualizations efficiently
and at low cost without specific fine-tuning. The re-
sulting conceptualization knowledge base are thus
scalable and downstream models trained on them
typically have improved generalization ability to
new instances and domains. However, to ensure
high-quality generated conceptualizations, it is rec-
ommended to implement quality control mecha-
nisms such as human evaluation or discriminators
as post-filters. Recent studies (Wang et al., 2024a;
Fang et al., 2024) have shown that commonsense
plausibility estimators (Liu et al., 2023b) are effec-
tive for such quality control.

5 Downstream Applications

We then survey downstream tasks that can benefit
from applying conceptualizations to provide read-
ers with a general picture of what can be achieved

and how to benefit from integrating conceptualiza-
tions. An overview of performances by different
methods that leverage conceptualization, evaluated
on various benchmarks, are shown in Figure 4.

5.1 Commonsense Reasoning

Commonsense reasoning is the ability to make in-
ferences about the world based on common knowl-
edge, which involves reasoning about everyday
events and situations (Davis, 1990; Davis and Mar-
cus, 2015). In this section, we discuss how concep-
tualizations benefit models in performing common-
sense reasoning tasks.

Generative Commonsense Inference Modeling:
The task of generative commonsense inference
modeling (COMET; (Bosselut et al., 2019; Hwang
et al., 2021)) aims to complete an inferential com-
monsense knowledge given a head event and a
commonsense relation. State-of-the-art methods
for COMET mainly fine-tune language models on
large-scale commonsense knowledge bases, which
suffer from data sparsity and lack of diversity in
commonsense knowledge. Although transfer from
LLMs helps (West et al., 2022, 2023), distilled
knowledge tends to be too easy for models to
learn and converge to trivial inferences. To ad-
dress these issues, Wang et al. (2023b) proposed
to leverage conceptualization as knowledge aug-
mentation tools to improve COMET. Conceptual-
izations are first derived from head events to obtain
abstracted events. Then, the tail of the original
commonsense knowledge is placed back to the ab-
stracted event to form abstracted commonsense
knowledge. These derived abstract knowledge are
then integrated with the original knowledge in com-
monsense knowledge bases to enrich the diversity
of commonsense knowledge. Experiments show
consistent improvement in models’ performances.
Wang et al. (2024a) further show that, by instan-
tiating conceptualizations in abstract knowledge
back to other novel instances, models can be fur-
ther improved by training with newly instantiated
knowledge. Liu et al. (2023a) also proposed a task
that aims to generate diverse sentences describing
concept relationships in various everyday scenarios.
Conceptualizations and associated abstract knowl-
edge can further boost models’ performances on
this task.

Commonsense Question Answering: The task
of commonsense question answering aims to an-
swer questions that require commonsense knowl-
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Figure 4: Empirical benefits of conceptualization in methods across various benchmarks compared to baselines.

edge. Various benchmarks and datasets have
been proposed to evaluate LMs’ performances,
such as Abductive NLI (aNLI; (Bhagavatula et al.,
2020)), CommonsenseQA (CSQA; (Talmor et al.,
2019)), PhysicallQA (PIQA; (Bisk et al., 2020)),
SociallQA (SIQA; (Sap et al., 2019)), and Wino-
Grande (WG; (Sakaguchi et al., 2021)). To obtain
a generalizable model for commonsense question
answering, the most effective pipeline fine-tunes
language models on QA pairs synthesized from
knowledge in commonsense knowledge bases (Ma
et al., 2021; Shi et al., 2023; Wang et al., 2023a).
The head h, and relation r of a (h,, 7, t) triple are
transformed into a question using natural language
prompts, with the tail ¢ serving as the correct an-
swer option. Distractors or negative examples are
generated by randomly sampling tails from triples
that do not share common keywords with the head.
To leverage conceptualization into the QA synthe-
sis process, Wang et al. (2023a); Fang et al. (2024)
have proposed two strategies: On the one hand,
they improve distractor sampling by incorporat-
ing conceptualizations of head events into com-
mon words of the question, thereby enabling selec-
tion of more relevant distractors that improve the
model’s ability to discern correct answers from dis-
tractors. On the other hand, abstract knowledge de-
rived from head events are integrated into original
synthesized QA pairs, akin to COMET, to enrich
the training data with diverse information, thereby
enhancing the model’s generalization capability in
commonsense question answering tasks. Experi-
mental results show that the proposed strategies
significantly improve the performance of common-
sense question answering with conceptualization.

5.2 Complex and Factual Reasoning

Complex reasoning refers to the ability to solve
intricate problems that necessitate multiple steps
of reasoning, which involves reasoning upon intri-
cate scenarios, which may encompass multiple en-
tities, events, and relations. Fang et al. (2024) pro-
posed to synthesize complex queries based on com-
monsense knowledge triples from ATOMIC. Both
human-defined rules and tails generated by large
language models are utilized to generate these com-
plex queries. The model is subsequently trained
on these complex queries to enhance its capabil-
ity to solve complex reasoning problems. In this
context, conceptualizations of head events can be
used as augmentations to generate more diverse
and complex queries (Cui et al., 2017). This can
assist the model in learning to solve more intricate
problems. Simultaneously, conceptualizations of
head events can also be used to generate more in-
formative distractors. This can aid the model in
learning to distinguish more effectively between
correct answers and distractors.

Zheng et al. (2023) also developed a prompting
method to improve the performance of LLMs on
general and factual QA tasks. It involves instruct-
ing the model with a simple zero-shot prompt to
consider each question abstractly by generating and
probing relevant concepts, then using this knowl-
edge in the prompt to generate the answer. This
simple prompting method has been shown to signif-
icantly improve the performance of large language
models on general QA tasks, including MMLU
(Physics and Chemistry) (Hendrycks et al., 2021),
TimeQA (Chen et al., 2021), StrategyQA (Geva
et al., 2021), and MuSiQue (Trivedi et al., 2022).
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This work is interesting as it demonstrates that a
simple prompting method can significantly enhance
the performance of LLMs on general QA tasks.

5.3 Others

Aside from those two types of tasks, the line of
works focusing on ultra-fine entity (Choi et al.,
2018; Li et al., 2022; Dai and Zeng, 2023; Jiang
et al., 2023; Li et al., 2023; Feng et al., 2023a; Dai
et al., 2021; Liu et al., 2021; Onoe et al., 2021)
and event typing (Zhou et al., 2023; Pepe et al.,
2022; Chen et al., 2020) can also be benefited by
conceptualization. These tasks aim to type named
entities, nominal nouns, and pronouns into a set of
free-form phrases. Conceptualizations can serve as
a bridge between the surface form and the target
type, which is crucial for these tasks.

6 Future Directions and Conclusions

Finally, we conclude our work by discussing two
interesting future directions.

6.1 Controllable Generation

Firstly, we envision that conceptualization can as-
sist controllable text generation (Feng et al., 2023b;
Huang et al., 2023; Zhang et al., 2024). In some
formulations, the task requires the model to gen-
erate a brief piece of text that remains consistent
within a specific context or scope (Meng et al.,
2022). Conceptualizations can be applied as addi-
tional supervision signals or constraints that guide
the model to generate text whose conceptualiza-
tions align with those in the input theme, thereby
enhancing the controllability of the generated text.
This could be achieved by training a pair of con-
ceptualization generator and discriminator, which
could be used to generate the conceptualizations
and evaluate their consistency between input and
output text. Conceptualization can also serve as
data augmentation tools to provide more training
data, preferably guided with human annotation or
large language models as loose teachers, for train-
ing more robust text generators that better align
with the controllable targeting data.

Similarly, it may also benefit hallucination re-
duction (Choubey et al., 2023; Dale et al., 2023; Ji
et al., 2023b; Sun et al., 2023). Hallucination (Ji
et al., 2023a) refers to generating text that is un-
supported by the input context, such as introducing
information that is not present in the context or
even contradicts it. In many reasoning scenarios,

hallucination can be detrimental to the model’s per-
formance, and neutralizing it is crucial for ensuring
the reliability of the generated text. Towards this
objective, conceptualization can be similarly ap-
plied as external signals to verify the generated text
and ensure its accuracy. By measuring the semantic
distance of conceptualizations between the given
input and generated contents, hallucinations can
possibly be detected by finding clearly unrelated
concepts appearing at both ends. Empirical metrics
to measure such distance can be the shortest path
length of concepts in taxonomies such as Word-
Net (Miller, 1995) and Probase (Wu et al., 2012),
or even embedding similarity between different
concepts. However, it’s important to build a com-
prehensive set of conceptualizations of a given text
to support such a verification process, as incom-
plete conceptualizations may cause erroneously de-
tected hallucinations due to human-caused errors.
We leave detailed implementations to future work.

6.2 Modeling Changes in Distribution

Conceptualization also plays a pivotal role in build-
ing reasoning systems that can capture situational
changes in distribution to achieve System II rea-
soning (Sloman, 1996; Kahneman, 2011). Among
the several components that make up System II
reasoning, a key element is the ability to reason
with situational changes in distribution (Bengio
et al., 2021, 2019). These changes are triggered
by environmental factors and actions by the agents
themselves or others, especially when dealing with
non-stationarities (Bengio, 2017; Xu et al., 2025;
Shi et al., 2025). This ability can be achieved
by dynamically recombining existing concepts in
the given environment or action and learning from
the resultant situational changes (Lake and Baroni,
2018; Bahdanau et al., 2019; de Vries et al., 2019).
For instance, consider the event “PersonX is driv-
ing a car on a sunny day.” A change in the weather
from sunny to rainy could cause a different out-
come, such as “PersonX becomes more cautious
and drives slower.” This illustrates that a change
in weather conditions can lead to a change in the
driver’s behavior, representing an environmental
change that triggers situational changes within the
distribution of different weather conditions. In this
process, the model is required to infer different
changes that can possibly occur within a single
event as the context, and reason about the potential
outcome of each change. To model the distribution
of different changes within an event, conceptualiza-
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tion can be used to represent the different states of
the environment or action (Wang and Song, 2025).
The model can then reason about the changes in
distribution by manipulating the granularity of con-
ceptualized changes. This type of distributional
conceptualization not only provides an ontology
for modeling the distribution of different changes
within an event, but also assists the model in reason-
ing about the potential outcomes with appropriate
abstract knowledge. Future works can leverage
LLMs to curate benchmark datasets via sequential
conceptualization generation and develop advanced
systems for System II reasoning.

6.3 Conclusions

In conclusion, this work surveys conceptualizations
by proposing a four-level hierarchical definition
and reviewing representative works in acquiring,
leveraging, and applying entity and event-level con-
ceptualization to downstream reasoning tasks. We
also propose several intriguing ideas related to con-
ceptualizations that may inspire further research.
We hope our work paves the way for more research
works toward generalizable machine intelligence
through conceptualization and fosters the develop-
ment of more advanced systems that can capture,
organize, and learn world knowledge through con-
nection between concepts, much like humans do.

Limitations

The main limitations of our survey are two-fold.
First, due to the vast amount of literature on con-
ceptualization and conceptual knowledge across
various datasets, we only cover the most represen-
tative works that stand out for their exceptional
value and uniqueness in our taxonomy. Most of the
papers are sourced from ACL Anthology', ACM
Digital Library?, and proceedings of leading artifi-
cial intelligence and machine learning conferences.
Consequently, it is possible that some other related
works are not included, but we aim to cover them
in future versions. Second, our survey specifically
focuses on entity and event level conceptualiza-
tion, leaving document/paragraph level and system
level conceptualization unaddressed. However, it is
impossible to survey everything within one single
submission. Future research can expand the scope
of our survey to include more types of conceptual-
izations and modalities, such as categorization in

'https://aclanthology.org/
Zhttps://dl.acm.org/

the vision modality (Chen and Wang, 2004).
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Appendices

A Conceptualization Acquisition Methods

In this appendix, we elaborate further on different
methods of acquiring conceptualization and pro-
vide detailed explanations of their weaknesses.
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A.1 Extraction Based Methods

For methods that follow the concept extrac-
tion paradigm, Wang et al. (2016) proposed
a framework to optimize both tasks simultane-
ously, leading to stronger performances even com-
pared to supervised concept extraction methods.
Parameswaran et al. (2010) also proposed a market-
basket-based solution, which adapts statistical mea-
sures of support and confidence to design a concept
extraction algorithm that achieved high precision
in concept extraction. Rajagopal et al. (2013) pro-
posed a solution to extract concepts from common-
sense text, which uncovers many novel pieces of
knowledge that cannot be found in the original cor-
pora. Hovy et al. (2009); Krishnan et al. (2017);
Pasca (2009) similarly proposed their solutions for
large-scale concept extraction for more efficient
data mining.

While these methods have been successful in ex-
tracting concepts and relationships from text, they
have several limitations. First, they are heavily
dependent on the quality of the text and the pre-
defined list of concepts. If the text is noisy or
contains many irrelevant words, the performance
of these methods can degrade significantly, and
the resulting extracted concepts may also tend to
be noisy. Second, it’s important to note that these
methods primarily rely on parsing or pattern match-
ing techniques on text and do not capture semantic
information from the text (Li et al., 2025). This
potentially makes extracted concepts represented
as isolated entities without any context or relation-
ships and could result in mis-extraction of concepts
or relationships, especially when the text contains
ambiguous or polysemous words. For example,
the word “bank” can refer to a financial institu-
tion, a river bank, or a memory bank, and without
proper context, it’s difficult to determine the cor-
rect meaning of it, thus leading to incorrect concept
extraction. A low-performance parser, if wrongly
parsing these words, may also lead to noisy results.
Lastly, these methods are not able to generalize
well to unseen concepts or text patterns that are
not present in the predefined list of concepts. This
limits their applicability to new domains or tasks
that require the extraction of novel concepts or re-
lationships. For example, to extract concepts from
medical or legal domain text, specific patterns or
extraction rules need to be designed, which may not
be present when extracting normal conversational
text.

A.2 Retrieval Based Methods
A.2.1 Semantic-Based Retrieval

To perform semantic-based retrieval, (Natsev et al.,
2007) proposed several approaches for semantic
concept-based query expansion and re-ranking in
multimedia retrieval, achieving consistent perfor-
mance improvement compared to text retrieval and
multimodal retrieval baseline. (Song et al., 2011,
2015) improved text understanding by using a prob-
abilistic knowledge base based on concepts and
developed a Bayesian inference mechanism to con-
ceptualize words and short text. Experimental re-
sults show significant improvements on text clus-
tering compared to purely statistical methods and
methods that use existing knowledge bases. (Koop-
man et al., 2012) proposed a corpus-driven ap-
proach, adapted from LSA, to retrieve medical con-
cepts with semantic similarity measures. (Zheng
and Yu, 2015) similarly used topic modeling and
key concept retrieval methods to construct queries
from electronic health records, which significantly
improves the retrieval of tailored online consumer-
oriented health education materials.

Although these methods have shown promising
results in various domains, they have several limi-
tations. First, the performance of semantic-based
retrieval heavily relies on the quality of the knowl-
edge base or concept taxonomy. In other words,
it requires the knowledge base to be comprehen-
sive, accurate, hierarchical, and up-to-date. There
are very few knowledge bases that meet all these
requirements, and constructing such a knowledge
base is a non-trivial task. With incomplete knowl-
edge bases, which are common in practice, the per-
formance of semantic-based retrieval methods can
be significantly degraded. Second, semantic-based
retrieval methods are usually computationally ex-
pensive, as they require calculating the similarity
between the input instance and all concepts in the
knowledge base. This can induce exponentially
increasing computational cost as the size of the
knowledge base grows. When dealing with large-
scale applications, this even becomes infeasible.
Though caching and indexing techniques can be
used to speed up the retrieval process, they are
not always effective and cannot generalize well
when unseen concepts or instances are encountered.
Third, semantic-based retrieval methods still do not
consider the semantic context of the input instance.
A straightforward formulation is that the model
treats the input instance as a bag of words and ig-
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nores the word order and syntactic structure. This
can lead to a loss of important semantic informa-
tion, especially when the input instance is long and
complex. In this case, the semantic similarity be-
tween the input instance and the concepts in the
knowledge base may not reflect the true semantic
relevance.

A.2.2 Neural-Based Retrieval

For neural-based retrieval, aside from He et al.
(2024), (Lu et al., 2023) similarly proposes a novel
three-stage framework, which leverages the power
of pre-trained language models explicitly and im-
plicitly and employs discipline-embedding models
with a self-train strategy based on label generation
refinement across different domains.

To deal with the large amount of unlabeled data
after human annotation, (Wang et al., 2023b) fur-
ther proposed a semi-supervised method to unlabel
the data with a supervised trained conceptualiza-
tion discriminator. The discriminator is trained to
rate the plausibility of unlabeled conceptualization
and the model will be further refined by training on
a concatenation of labeled and unlabeled data. This
results in a significant improvement in the perfor-
mance of the conceptualization discriminator, thus
enhancing the quality of the retrieved concepts.

Despite these promising results in concept re-
trieval, neural-based retrieval methods have sev-
eral limitations. First, these methods are usually
data-hungry and require a large amount of labeled
data for training. This can be a bottleneck in
practice, as labeling data is often expensive and
time-consuming. Human annotations are usually
required to collect such data, and for models to
be generalizable across different domains, the la-
beled data should be diverse and representative.
This is even more costly and challenging to ob-
tain. Second, neural-based retrieval methods still
rely on the coverage and quality of the knowledge
base or concept taxonomy. If the knowledge base
is incomplete or inaccurate, the performance of
neural-based retrieval methods can be significantly
affected. Moreover, they cannot generate new con-
cepts or instances that are not in the knowledge
base, which limits their generalization ability.

A.3 Generative-Based Methods

A.3.1 Fine-Tuning-Based Generative Methods

While most fine-tuning based methods are explic-
itly discussed in the main body, we explain their
limitations here. First, these methods are usually

computationally expensive, as they require fine-
tuning a large pre-trained language model on a spe-
cific dataset. Both the fine-tuning and the training
data collection process can be time-consuming and
resource-intensive. Extensive crowd-sourcing or
human annotations are usually required to collect
high-quality training data, which can be costly and
challenging to obtain when the domain coverage
scales up. Second, the feasibility of fine-tuning-
based generative methods on other domains, such
as medical or legal text, is still an open question.
The performance of these methods heavily relies on
the quality and diversity of the training data, and it’s
not clear how well they can generalize to new do-
mains or tasks as text understanding abilities vary
across different domains. For social commonsense,
pre-trained language models have shown strong
performance possibly due to a large overlap in the
training data distribution, but for other domains,
the performance is still unclear. Lastly, although
existing studies have shown that fine-tuning based
generators can deliver novel concepts that are not
in the training data, such a ratio is relatively low
and the quality of the generated concepts is still not
as good as human annotated ones. This is expected
as the models are fitted into the distribution of the
training data, and it’s hard for them to generate
concepts that are out of the distribution.

A.3.2 Zero-Shot Generative Methods

Zero-shot generative methods aim to generate the
desired output for any task’s input without any task-
specific fine-tuning. A very representative example
of such generative models is the recently popular-
ized LLMs (OpenAl, 2022, 2023; Touvron et al.,
2023a,b; Mesnard et al., 2024; Reid et al., 2024).
These models have been pre-trained on very large
corpora, including those from the web, Wikipedia,
books, and more, and have shown strong perfor-
mance in various natural language processing tasks,
including text generation (Maynez et al., 2023;
Chen et al., 2024; Wang et al., 2025a), temporal rea-
soning (Tan et al., 2023; Yuan et al., 2024), causal
reasoning (Chan et al., 2024a; Dalal et al., 2023;
Jin et al., 2023), commonsense reasoning (Jain
et al., 2023; Bian et al., 2023; Fang et al., 2021b,a;
Deng et al., 2023), logical reasoning (Wang et al.,
2023d,e, 2021; Bai et al., 2023), and more (Qin
et al., 2023; Cheng et al., 2023; Chan et al., 2024b;
Wang et al., 2025b).

In the context of conceptualization acquisition,
zero-shot generative methods aim to generate con-
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ceptualizations for instances without any instance-
conceptualization pairs in the training data. Wang
et al. (2024a) proposed a few-shot knowledge dis-
tillation method to distill conceptualizations and
associated abstract inferential knowledge from a
large language model to a large-scale knowledge
base. Wang et al. (2024c) also proposed acquiring
conceptualizations for entities and events in ASER
by instructing ChatGPT with a few-shot prompt.
They further designed an instruction-tuning based
method to evoke more conceptualizations from
large language models by fine-tuning them with
explanations on how the conceptualization is de-
rived from the instance and their plausible reason-
ing chains (Wang et al., 2024b). Zheng et al. (2023)
proposed a simple prompting technique, inspired
by chain-of-thought reasoning, that enables LLMs
to do conceptualizations to derive high-level con-
cepts and first principles from instances containing
specific details. Zhao et al. (2024) advanced this
idea by proposing to extract predictive high-level
features (concepts) from a large language model’s
hidden layer activations.

The benefits of these methods are twofold. First,
such generation can introduce conceptualizations
at a very low cost, as the models are pre-trained
and do not require any task-specific fine-tuning.
The only burden seems to be deployment and in-
ference cost, which require a large amount of com-
putational resources and time for large-scale gen-
eration. However, compared to all previous fine-
tuning-based methods, zero-shot generative meth-
ods are much more efficient and scalable, as they do
not require any training data or fine-tuning process.
Second, zero-shot generative methods have shown
strong generalization capabilities to new instances
and domains. They can generate conceptualiza-
tions for instances that are not in the training data
and have shown strong performance in various con-
ceptualization acquisition tasks. This is particularly
useful when the training data is scarce or when the
domain is new, and there are no existing training
data available. Since these large language models
are pre-injected with vast amounts of knowledge,
this makes generalization possible.
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