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Abstract

Homograph disambiguation remains a signifi-
cant challenge in grapheme-to-phoneme (G2P)
conversion, especially for low-resource lan-
guages. This challenge is twofold: (1) creat-
ing balanced and comprehensive homograph
datasets is labor-intensive and costly, and (2)
specific disambiguation strategies introduce ad-
ditional latency, making them unsuitable for
real-time applications such as screen readers
and other accessibility tools. In this paper,
we address both issues. First, we propose
a semi-automated pipeline for constructing
homograph-focused datasets, introduce the Ho-
moRich dataset generated through this pipeline,
and demonstrate its effectiveness by applying
it to enhance a state-of-the-art deep learning-
based G2P system for Persian. Second, we
advocate for a paradigm shift—utilizing rich
offline datasets to inform the development of
fast, statistical methods suitable for latency-
sensitive accessibility applications like screen
readers. To this end, we improve one of the
most well-known rule-based G2P systems, eS-
peak, into a fast homograph-aware version, Ho-
moFast eSpeak. Our results show an approxi-
mate 30 percentage-point improvement in ho-
mograph disambiguation accuracy for the deep
learning-based and eSpeak systems.

1 Introduction

Grapheme-to-phoneme (G2P) conversion is a cru-
cial step in many fast text-to-speech (TTS) models
(Ren et al., 2020). It refers to the task of converting
a given written text into its corresponding sequence
of phonemes—how it is pronounced. There are sev-
eral formats for representing phoneme sequences,
one of the most widely used being the International
Phonetic Alphabet (IPA) (Association, 1999). As
an example, the phoneme sequence for the sentence
"I will read it" is /aI wIl ri:d It/ in IPA format.

The complexity of G2P conversion varies by lan-
guage. Some languages like Turkish and Spanish

are highly phonetic, meaning a near one-to-one cor-
respondence between spelling and pronunciation
(Koşaner et al., 2013; Delattre, 1945). In contrast,
in many other languages, such as Persian, G2P
is more complex due to exceptions and rules that
depend on context (Qharabagh et al., 2025a).

One such challenge is handling homo-
graphs—words spelled the same but pronounced
differently depending on context. For example,
the word "read" is pronounced /rEd/ in the past
tense ("I read this book yesterday") and /ri:d/ in
the present tense ("I read the book every night").

Unfortunately, sentence-level G2P datasets are
extremely scarce in low-resource languages. This
scarcity stems from the fact that phonemization is
a time-consuming and costly process that requires
expert annotators. Homograph-specific datasets are
even rarer, as they depend on source corpora that
must meet strict conditions: they should contain a
wide range of homographs and provide a balanced
number of examples for each pronunciation. With-
out this balance, the resulting models will fail to
learn some homographs and tend to default to the
more frequent pronunciation in ambiguous cases.

Beyond data scarcity, there is also a method-
ological challenge in G2P conversion. The two
primary approaches are neural models (Ploujnikov,
2024; Řezáčková et al., 2024b; Gao, 2024) and non-
neural methods (Silva et al., 2012; Alayiaboozar
et al., 2019; Riahi and Sedghi, 2012). While neural
methods have gained popularity due to their flexi-
bility and learning capacity, they often suffer from
high inference latency, making them unsuitable
for real-time applications such as screen readers
that serve accessibility needs. This motivates a
renewed focus on non-neural approaches, aiming
to improve their accuracy while preserving their
inherent speed.

This work proposes a practical approach for gen-
erating a rich and balanced homograph dataset. We
demonstrate that such a dataset not only boosts
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the homograph disambiguation accuracy of neu-
ral G2P models but also significantly enhances the
performance of rule-based systems. Specifically,
we show that by incorporating a simple, fast sta-
tistical method that leverages the proposed dataset,
rule-based models can be equipped with context
understanding, leading to improved handling of
homographs without sacrificing speed.

Our key contributions are as follows:

• We propose a practical and cost-efficient
recipe for constructing rich and balanced ho-
mograph datasets in low-resource languages
by leveraging LLMs for G2P annotation and
homograph sample generation.

• We release HomoRich, the first and largest
Persian homograph dataset, and demonstrate
its effectiveness by improving the homograph
disambiguation accuracy of a state-of-the-art
neural G2P model by 29.72 percentage-points.

• We introduce a lightweight statistical method
that enhances G2P systems for homograph
disambiguation, using datasets generated by
our proposed approach.

• We integrate this method into the open-source
eSpeak engine, resulting in HomoFast eSpeak,
a variant that achieves a 30.66 percentage-
point improvement in homograph disambigua-
tion without compromising real-time perfor-
mance.

2 Related Works

In this section, we review homograph disambigua-
tion from two perspectives: the common methods
and the datasets developed to address challenges in
low-resource settings like Persian.

2.1 Approaches

There are multiple approaches to addressing the
homograph challenge, including neural and rule-
based methods, various machine learning algo-
rithms, hybrid techniques, and the use of large lan-
guage models (LLMs). We briefly highlight only
the works most relevant to our approach. A more
comprehensive review is provided in Appendix A.

Rule-based approaches have been widely ex-
plored for homograph disambiguation across var-
ious languages. These methods often rely on

morphosyntactic patterns, lexical cues, and con-
textual heuristics rather than deep semantic infer-
ence. For instance, Silva et al. (2012) and Alayia-
boozar et al. (2019) utilized hand-crafted linguis-
tic rules derived from syntactic and morphologi-
cal features in Brazilian Portuguese and Persian,
respectively. Hearst (1991) introduced a system
based on shallow syntactic patterns and lexical
co-occurrences in local contexts, while Yarowsky
(1997) developed data-driven decision lists using
log-likelihood-ranked contextual patterns. Riahi
and Sedghi (2012) further extended these ideas
by integrating rule-based decision lists into a tri-
training framework.

Neural approaches have been widely adopted
for homograph disambiguation and G2P conver-
sion across languages, leveraging contextual em-
beddings, sequence modeling, and attention mecha-
nisms. Early work in this area applied sequence-to-
sequence neural network models, such as LSTMs,
to the G2P task, demonstrating performance com-
parable to or surpassing previous n-gram and max-
imum entropy models (Yao and Zweig, 2015).
Specifically, Yao and Zweig (2015) explored us-
ing encoder-decoder LSTMs and found that bi-
directional LSTMs that utilize alignment informa-
tion significantly advanced the state-of-the-art for
monolingual G2P conversion. Additionally, Pe-
ters et al. (2017) introduced a massively multi-
lingual neural approach that used a single shared
encoder-decoder across hundreds of languages,
leveraging a language ID token to manage differ-
ent spelling-pronunciation patterns. Nicolis and
Klimkov (2021) and Seale (2021) utilized pre-
trained language models like BERT, ALBERT,
and XLNet to extract contextual word embeddings
and fine-tune token classifiers or logistic regres-
sors for English homographs. SoundChoice, pro-
posed by Ploujnikov (2024), employed a hybrid
RNN-attention model with BERT embeddings and
curriculum learning to predict phonemes in con-
text. Similarly, Nanni (2023) adapted SoundChoice
for Italian, integrating ChatGPT-generated data.
Řezáčková et al. (2024a,b) adopted the T5 trans-
former for multilingual G2P, bypassing rule-based
post-processing by modeling cross-word effects.
Comini et al. (2025) combined GRUs, transform-
ers, and knowledge distillation for efficient G2P in
low-resource settings. Gao (2024) enhanced multi-
lingual phonetic recognition using self-supervised
learning models (e.g., wav2vec2, HuBERT) and
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Title Sample Sample Hom. Hom. Availability LicenseType Count Curated Count

Semi-sup H.D.
Sent. – Yes 2 Not avail. N.A.

(Riahi and Sedghi, 2012)
AvashoG2P Sent. – Yes 54 Not avail. N.A.
(Moghadaszadeh et al., 2024) Word 12,000 No – Available N.A.
Multi-Module G2P

Sent. 42,540 No – Not avail. N.A.
(Rezaei et al., 2022)
GE2PE

Sent. 5,376,670 No – Available MIT
(Rahmati and Sameti, 2024)
HomoRich (Ours) Sent. 528,891 Yes 285 Available CC0-1.0

Table 1: Persian Homograph Datasets. Hom. Count shows the number of homographs covered in the dataset and
Hom. Curated indicates if homograph samples were deliberately inserted or naturally occurring in a regular corpus.

synthetic data.

LLM-based approaches are increasingly
demonstrating the potential of LLMs in G2P
conversion. Suvarna et al. (2024) were the first to
benchmark models like GPT-4 and Claude-3 on
phonological tasks, including G2P, and found that
while promising, they still lag behind traditional
models in accuracy. Han et al. (2024) leveraged
GPT-4’s in-context retrieval to map homographs to
dictionary pronunciations, combining automated
generation with manual refinement for accuracy.
Similarly, Qharabagh et al. (2025a) applied LLMs
to Persian G2P conversion through advanced
prompting, achieving state-of-the-art results on
custom datasets without model fine-tuning.

2.2 Datasets

Several studies have proposed various methods to
address data scarcity in G2P for low-resource lan-
guages such as Persian. A comprehensive review
of these studies is provided in Appendix A.2; how-
ever, here we summarize only the most relevant
features of the datasets in Table 1. As shown, all of
the referenced datasets are either not homograph-
specific, not sentence-level, or not publicly avail-
able. This highlights a critical gap in homograph
data for Persian—and likely for many other low-
resource languages—which has resulted in the lack
of G2P systems that outperform random chance in
homograph disambiguation.

3 Methodology

Developing an effective G2P model requires both
high-quality data and the tools to make use of it.
This section outlines our data generation process

and how we leveraged it to improve G2P models.

3.1 Data Preparation

The scarcity of homograph data arises from two
main challenges. First, assembling a high-quality
text corpus that provides broad and balanced cover-
age of homographs across diverse contexts is dif-
ficult. Second, phonemizing a text corpus is both
time-consuming and costly, as it requires trained
experts with linguistic knowledge. In this paper,
we present a practical approach for collecting such
data in a low-resource language like Persian and
demonstrate its effectiveness in the next section.

To tackle the first challenge, we started with
KaamelDict (Fetrat, 2024a), the most extensive Per-
sian G2P dictionary introduced in Qharabagh et al.,
2025a. We filtered for words with multiple valid
pronunciations to identify potential homographs.
Then, through manual review, we excluded words
that either (1) had multiple commonly accepted pro-
nunciations needing no disambiguation, or (2) in-
cluded archaic, poetic, or rarely used forms. From
this, we selected a list of 285 homograph words that
were both comprehensive and practically relevant.

The next task was to generate a diverse and bal-
anced set of sentences for each homograph, cover-
ing different usage contexts and ensuring equal rep-
resentation of all pronunciations. To automate this,
we experimented with prompting LLMs to gener-
ate sentences for each pronunciation or meaning.
However, the results were often skewed toward the
dominant pronunciation, even with explicit instruc-
tions. We found that embedding the homograph in
a full sentence that implied its intended meaning
significantly improved accuracy.

As a result, we adopted a hybrid approach, com-
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bining manual and LLM-generated sentences. We
first shared a list of selected homographs with about
200 native speakers1, asking each to write five con-
textually varied sentences for every pronunciation.
We then used some of these human-written exam-
ples as few-shot prompts to guide LLM-based sen-
tence generation (see Figure 1).

To further enhance the dataset and support down-
stream TTS and G2P tasks, we integrated sen-
tences from three widely used Persian corpora:
ManaTTS (Qharabagh et al., 2025b), GPTInformal
(Fetrat, 2025), and CommonVoice (Ardila et al.,
2019). These additions were meant to improve
overall G2P accuracy—particularly phoneme error
rate (PER)—and enrich the corpus with phoneme-
annotated examples from diverse registers.

To address the second chal-
lenge—phonemization—we leveraged prior work
on LLM-powered G2P conversion (Qharabagh
et al., 2025a). In that study, it was demonstrated
that LLMs can assist in labeling graphemes
with their phonemes, thanks to their phonetic
knowledge and contextual understanding, which is
particularly helpful in disambiguating homographs.
The study introduced several techniques to enhance
LLM performance in G2P tasks without requiring
any training, benchmarking state-of-the-art models
to guide future dataset generation.

We use the most effective method from that
study to phonemize our corpus. It prompts
the model with Finglish—a more accessible but
slightly ambiguous phonemic representation of Per-
sian—instead of the less common IPA format. The
method combines in-context learning, few-shot ex-
amples, hints from a G2P dictionary, and a final
mapping step to produce the target phoneme format
(see Figure 2). To balance cost, availability, and
quality, we use GPT-4o (Hurst et al., 2024) as the
LLM, which achieved a Phoneme Error Rate (PER)
of 6.43% and a homograph disambiguation accu-
racy of 64%, outperforming many existing Persian
G2P systems (see Section 4 for details).

Figure 3 summarizes the structure of the gener-
ated dataset. For compatibility with previous work,
we mapped the phonemes of all sentences to an
alternative phoneme format (see Appendix B). We
release our dataset, named HomoRich, under a per-
missive CC0-1 license, making it freely available
for both academic and commercial use.2

1Details about these human annotators can be found in
Appendix F.

2The HomoRich dataset is available at

3.1.1 Data Statistics
The HomoRich dataset, generated using our pro-
posed recipe, contains 528,891 annotated Persian
sentences. As mentioned, it consists of both
homograph-focused and general-purpose G2P data
collected from multiple sources. Figure 4 illus-
trates the composition of the dataset. The exact
count of samples from each source is also available
in Table 4 in the Appendix.

To ensure diversity, both human annotators and
language models were instructed to generate data
across a wide range of contexts. The dataset com-
prises 75,715 unique words, and the distribution of
sentence lengths is shown in Appendix Figure 10.
To further assess diversity, we calculated three met-
rics for the corpus: 1) the average cosine similarity
of ParsBERT (Farahani et al., 2020) embeddings
for sentences of each homograph, 2) the average
unique word count for the samples of each homo-
graph, and 3) the average unique sentence ratio
(USR) for the dataset. The results can be found in
Table 2.

The HomoRich dataset includes 285 homograph
words, each associated with multiple pronuncia-
tions: 257 have two variants, 21 have three, and 7
have four. On average, each homograph appears in
over 1,000 distinct sentence contexts. To avoid bias
toward more frequent pronunciations, we main-
tained a balanced number of samples for each vari-
ant. Figure 5 shows the pronunciation distribution,
confirming the dataset’s high balance.

To evaluate the overall correctness of the Ho-
moRich dataset, we manually reviewed a random
sample of 1,219 instances from the homograph-
specific subset—arguably the most error-prone sec-
tion—ensuring coverage of all homograph words
and pronunciations. The review process identified
and filtered out samples that misused the required
pronunciation. The resulting accuracy of 91.38%
demonstrates a high level of reliability, which we
deem acceptable for our purposes.

3.1.2 Data Augmentation
To further address data scarcity—particularly in ho-
mograph disambiguation—we proposed three aug-
mentation methods (Figure 6) aimed at enhancing
the model’s understanding of context and increas-
ing data diversity.

1. Synonym Replacement (Figure 6a): We iden-

https://huggingface.co/datasets/MahtaFetrat/
HomoRich-G2P-Persian.
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Figure 1: Prompt for generating homograph sentences.

Figure 2: LLM-powered G2P workflow (Qharabagh et al., 2025a)

Figure 3: Dataset structure with example entry.

tified the most frequently occurring words in
the dataset and mapped each to a set of syn-
onyms with equivalent meaning. For each
sentence, we replaced these words with their
alternatives to generate new samples.

2. Sentence Reordering (Figure 6b): In most
cases, the order of context words does not
affect the pronunciation of the homograph.
Thus, we split sentences at random words
and swapped the resulting segments, updat-
ing their corresponding phoneme sequences.
However, in Persian and similar languages
like Arabic, Ezafe (a phoneme that connects
grammatically related words) must be pre-
served. We employed a POS tagger (Group,
2023) to detect Ezafe constructions and en-
sured no splits occurred within them.

Figure 4: Data source distribution in HomoRich dataset.

3. Homograph-focused Concatenation (Fig-
ure 6c): we further augmented homograph
samples by appending randomly selected
short sentences (without homographs) to the
homograph samples.

Using combinations of these methods, we were
able to scale the dataset by up to 10x, depending
on the augmentation configuration.

3.2 Proposed G2P Tools

Having generated a large, rich, and balanced ho-
mograph dataset using the proposed method, we
introduce both neural and non-neural G2P tools
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Avg. Cosine Similarity ↓ Avg. Unique Word Count ↑ Avg. Unique Sentence Ratio (USR) ↑
0.5984 ± 0.0407 1441.8090 ± 307.4205 0.9837 ± 0.0124

Table 2: Diversity evaluation of the HomoRich dataset.

Figure 5: Sample counts per pronunciation.

that build upon this data and demonstrate how this
dataset can be used to enhance homograph disam-
biguation in each approach.

3.2.1 Homo-GE2PE (Neural)
As reviewed in Section 2, ByT5 (Xue et al., 2022)
has been successfully fine-tuned for G2P tasks in
multiple studies (Řezáčková et al., 2024b,a; Rah-
mati and Sameti, 2024). In a recent study (Rah-
mati and Sameti, 2024), this approach resulted
in GE2PE, a model achieving state-of-the-art per-
formance in Persian G2P. We further fine-tuned
GE2PE on our dataset using a three-phase process:

1. Initial fine-tuning on the regular G2P subset

2. Second-phase fine-tuning on LLM-generated
homograph sentences

3. Final fine-tuning on high-quality, human-
authored homograph sentences

We used a learning rate of 5e-4 and a batch size
of 32 across all phases, with 5, 20, and 50 training
epochs respectively, trained on an NVIDIA GTX
TITAN X (12GB VRAM, CUDA 12.2) with Intel
i7-5820K CPU. The full training process took ap-
proximately 24 hours in total. The learning curves
for all phases, including training and validation
metrics, are shown in Figure 7. The resulting en-
hanced model, named Homo-GE2PE, is publicly
available under an open license.3

3Complete training scripts, model files and usage instruc-
tions are available at https://github.com/MahtaFetrat/
Homo-GE2PE-Persian.

3.2.2 HomoFast eSpeak (Non-neural)

As discussed earlier, one of the main motivations
for favoring non-neural methods in certain appli-
cations is their low latency. Neural models, while
powerful, often incur high inference times, making
them less suitable for real-time systems such as
screen readers. In contrast, rule-based and statisti-
cal systems are extremely fast and lightweight, en-
abling them to operate effectively in low-latency en-
vironments. Therefore, despite the advances in neu-
ral G2P systems, it remains important to continue
exploring and enhancing non-neural approaches,
particularly when speed and responsiveness are
critical.

However, a key limitation of non-neural systems
is their difficulty in disambiguating homographs,
due to their limited or nonexistent semantic or con-
textual understanding. In this work, we introduce a
strategy to enhance the homograph disambiguation
ability of G2P systems using datasets generated
by our proposed approach. This strategy is purely
statistical and does not rely on neural models or
even embeddings, making it a perfect solution for
improving the homograph accuracy of rule-based
methods without compromising their key advan-
tage—speed and low latency. While straightfor-
ward in design, this approach has not been explored
in prior homograph disambiguation research.

The approach begins by tokenizing the sentences
in our dataset, removing stopwords, and construct-
ing a database that maps different pronunciations
of homographs to lists of context words that fre-
quently co-occur with each pronunciation.

For a new sentence, we compute a weighted
overlap between its context words and each pro-
nunciation’s context list to derive a similarity score.
To mitigate bias toward longer lists, we normal-
ize each score by the length of the corresponding
context list. The pronunciation with the highest
normalized score is then selected as the most con-
textually appropriate. For a schematic overview of
this method, see Figure 8.

We applied this approach to the widely used eS-
peak NG project (Duddington, 2024), selected for
its relevance to real-world applications. eSpeak NG
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(a) Synonym Replacement (b) Reordering (c) Concatenation

Figure 6: Illustration of our three data augmentation methods for homograph disambiguation.

(a) Phase 1 (5 epochs) (b) Phase 2 (20 epochs) (c) Phase 3 (50 epochs)

Figure 7: Learning curves across fine-tuning phases.

is a compact, open-source text-to-speech synthe-
sizer available on Linux, Windows, Android, and
other platforms. It supports over 100 languages and
accents, benefiting from contributions by various
linguistic communities. Notably, it has an add-
on in the open-source NVDA screen reader (nva,
2007), and its Persian G2P module is extensively
used in screen readers by a large portion of the
blind community in Iran (NV Access Limited and
contributors, 2023; Gooshkon, 2022). We name
the enhanced version HomoFast eSpeak, which,
as shown in the following sections, demonstrated
outstanding results, indicating a viable path for en-
hancing rule-based TTS systems in Persian.4

4 Results

The first public sentence-level dataset for bench-
marking homograph accuracy in G2P systems,
termed SentenceBench, was introduced by Fetrat
(2024b). We adopted this dataset as our primary
benchmark. This constitutes a stronger method-
ological choice than using a test split from our own
HomoRich dataset, as the latter is predominantly
generated by a single LLM and may therefore con-
tain inherent biases toward specific contextual pat-
terns.

4The HomoFast eSpeak is available at https://github.
com/MahtaFetrat/HomoFast-eSpeak-Persian.

Evaluation of Baseline G2P Tools: Table 3
presents the performance of previously available
G2P tools on the SentenceBench benchmark. As
shown, the only two models that perform well in
terms of phoneme error rate (PER) are the neural
GE2PE model (Rahmati and Sameti, 2024) and the
rule-based eSpeak tool (Duddington, 2024). How-
ever, even these models perform worse than ran-
dom when it comes to homograph disambiguation.

Evaluation of the Proposed Improved G2P
Tools: To address the challenge of homograph
disambiguation in Persian G2P systems, we uti-
lized a curated homograph dataset to enhance both
neural and rule-based models. Specifically, we
fine-tuned the GE2PE (Rahmati and Sameti, 2024)
model and proposed a statistical disambiguation
module integrated into eSpeak (Duddington, 2024),
resulting in two improved variants: Homo-GE2PE
and HomoFast eSpeak.

As depicted in Table 3, our improved GE2PE
model achieves a 29.72 percentage-point increase
in homograph accuracy with a concurrent reduction
in phoneme error rate (PER). Notably, our statis-
tical disambiguation module—devoid of any neu-
ral components or learned embeddings—delivers
the same level of homograph accuracy improve-
ment when integrated into rule-based models, all
while maintaining their inference speed. This un-
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Figure 8: Overview of the proposed statistical homograph disambiguation approach.

Model PER (%) ↓ Homograph Acc. (%) ↑ Avg. Inf. Time (s) ↓

persian-phonemizer
25.27 ± 0.09 29.25 ± 0.47 0.1803 ± 0.04

(Dehghani, 2022)
PersianG2P (Pascal, 2020) 15.04 ± 0.00 37.74 ± 0.00 2.1686 ± 0.10
Persian_G2P (Rabiee, 2019) 35.23 ± 0.00 21.23 ± 0.00 11.1374 ± 0.56
G2P (Ajini, 2022) 19.63 ± 1.83 29.91 ± 0.72 28.0039 ± 0.42
G2P with Transformer

12.85 ± 0.09 40.00 ± 0.21 0.9685 ± 0.03
(Alipour, 2023)
Epitran (Mortensen et al., 2018) 45.12 ± 0.00 0.00 ± 0.00 0.0003± 0.00
eSpeak (Duddington, 2024) 6.92 ± 0.00 43.87 ± 0.00 0.0169 ± 0.00
GE2PE (Rahmati and Sameti, 2024) 4.81 ± 0.00 47.17 ± 0.00 0.4464 ± 0.03

Homo-ByT5 4.12± 0.13 76.32± 0.52 0.4141 ± 0.09
HomoFast eSpeak 6.33 ± 0.00 74.53 ± 0.00 0.0084 ± 0.00
Homo-GE2PE 3.98± 0.00 76.89± 0.00 0.4473 ± 0.02

Table 3: Comparison of Persian G2P tools in terms of Phoneme Error Rate (PER), Homograph Accuracy, and
Average Inference Time. Results are reported as mean ± standard deviation across 5 independent runs. Best results
are in bold, and second-best are underlined.

derscores the value of high-quality data and shows
that even simple statistical techniques can be highly
effective when supported by strong datasets.

Also, to provide a comprehensive evaluation of
our neural tool and to isolate the effect of training
data exposure, we performed an 80-20 stratified
train-test split on the homograph subset of the Ho-
moRich dataset. This split ensures that approxi-
mately 80% of the instances for each pronunciation
of every homograph are allocated to the training set,
with the remaining 20% reserved for testing. We
trained the base GE2PE model on this training par-
tition using the same settings and scripts as in our
primary experiments. Evaluation on the held-out
test set yielded a PER of 5.36% and a homograph
accuracy of 87.64%. This partitioned dataset is
available in the aforementioned HomoRich reposi-
tory.

Fine-tuning ByT5 on Our Dataset: To evalu-
ate the effectiveness of our dataset in improving

both the general phoneme error rate (PER) and ho-
mograph disambiguation, we fine-tuned the base
GE2PE model (ByT5) using only our data with
the same hardware setup and training configura-
tion as for Homo-GE2PE, referring to this variant
as Homo-ByT5. The learning curves can be seen
in Figure 11. Despite our dataset being an order
of magnitude smaller than the 5-million-sample
synthetic dataset used in the original GE2PE study
(Rahmati and Sameti, 2024), Homo-ByT5 achieves
competitive phoneme error rate (PER) and high
homograph accuracy (Table 3), demonstrating the
quality and utility of our approach.

Evaluation of Inference Speed: Another crit-
ical factor is inference speed. While the Homo-
GE2PE model outperforms HomoFast eSpeak in
accuracy, it is orders of magnitude slower, mak-
ing it impractical for real-time applications such as
screen readers. Figure 12 in the appendix presents
the speed and accuracy of all available and pro-
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posed G2P tools. All inference tests were con-
ducted on Google Colab (CPU runtime).5 The
color heatmap highlights lower-performing mod-
els in red and higher-performing models in green.
As shown, eSpeak and HomoFast eSpeak are the
fastest models, with the latter benefiting from a
newly added feature that enables processing of
larger text segments in a single run.

5 Conclusion

In this work, we tackled two persistent challenges
in homograph disambiguation for low-resource lan-
guages: the high cost of dataset creation and the
latency constraints of real-time G2P applications.
We proposed a semi-automated pipeline for build-
ing homograph-rich datasets and introduced Ho-
moRich, the first large-scale, openly licensed Per-
sian homograph dataset. Using this resource, we
achieved a 29.72 percentage-point improvement in
homograph accuracy for a state-of-the-art neural
G2P model.

To bridge the gap between accuracy and
real-time performance, we further developed a
lightweight, context-aware statistical method that
enhances homograph handling with minimal com-
putational overhead. Integrated into the widely
used eSpeak engine, this method led to Homo-
Fast eSpeak, a fast, homograph-aware G2P system
that improves disambiguation accuracy by 30.66
percentage-points while retaining the responsive-
ness crucial for screen readers and other accessibil-
ity tools.

Our results highlight the potential of using high-
quality offline datasets not only to train neural mod-
els, but also to enrich and modernize traditional
rule-based systems. By releasing all resources un-
der a CC0-1.0 license, we aim to foster further re-
search and practical adoption in accessibility tech-
nologies for low-resource languages.

6 Limitations

Homograph disambiguation is not the only context-
dependent challenge in Persian. Another notable
challenge is the correct phonemization of the Ezafe,
a linking phoneme that grammatically and semanti-
cally connects words. This is a major weakness in
current non-neural systems.

5Inference scripts and benchmarking code are
available at https://github.com/MahtaFetrat/
Persian-G2P-Tools-Benchmark.

Addressing such context-sensitive phenomena
requires further research, particularly in design-
ing fast yet linguistically aware non-neural meth-
ods. Tackling challenges like Ezafe handling could
bring rule-based G2P models significantly closer
to the naturalness of neural models—while main-
taining the speed advantage crucial for real-world
deployment.
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A Extended Related Work Review

This appendix provides a more detailed review of
prior work on homograph disambiguation. We
organize the discussion into two parts: first, we
survey general approaches used across languages,
including rule-based, statistical, neural, and hy-
brid methods. Then, we turn our focus to Persian-
specific efforts, particularly those that involve the
creation or use of datasets aimed at addressing the
scarcity of resources for homograph disambigua-
tion in low-resource settings.

A.1 Homograph Disambiguation Approaches
This subsection reviews the main approaches pro-
posed for homograph disambiguation across lan-
guages. To provide a clear structure, we divide the
methods into five categories: rule-based, neural,
hybrid, LLM-based, and other approaches. This or-
ganization reflects both the chronological evolution
and methodological diversity of the field.

A.1.1 Rule-based and statistical Approaches
Silva et al. (2012) proposed a rule-based algorithm
set as their core method for homograph disambigua-
tion in Brazilian Portuguese text-to-speech systems.
Their approach utilizes linguistic rules based on
morphosyntactic and semantic analysis, employ-
ing information from the surrounding context, in-
cluding part-of-speech, morphology, lemmas, and
semantic relations from Wordnets, along with re-
strict lexical combinations. The authors tested their
algorithms on existing text databases, namely a
newspaper corpus (CETENFolha), the Holy Bible
in BP, and Brazilian literature.

Yarowsky (1997) developed a corpus-driven ap-
proach for English homograph disambiguation, uti-
lizing a 400-million-word multi-domain dataset
that included news articles, scientific texts, and
literary works. Their method employed statistical
decision lists that ranked contextual patterns (in-
cluding adjacent words and part-of-speech tags)
by their log-likelihood ratios to determine correct
pronunciations, effectively addressing seven ma-
jor categories of homographs through data-driven
rules rather than neural networks. The work demon-
strated how large-scale, diverse training data could
be leveraged to resolve lexical ambiguities with
high accuracy.

Hearst (1991) proposed a method for noun homo-
graph disambiguation in English using a large unre-
stricted text corpus, the Academic American Ency-
clopedia, which contains approximately 8.6 million

words. To address the lack of sense-annotated data,
the author manually labeled a small set of training
instances for each homograph—testing the method
on five English nouns (e.g., bank, tank, bass)—and
further improved performance through an unsu-
pervised learning phase that incorporated high-
confidence predictions without additional manual
effort. The core method, called CatchWord, is rule-
based and relies on shallow contextual cues such as
syntactic patterns, orthographic features (e.g., capi-
talization), and lexical co-occurrence information
extracted from local context windows. This ap-
proach avoids deep semantic resources or inference
and demonstrates that coarse-grained disambigua-
tion can be effectively achieved using lightweight,
corpus-driven statistical techniques.

A.1.2 Neural Approaches
Yao and Zweig (2015) explored applying sequence-
to-sequence neural network models to the
grapheme-to-phoneme (G2P) task, which is distin-
guished from machine translation and image cap-
tioning by its small vocabulary and the need for ex-
actly correct outputs. The authors investigated two
main approaches: a simple encoder-decoder LSTM
model and alignment-based models. The simple
encoder-decoder LSTM was found to perform well
and was close to the state-of-the-art without re-
quiring explicit alignment information. However,
by allowing the neural network to use the same
alignment information as conventional methods,
the authors were able to significantly advance the
state-of-the-art with a bi-directional LSTM archi-
tecture. The bi-directional LSTM uses one RNN
to process the input from left-to-right and another
to process it right-to-left, combining their outputs
to predict the next phoneme. They also found that
deeper bi-directional networks further improved
performance.

Peters et al. (2017) introduced a massively multi-
lingual neural approach for grapheme-to-phoneme
(G2P) conversion, which aims to address the lack
of resources for low-resource languages by training
a single system on data from hundreds of languages.
The model, which is based on an encoder-decoder
architecture with attention, shares a single encoder
and decoder across all languages. To handle the dif-
ferent pronunciation patterns of various languages,
the system prepends an artificial language ID to-
ken (e.g., <eng>) to the input grapheme sequence.
This approach exploits the intrinsic similarities
between different writing systems and improves
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performance on low-resource languages by allow-
ing them to implicitly share parameters with high-
resource languages. The authors demonstrated an
11% improvement in phoneme error rate (PER)
over a baseline approach that adapts high-resource
monolingual models to low-resource languages.
They also noted that the language ID token was
highly beneficial for performance, especially when
an embedding had been learned for it, and that
the model was much more compact compared to
previous approaches.

Nicolis and Klimkov (2021) proposed a homo-
graph disambiguation system for American English
text-to-speech (TTS) applications, focusing primar-
ily on neural methods rather than rule-based ones.
They used a publicly available dataset compris-
ing 138 homograph words, each with around 90
training and 10 test sentences, and addressed data
imbalance by manually augmenting the training
set for underrepresented homograph variants using
an internal fiction-based corpus. This augmenta-
tion, which added about 10 examples per weak
variant, led to a relative accuracy improvement of
over 11%, demonstrating the effectiveness of tar-
geted data enrichment. Their method relies on con-
textual word embeddings (CWEs) extracted from
pretrained BERT and ALBERT models, which are
then fed into lightweight logistic regression classi-
fiers trained separately for each homograph. This
fully ML-based approach achieves state-of-the-art
performance without the need for hand-crafted
rules.

Seale (2021) addressed the challenge of low-
resource data in homograph disambiguation by
exploring label imputation techniques. To miti-
gate this, the author generated four homograph
disambiguation datasets and made them available
for the research community. The author also used
the Wikipedia Homograph Data (WHD) released
by Gorman et al. (2018) to conduct the research.
Their core method involved employing regularized,
multinomial logistic regression and fine-tuning pre-
trained ALBERT, BERT, and XLNet language mod-
els as token classifiers to improve model perfor-
mance, particularly in classes with low prevalence
samples.

Ploujnikov (2024) proposed SoundChoice,
a sentence-level Grapheme-to-Phoneme (G2P)
model aimed at improving homograph disambigua-
tion in English. To address the challenge of context-
aware phoneme prediction, they constructed the
LibriG2P dataset, which integrates lexicon-based

word pronunciations from CMUDict, phoneme
alignments from LibriSpeech, and Wikipedia ho-
mograph data. This dataset includes approxi-
mately 10259 homograph-labeled samples, ad-
dressing inconsistencies between lexicon-based
and audio-derived phoneme annotations. Their
model employs a hybrid neural architecture, lever-
aging LSTMs, GRUs, and content-based atten-
tion, alongside CTC loss and curriculum learn-
ing—progressing from individual word training to
sentence-level fine-tuning for enhanced contextual
phoneme prediction. Additionally, BERT word em-
beddings are incorporated to inject semantic knowl-
edge for better homograph resolution, achieving a
phoneme error rate (PER) of 2.65% and 94% ho-
mograph classification accuracy. This work con-
tributes to dataset development and model innova-
tions in grapheme-to-phoneme conversion.

Řezáčková et al. (2024b), Řezáčková et al.
(2024a) introduced a grapheme-to-phoneme (G2P)
conversion approach using a Text-to-Text Trans-
fer Transformer (T5) model. To capture cross-
word context and assimilation effects, their models
for English and Czech were trained on proprietary
datasets of several hundred thousand sentences pro-
vided by language experts, mitigating the need for
explicit rule-based post-processing. The T5-based
model achieved high conversion accuracy across
the tested languages.

Comini et al. (2025) present a neural-based
lightweight front-end for on-device TTS in En-
glish, Polish, and Russian, using internal pronuncia-
tion dictionaries and the Kaggle text normalization
dataset to address data limitations. Their dataset in-
cludes 53.1k, 42.4k, and 31.9k words for G2P and
6.4k, 6.5k, and 11.2k tokens for TN. They employ
transformer-based and GRU-based models, leverag-
ing knowledge distillation from pre-trained teacher
models to train compact student models, optimiz-
ing for low latency and scalability in low-resource
scenarios.

Gao (2024) tackle speech processing for low-
resource languages using neural methods, partic-
ularly self-supervised learning (SSL) with mod-
els like wav2vec2 and HuBERT. They use exist-
ing speech datasets (e.g., LibriSpeech, VoxPopuli,
CommonVoice) and enhance SSL pretraining with
synthetic speech generated by diffusion models to
address data scarcity. Their approach improves
multilingual and zero-shot phonetic recognition
without requiring labeled data.
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Nanni (2023) investigated homographic hetero-
phone disambiguation in Italian Text-To-Speech
(TTS) systems using the SoundChoice model,
which includes an RNN (LSTM + GRU) and a
transformer version. Given the scarcity of Ital-
ian homograph datasets, the study generated 9,916
sentences with ChatGPT, supplementing a 1,700-
sentence corpus dataset. The ChatGPT-generated
data was created through iterative prompting,
where sentences were crafted to include homo-
graphs in varying syntactic contexts. These sen-
tences were manually validated for linguistic ac-
curacy and context relevance before phonetic tran-
scription using a ReadSpeaker transcription tool,
which had a 59.56% accuracy in homograph reso-
lution. The model integrates semantic disambigua-
tion via BERT embeddings and a weighted ho-
mograph loss, enabling sentence-level pronuncia-
tion prediction. Evaluation showed the transformer
model outperformed the RNN, highlighting the fea-
sibility of neural methods for Italian homograph
disambiguation.

A.1.3 Hybrid Approaches
Gorman et al. (2018) addressed homograph disam-
biguation for English TTS by creating a labeled
dataset of 163 homographs (including morphosyn-
tactic, lexical, and mixed types), with 100 sen-
tences per homograph sampled from Wikipedia
and annotated via crowdsourcing. To mitigate
data scarcity, they employed rigorous adjudication
for label disagreements and released the dataset
publicly. Their hybrid system combined rule-
based heuristics (e.g., context-triggered pronunci-
ation rules, POS tags) with supervised ML (per-
homograph maxent classifiers using word-context,
POS, and capitalization features), showing that hy-
bridization outperformed either approach alone.

Karamihaylova (2023) developed a hybrid
grapheme-to-phoneme (G2P) system for Bulgar-
ian, combining rule-based finite-state transducers
(FSTs) for consonant mapping and vowel reduc-
tion rules with an LSTM-based seq2seq model for
stress prediction. To address inconsistencies in
publicly available data, they scraped and filtered
38,000 word-pronunciation pairs from Bulgarian
Wiktionary using WikiPron, then standardized con-
sonant transcriptions while preserving vowel varia-
tions to study stress-induced reduction. The dataset
included homographs, where stress position disam-
biguates meaning. Their hybrid approach achieved
performance comparable to pure neural methods,

demonstrating the viability of curated rule-neural
integration for medium-resource languages.

A.1.4 LLM-based Approaches

Suvarna et al. (2024) introduced PhonologyBench,
evaluating Large Language Models (LLMs) on En-
glish phonological tasks, including homographs.
Their dataset includes 3,000 words for grapheme-
to-phoneme conversion, sourced from SIGMOR-
PHON 2021, ensuring phonemic transcriptions.
They tested GPT-4, Claude-3-Sonnet, and LLaMA-
2-13B, using a zero-shot neural approach, showing
that LLMs struggle with homograph pronunciation.
Their findings highlight the need for phonology-
aware datasets to improve text-based pronunciation
models.

Han et al. (2024) explored the use of Large Lan-
guage Models (LLMs) for grapheme-to-phoneme
conversion, focusing on leveraging the in-context
knowledge retrieval capabilities of GPT-4 to disam-
biguate homographs. To facilitate this, the authors
constructed a dictionary by combining the Librig2p
training dataset and the CMU dictionary. For ho-
mograph words, they used GPT-4 to generate cases
automatically. Each homograph contains multiple
cases and was later manually refined. The core of
their method involves prompting GPT-4 to analyze
the input sentence, identify the most relevant mean-
ing and part-of-speech for the target word, and then
retrieve the corresponding phoneme pronunciation
from the constructed dictionary.

Qharabagh et al. (2025a) proposed an LLM-
powered approach to Grapheme-to-Phoneme (G2P)
conversion in Persian, addressing challenges
posed by polyphone words and context-sensitive
phonemes. To improve phonetic accuracy and
benchmark sentence-level G2P performance, two
datasets were introduced: Kaamel-Dict, a unified
phonetic dictionary with over 120,000 entries, and
Sentence-Bench, a sentence-level dataset contain-
ing 400 annotated sentences, including 100 poly-
phone words used in various contexts. The method
leverages large language models (LLMs) without
additional training, applying advanced prompting
and post-processing techniques to enhance pho-
netic predictions. Benchmarking results demon-
strate that LLMs can outperform traditional models,
highlighting the potential of LLMs in low-resource
G2P tasks.
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A.1.5 Other Approaches

Tesprasit et al. (2003) addressed the challenges
posed by word boundary and homograph ambigu-
ity in Thai Text-to-Speech, noting the absence of
word delimiters in the language. To conduct their
research, they created their own 25K-word corpus
where sentences were manually segmented, and
part-of-speech tags and pronunciations were man-
ually annotated by linguists. Their core method
is a unified machine learning framework based on
the Winnow algorithm, a statistical technique that
learns to combine local and long-distance contex-
tual features like context words and collocations
to disambiguate word pronunciations without rely-
ing on predefined rules or standard neural network
architectures.

Alqahtani et al. (2019) addressed homograph
disambiguation in Arabic by proposing unsuper-
vised, data-driven methods to selectively restore di-
acritics, balancing lexical disambiguation and spar-
sity. They leveraged existing corpora ( 50M tokens,
including Gigaword and Arabic Treebank) with-
out new data collection, using the MADAMIRA
tool for automated diacritization and morpholog-
ical analysis. Their approach identified 33.8%
of words as homographs (e.g., 168K ambiguous
types) by clustering diacritized variants (Brown,
K-means) and analyzing translation divergences
in parallel text. Unlike rule-based or neural meth-
ods, their work focused on distributional similarity
and morphological variants to guide selective dia-
critization, demonstrating improved performance
in downstream tasks like machine translation and
POS tagging.

Hajj et al. (2022) addressed the challenge of dis-
ambiguating French heterophonic homographs for
TTS systems by creating a custom dataset. They
collected 8137 sentences from the web, ensuring a
balanced representation of 34 pairs of prototypical
homographs, with roughly one hundred instances
per pair. To enhance disambiguation, they em-
ployed Linear Discriminant Analysis (LDA) classi-
fiers, utilizing contextual word embeddings as in-
put features, and experimented with the FlauBERT
transformer for POS tagging.

A.2 Persian Homograph Disambiguation and
Dataset Development

Several recent works have introduced or curated
datasets specifically for Persian homograph disam-
biguation and word sense disambiguation (WSD).

Notably, Moghadaszadeh et al. (2024) presented a
dataset collected through a cluster-based sampling
strategy to mitigate phoneme imbalance. Another
valuable dataset is by Ghayoomi (2019), who de-
veloped a manually annotated gold standard for 20
Persian ambiguous words, each with 100 sentences,
totaling 2000 sentences. These sentences were ex-
tracted from the Persian Language Database and
annotated according to SemEval2010 guidelines.
Similarly, Rahmati and Sameti (2024) generated
over 5 million sentence-phoneme pairs, including
manually and automatically labeled data which was
a valuable source for general G2P task not homo-
graph challenge.

Other works focused on smaller, curated
datasets. Ayyoubzadeh and Shahnazari (2024) cre-
ated a dataset containing 63 homograph words,
with sentence-level phonetic annotations devel-
oped through careful selection. Mahmood-
vand and Hourali (2017) extracted 5368 docu-
ments/sentences using a web crawler for three Per-
sian homographs ("Shir", "Rast", "Tar") from Ira-
nian news agency websites, partially labeled (2133
documents). Riahi and Sedghi (2012) used the
Hamshahri corpus and manually tagged instances
of two homographs, with training sizes ranging
from 10 to 1500 words for their tri-training frame-
work. Additionally, Nanni (2023) created an Ital-
ian homograph dataset, including 9,916 ChatGPT-
generated sentences supplemented with 1,700 cor-
pus examples.

The following paragraphs provide a more de-
tailed examination of each study.

Riahi and Sedghi (2012) addressed the challenge
of limited manually tagged data for Persian Word
Sense Disambiguation (WSD) by proposing a semi-
supervised method. To conduct their experiments,
they utilized the raw Hamshahri corpus and cre-
ated their own tagged data by manually annotating
instances of two Persian homographs. Their core
method employs a statistical approach based on
tri-training with decision lists. The decision lists
classify homographs by analyzing the distribution
of collocations (surrounding words), and the tri-
training framework iteratively leverages a small
tagged corpus and a larger untagged corpus to im-
prove disambiguation accuracy.

Moghadaszadeh et al. (2024) introduced
AvashoG2P, a multi-module system for Persian
grapheme-to-phoneme (G2P) conversion that pri-
marily employs neural network-based approaches.
For out-of-vocabulary word prediction, their core
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method utilizes a sequence-to-sequence model with
a GRU-based recurrent unit and an attention mech-
anism. Addressing the lack of labeled data for
homograph disambiguation in Persian, the authors
collected and labeled their own homograph data.
To mitigate the challenge of data imbalance in their
collected homograph data, they first clustered the
data for each homograph before labeling a selection
of samples from each cluster. Their homograph dis-
ambiguation module leverages a classification ap-
proach that uses a single model for all 54 supported
Persian homographs, with experiments highlight-
ing the superior performance of transformer-based
models like XLMRoberta.

Ghayoomi (2019) proposed an unsupervised neu-
ral method for Persian word sense induction us-
ing word embeddings and hierarchical clustering.
They trained embeddings on a combined corpus
( 529M words) and evaluated on a manually anno-
tated dataset of 20 ambiguous words (100 sentences
each). Their approach leveraged context windows
(8 surrounding words) and sentence-level embed-
dings, clustering them without predefined rules.

Ayyoubzadeh and Shahnazari (2024) introduced
a novel dataset for Persian homograph disambigua-
tion, addressing the challenges posed by words
with identical spellings but different meanings in
Persian[1]. Their dataset includes diverse sentences
containing homographs, which are carefully anno-
tated to facilitate detailed analysis and model train-
ing. The authors trained both lightweight machine
learning and deep learning models, leveraging em-
beddings and cosine similarity to disambiguate ho-
mographs and evaluated model performance using
accuracy, recall, and F1 score.

Mahmoodvand and Hourali (2017) addressed the
challenge of limited labeled data for Persian word
sense disambiguation by implementing a semi-
supervised machine learning approach. They cre-
ated their own corpus by developing a crawler to ex-
tract sentences containing target ambiguous words
from news agency websites, building a dataset
specifically designed for WSD tasks. Their method
leverages a small set of labeled seed data combined
with a larger volume of unlabeled data in a collab-
orative learning framework, focusing on defined
features of target words to disambiguate their mean-
ings. The researchers evaluated their approach on
three Persian homograph words ("Shir," "Rast,"
and "Tar"), achieving impressive results with 88%
recall, 95% precision, and 93% accuracy across
5,368 documents, demonstrating the effectiveness

of their semi-supervised approach for Persian lan-
guage processing despite the inherent challenges
of Persian’s rich metaphorical nature and complex
writing style.

Mahmoodvand and Hourali (2015) presented
a method for building a Persian word sense dis-
ambiguation (WSD) dataset by employing a web
crawler to gather documents containing specific
ambiguous words. Addressing the lack of suitable
WSD corpora for Persian, their approach focuses
on extracting relevant phrases for ambiguous words
from web data to create a dataset that can be used
in WSD tasks. The authors used three prevalent
Persian ambiguous words to extract appropriate
phrases. This research provides a foundation for
supervised WSD methods in Persian by offering a
means to generate training data where it was previ-
ously scarce.

Rahmati and Sameti (2024) proposed GE2PE, a
Persian end-to-end grapheme-to-phoneme conver-
sion model that addresses the challenges of Persian
homographs and missing short vowels by leverag-
ing sentence-level context. To support this, they
created two large datasets comprising over five
million sentences with corresponding phoneme
sequences, including both manually labeled and
machine-generated data, and designed evaluation
sets specifically for tasks like Kasre-Ezafe detec-
tion and homograph disambiguation. Their core
approach is a ByT5 (Xue et al., 2022) model trained
in a two-step process, building on advances in trans-
former architectures shown to be effective for G2P
tasks. This work stands out for its extensive data
creation tailored to Persian linguistic challenges
and its end-to-end neural modeling strategy.

Rezaei et al. (2022) proposed a multi-module
G2P system for Persian that addresses the chal-
lenges of homographs, OOV words, and ezafe con-
structions. To handle homographs, they extracted
a homograph dictionary from the Ariana lexicon.
Their core method involves a combination of GRU
and Transformer architectures within separate mod-
ules to handle different aspects of G2P conversion.
The system operates at the sequence level, cap-
turing cross-word relations crucial for homograph
disambiguation and ezafe recognition.

Alayiaboozar et al. (2019) proposed a rule-based
approach for disambiguating Persian noun and
adjective homographs ending in (/i/), leveraging
context-sensitive syntactic rules (e.g., preposition
+ quantifier patterns) derived from three exist-
ing corpora: the Peykare corpus, Farsi Linguis-
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tic Database, and Persian Dependency Treebank.
They extracted 36 rules based on 10-word contex-
tual windows, achieving high accuracy (e.g., 94%
for some rules), but did not create new labeled data.
Their method focused on morphological and syn-
tactic patterns (e.g., adjacent POS tags) to resolve
ambiguity in a language with prevalent homogra-
phy due to orthographic constraints.

B Phoneme Representaion Mapping

There are two common representations for Persian
phonemics. The first representation is the one used
in many of the G2P glossaries, including Kaamel-
Dict (Fetrat, 2024a; tih, 2019; IPA, 2022; wik,
2002; zay, 2004; jam, 2017; Ajini, 2022; Pascal,
2020; Rabiee, 2019; Zhu et al., 2022) and bench-
marks like SentenceBench (Fetrat, 2024b). The
second representation is used in one of the state-
of-the-art G2P models for Persian, namely GE2PE,
which is fine-tuned and enhanced in this work. Our
HomoRich dataset includes the sentence phoneme
sequences in both of these formats for compatibil-
ity. Figure 9 shows these two representations.

A key challenge in mapping the Ezafe phoneme
between these representations was its inconsistent
annotation. The Ezafe is a short vowel /e/ used
to indicate possession, relation, or description in
Persian noun phrases. For instance, in the sen-
tences "This is Ziba’s flower" (/in gol-e zibA ast/)
and "This flower is beautiful" (/in gol zibA ast/),
the Ezafe appears as a linking /e/ sound, but its
presence or absence can alter the meaning of the
sentence. In the GE2PE representation, the Ezafe
is denoted by an additional ‘1‘ symbol after the ‘/e/‘
phoneme, while in our dataset, the ‘/e/‘ phoneme
alone may indicate either a regular vowel or an
Ezafe.

To resolve this ambiguity, we employed a POS
tagger (Group, 2023) with 99.249% accuracy to
identify Ezafe constructions based on the grapheme
sequence. For each Ezafe occurrence, we retrieved
its phonemic form from the KaamelDict (Fetrat,
2024a) glossary and searched for the correspond-
ing ‘/e/‘ phoneme in the phoneme sequence. A ‘1‘
symbol was then appended to the ‘/e/‘ to maintain
consistency with the GE2PE representation.

C Additional Figures

Dataset Sentence Length Distribution A well-
designed dataset for a G2P model should include
sentences of varying lengths to ensure the model

Source Count

GPT-4o 257,915
CommonVoice 118,983
ManaTTS 76,561
human 69,560
GPTInformal 5,872

Homograph Samples 327,475
(Human + GPT-4o)

Total 528,891

Table 4: Breakdown of the data sources and their sample
counts in the HomoRich dataset.

can accurately transcribe both short and long ut-
terances. Sentence length is also an indicator of
linguistic diversity and complexity. Figure 10 il-
lustrates the distribution of sentence lengths in the
Homorich dataset.

Learning Curves for ByT5 Training Figure 11
shows the training dynamics across all phases when
fine-tuning ByT5 (Xue et al., 2022), with identical
hyperparameters as described in Section 3.2.1.

Inference speed vs. performance Figure 12
demonstrates the trade-off between inference speed
and performance for various G2P tools. The best-
performing tools are relatively slower, while the
fastest tool is low in performance. The eSpeak
versions offer a balance, with fast inference and
favorable performance.

D Additional Tables

Data sources in HomoRich Table 4 details the
composition of the HomoRich dataset, listing the
count of samples from each data source.

E Statistical Analysis of Experimental
Results

To provide a comprehensive view of the variability
in the reported metrics, we present error bar plots
for the Phoneme Error Rate (PER), Homograph
Accuracy, and Inference Time across the evaluated
G2P tools and proposed models. Figures 13, 14,
and 15 illustrate these metrics, with error bars rep-
resenting standard deviations across five runs. The
inference time plot is rendered on a logarithmic
scale to highlight differences across models with
varying computational requirements.
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(a) Repr. 1 (used in this work and related studies) (b) Repr 2 (used in other prior literature)

Figure 9: Comparison of two commonly used phoneme representations for Persian sounds.

F Details of Human Subject Participation
in Data Collection

As part of this study, we engaged approximately
200 human participants to contribute to the human-
generated portion of our homograph sentence cor-
pus. Specifically, we curated a list of 285 Persian
homograph words, each with multiple valid pro-
nunciations. These were organized into several
Google Sheets, where each sheet listed a subset
of homograph words along with their pronuncia-
tions, followed by five empty rows designated for
sentence creation for each alternative.

Each homograph word appeared in multiple
sheets to ensure that it was annotated by different
individuals, and each participant received a subset
of words—thus distributing the workload and en-
couraging diversity in linguistic expression. The
instructions, originally provided in Persian, asked
participants to compose Persian sentences that nat-
urally incorporate the target homograph with the
specified pronunciation. A translated excerpt of the
instruction reads:

"Please write five different Persian sen-
tences using the given word with the pro-
nunciation indicated below it. Try to
make the sentences as natural and diverse
as possible. Avoid repeating sentence
structures or vocabulary."

Participants were explicitly encouraged to avoid
sentence repetition, maintain lexical diversity, and
write fluent, meaningful examples.

Each participant completed multiple such en-
tries, and collectively, this process yielded a total
of 69,560 high-quality, human-written sentences.
The sentences form a valuable component of our
dataset for disambiguating homograph pronuncia-
tion in context.

G Broader Impact

The ultimate goal of our work is to improve the
quality of fast, rule-based G2P models—and neural
G2P systems in general—so they can be effectively
integrated into low-latency text-to-speech (TTS)
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Figure 10: Distribution of sentence word counts.

(a) Phase 1 (5 epochs) (b) Phase 2 (20 epochs) (c) Phase 3 (50 epochs)

Figure 11: Learning curves across fine-tuning phases of ByT5.

pipelines, particularly for screen readers and other
real-time accessibility tools. By enhancing homo-
graph disambiguation and overall phonetic accu-
racy, we enable more natural and reliable speech
synthesis, which is critical for users who rely on
assistive technologies.

A key practical outcome of our research is the
development of HomoFast eSpeak, an enhanced
version of the widely used open-source eSpeak NG
speech synthesizer. Our experiments show that
HomoFast eSpeak achieves a 30.66 percentage-
point improvement in homograph disambiguation
accuracy while maintaining the low-latency per-
formance critical for real-time applications. This
advancement has the potential to elevate the intel-
ligibility and naturalness of synthesized speech in
screen readers used by the blind community in Iran.

Beyond immediate applications, we hope this
work encourages further development of open,
high-quality, and performant TTS systems for low-
resource languages. By releasing our dataset (Ho-
moRich), models (Homo-GE2PE), and enhance-
ments to eSpeak under permissive licenses, we
lower barriers for researchers and developers work-
ing on accessibility-focused speech technologies.
Our contributions demonstrate that even simple,
data-informed statistical methods can significantly
improve rule-based systems—making high-quality
G2P more scalable and sustainable for languages

with limited resources.

H Disclosure of LLM usage

We used large language models (LLMs) for lan-
guage refinement, including grammar correction,
paragraph rephrasing, and other minor edits, based
on drafts written by the authors. In the related work
section, LLMs assisted in summarizing prior works
after the authors had identified, read summaries of,
and grouped the relevant literature; this use was
limited to generating low-novelty text describing
pre-existing methods and data. The generated text
was subsequently reviewed for accuracy. Addi-
tionally, LLMs were used for fine-grained coding
tasks such as generating individual functions or
single-purpose scripts, which were then validated
and integrated by the authors.

I Data Sheet

In the rest of this document, we present the
datasheet for the HomoRich dataset, adhering to
the guidelines outlined by Gebru et al. (2021).

I.1 Motivation

The questions in this section are primarily intended
to encourage dataset creators to clearly articulate
their reasons for creating the dataset and to
promote transparency about funding interests. The
latter may be particularly relevant for datasets
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Figure 12: Inference speed and phoneme error rate (PER) of available and proposed G2P tools.

created for research purposes.

For what purpose was the dataset created?
Was there a specific task in mind? Was there a
specific gap that needed to be filled? Please pro-
vide a description.

ANS: The dataset was created to address the
scarcity of open-source datasets and models for
grapheme-to-phoneme (G2P) conversion, with a
focus on homograph disambiguation in Persian.
These resources aim to support the development
of open text-to-speech (TTS) and screen reader
tools, enhancing accessibility for Persian-speaking
communities, including individuals with visual im-
pairments.

Who created the dataset (e.g., which team, re-
search group) and on behalf of which entity (e.g.,
company, institution, organization)?

ANS: The dataset was created by the speech pro-
cessing team of the Data Science and Machine
Learning (DML) Laboratory at Sharif University
of Technology.

Who funded the creation of the dataset? If
there is an associated grant, please provide the
name of the grantor and the grant name and num-
ber.

ANS: The dataset creation received no external
funding and is provided free of charge.

Any other comments?

ANS: No.

I.2 Composition
Most of the questions in this section are intended
to provide dataset consumers with the information
they need to make informed decisions about using
the dataset for their chosen tasks. Some of the
questions are designed to elicit information about
compliance with the EU’s General Data Protection
Regulation (GDPR) or comparable regulations in
other jurisdictions.

What do the instances that comprise the dataset
represent (e.g., documents, photos, people, coun-
tries)? Are there multiple types of instances (e.g.,
movies, users, and ratings; people and interactions
between them; nodes and edges)? Please provide a
description.

ANS: The dataset consists of Persian sentences
(text) paired with their corresponding phoneme se-
quences in two formats (text). A subset of the
dataset includes carefully curated Persian sentences
containing homograph words, where each homo-
graph and its pronunciation are explicitly anno-
tated (text). All samples include metadata indicat-
ing their source (human, GPT-4o, CommonVoice,
ManaTTS, or GPTInformal) and a unique identifier
within each source category.

How many instances are there in total (of each
type, if appropriate)?

ANS: The dataset contains 528,891 Persian sen-
tences in total, with 327,475 specifically curated
for homograph disambiguation.

Does the dataset contain all possible instances
or is it a sample (not necessarily random) of
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Figure 13: Phoneme Error Rate (PER) of previous and proposed G2P tools/models with error bars indicating
standard deviations across five runs.

instances from a larger set? If the dataset is a
sample, then what is the larger set? Is the sample
representative of the larger set (e.g., geographic
coverage)? If so, please describe how this repre-
sentativeness was validated/verified. If it is not
representative of the larger set, please describe why
not (e.g., to cover a more diverse range of instances,
because instances were withheld or unavailable).

ANS: The dataset incorporates: (1) complete
samples from ManaTTS and GPTInformal (cov-
ering all available data at study time), and (2) a
non-random subset of CommonVoice selected by
availability (prioritizing validated samples while
respecting original data ordering). GPT-4o genera-
tions and human annotations were collected specif-
ically for this study.

What data does each instance consist of? “Raw”
data (e.g., unprocessed text or images) or features?
In either case, please provide a description.

ANS: Each instance contains processed Persian
text along with its corresponding phoneme se-
quence represented in two formats: a primary
phonemic transcription and an alternative standard-
ized representation mapped for compatibility. For
instances containing homographs, the data addi-
tionally includes the identified homograph word
and its correct pronunciation in both representation

formats.

Is there a label or target associated with each
instance? If so, please provide a description.

ANS: Yes, each instance serves multiple labeling
purposes. The complete phoneme sequence of the
sentence acts as the primary label. For homograph-
containing instances, additional labels include the
specific homograph word and its contextually cor-
rect pronunciation, enabling the dataset to support
both general grapheme-to-phoneme conversion and
specialized homograph disambiguation tasks.

Is any information missing from individual in-
stances? If so, please provide a description, ex-
plaining why this information is missing (e.g., be-
cause it was unavailable). This does not include
intentionally removed information, but might in-
clude, e.g., redacted text.

ANS: Due to our semi-automated data creation
pipeline, sentences containing multiple homograph
words only have the target homograph (the focus
of that particular instance) annotated.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these
relationships are made explicit.

ANS: No.
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Figure 14: Homograph Accuracy of previous and proposed G2P tools/models with error bars indicating standard
deviations across five runs.

Are there recommended data splits (e.g., train-
ing, development/validation, testing)? If so,
please provide a description of these splits, explain-
ing the rationale behind them.

ANS: The dataset does not come with predefined
splits. We recommend using the entire dataset
for training while evaluating performance on the
dedicated SentenceBench test set, following the
methodology established in our work. This ap-
proach ensures consistent benchmarking across
studies.

Are there any errors, sources of noise, or redun-
dancies in the dataset? If so, please provide a
description.

ANS: As detailed in the data creation process,
some sentences were generated by GPT-4o with
prompts targeting specific homograph pronuncia-
tions. While we implemented techniques to prevent
these issues, the approach carries inherent limita-
tions including potential hallucinated sentences and
occasional incorrect homograph usage. Addition-
ally, phonemization was performed using the LLM-
based method from prior work, which achieves
a phoneme error rate of 6.43% and homograph
accuracy of 64%, representing another source of
potential noise in the phonetic transcriptions.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., web-
sites, tweets, other datasets)? If it links to or
relies on external resources, a) are there guarantees
that they will exist, and remain constant, over time;
b) are there official archival versions of the com-
plete dataset (i.e., including the external resources
as they existed at the time the dataset was created);
c) are there any restrictions (e.g., licenses, fees)
associated with any of the external resources that
might apply to a dataset consumer? Please provide
descriptions of all external resources and any re-
strictions associated with them, as well as links or
other access points, as appropriate.

ANS: The dataset is self-contained and doesn’t
rely on external resources.

Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected
by legal privilege or by doctor–patient confiden-
tiality, data that includes the content of individu-
als’ non-public communications)? If so, please
provide a description.

ANS: The dataset contains no confidential or
personal information. All data originates from
three sources: (1) established public datasets (Com-
monVoice, ManaTTS, and GPTInformal), (2) GPT-
4o generated content, and (3) contributions from
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Figure 15: Inference Time (s) of previous and proposed G2P tools/models plotted on a logarithmic scale with error
bars indicating standard deviations across five runs.

voluntary human participants who provided non-
sensitive example sentences.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please
describe why.

ANS: The dataset is derived from well-known
public datasets, the safeguarded GPT-4o model,
and voluntary human subjects in an academic en-
vironment who were specifically asked to generate
example sentences. Given these controlled sources
and collection methods, we believe it is unlikely
to contain offensive or harmful content. However,
as with any language dataset, we recommend users
review the content for their specific application
needs.

Does the dataset identify any subpopulations
(e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a
description of their respective distributions within
the dataset.

ANS: The dataset does not identify any subpopu-
lations.

Is it possible to identify individuals (i.e., one or
more natural persons), either directly or indi-
rectly (i.e., in combination with other data) from

the dataset? If so, please describe how.

ANS: We believe identification is not possible,
as the data consists of voluntarily provided sample
sentences generated for specific words.

Does the dataset contain data that might be
considered sensitive in any way (e.g., data that
reveals race or ethnic origins, sexual orien-
tations, religious beliefs, political opinions or
union memberships, or locations; financial or
health data; biometric or genetic data; forms of
government identification, such as social secu-
rity numbers; criminal history)? If so, please
provide a description.

ANS: The dataset consists of linguistic exam-
ples derived from established public datasets, the
safeguarded GPT-4o model, and voluntary contri-
butions from participants in an academic setting.
Given these controlled sources and collection meth-
ods focused solely on language patterns, we believe
it is unlikely to contain sensitive information. How-
ever, as with any textual dataset, we recommend
users assess the content for their specific require-
ments.

Any other comments?

ANS: No.
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I.3 Collection Process

In addition to the goals outlined in the previous
section, the questions in this section are designed
to elicit information that may help researchers and
practitioners to create alternative datasets with
similar characteristics.

How was the data associated with each instance
acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g.,
survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-
based guesses for age or language)? If the data was
reported by subjects or indirectly inferred/derived
from other data, was the data validated/verified? If
so, please describe how.

ANS: The data combines three acquisition meth-
ods: (1) directly observable text from public
datasets (CommonVoice, ManaTTS, GPTInfor-
mal), (2) GPT-4o-generated sentences with tar-
geted homograph usage (indirectly derived through
prompting), and (3) human-authored sentences vol-
untarily contributed in an academic setting. No
specific validation was performed on the LLM-
generated or human-provided data beyond the col-
lection methods described in the paper.

What mechanisms or procedures were used to
collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software pro-
grams, software APIs)? How were these mech-
anisms or procedures validated?

ANS: For the GPT-4o generated portion, data
was collected through API calls using Python
scripts. The human-authored content was gath-
ered via online Google Sheets containing the target
homograph words and detailed instructions, as doc-
umented in our methodology. No additional vali-
dation procedures were applied to these collection
mechanisms.

If the dataset is a sample from a larger set, what
was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabili-
ties)?

ANS: The dataset incorporates: (1) complete
samples from ManaTTS and GPTInformal (cov-
ering all available data at study time), and (2) a
non-random subset of CommonVoice selected by
availability (prioritizing validated samples while

respecting original data ordering). GPT-4o genera-
tions and human annotations were collected specif-
ically for this study.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much
were crowdworkers paid)?

ANS: The human-annotated portion of the
dataset was collected through voluntary participa-
tion of native Persian speakers from diverse back-
grounds. While we did not collect detailed demo-
graphic information about participants, their native
language proficiency was the primary qualification
for contribution. Participants were not financially
compensated, as the data collection was conducted
as part of an academic research initiative.

Over what timeframe was the data collected?
Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., re-
cent crawl of old news articles)? If not, please
describe the timeframe in which the data associ-
ated with the instances was created.

ANS: The dataset was compiled in 2024-2025,
combining newly generated GPT-4o outputs and
human annotations with existing public corpora.
The ManaTTS, GPTInformal, and CommonVoice
components originate from their 2024 releases.

Were any ethical review processes conducted
(e.g., by an institutional review board)? If so,
please provide a description of these review pro-
cesses, including the outcomes, as well as a link
or other access point to any supporting documenta-
tion.

ANS: No ethical review processes were con-
ducted.

Did you collect the data from the individuals in
question directly, or obtain it via third parties
or other sources (e.g., websites)?

ANS: The data was obtained from the individuals
directly.

Were the individuals in question notified about
the data collection? If so, please describe (or
show with screenshots or other information) how
notice was provided, and provide a link or other
access point to, or otherwise reproduce, the exact
language of the notification itself.
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ANS: The data was not collected from a pre-
existing source; instead, individuals were explicitly
instructed to generate the data, eliminating the need
for notification.

Did the individuals in question consent to the
collection and use of their data? If so, please
describe (or show with screenshots or other infor-
mation) how consent was requested and provided,
and provide a link or other access point to, or oth-
erwise reproduce, the exact language to which the
individuals consented.

ANS: Similar to the previous response, since the
data was generated based on explicit instructions
provided to the individuals, consent was inherently
obtained through participation, and no additional
consent process was necessary.

If consent was obtained, were the consenting
individuals provided with a mechanism to re-
voke their consent in the future or for certain
uses? If so, please provide a description, as well
as a link or other access point to the mechanism (if
appropriate).

ANS: As the data generation was based on direct
instructions and not from pre-existing sources or
personal information, the issue of consent revoca-
tion does not apply in this context.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? If
so, please provide a description of this analysis,
including the outcomes, as well as a link or other
access point to any supporting documentation.

ANS: No such analysis has been conducted.

Any other comments?

ANS: No.

I.4 Preprocessing/cleaning/labeling

The questions in this section are intended to
provide dataset consumers with the information
they need to determine whether the “raw” data has
been processed in ways that are compatible with
their chosen tasks. For example, text that has been
converted into a “bag-of-words” is not suitable for
tasks involving word order.

Was any preprocessing/cleaning/labeling of the
data done (e.g., discretization or bucketing, tok-
enization, part-of-speech tagging, SIFT feature
extraction, removal of instances, processing of
missing values)? If so, please provide a descrip-
tion. If not, you may skip the remaining questions
in this section.

ANS: Yes, the underlying text corpora sourced
from previous datasets and generated through GPT-
4o or human annotators were phonemized as labels
using the LLM prompting method outlined in a
prior study, as referenced in the paper.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data (e.g., to sup-
port unanticipated future uses)? If so, please
provide a link or other access point to the “raw”
data.

ANS: Yes, the raw data includes the underly-
ing text corpora from previous datasets (ManaTTS,
GPTInformal, CommonVoice), as well as data gen-
erated using GPT-4o and contributions from human
subjects. These data remain accessible and were
only augmented with the phoneme labels as de-
scribed earlier.

Is the software that was used to prepro-
cess/clean/label the data available? If so, please
provide a link or other access point.

ANS: Yes, the complete code for data gen-
eration and labeling is publicly accessible
at https://github.com/MahtaFetrat/HomoRich-G2P-
Persian.

Any other comments?

ANS: No.

I.5 Uses

The questions in this section are intended to
encourage dataset creators to reflect on the tasks
for which the dataset should and should not be
used. By explicitly highlighting these tasks, dataset
creators can help dataset consumers to make
informed decisions, thereby avoiding potential
risks or harms.

Has the dataset been used for any tasks already?
If so, please provide a description.
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ANS: Yes, it has been employed to finetune two
neural G2P models and enhance a rule-based G2P
tool in our research, which is used to evaluate data
efficiency.

Is there a repository that links to any or all
papers or systems that use the dataset? If so,
please provide a link or other access point.

ANS: The dataset was not publicly available be-
fore this work, and as far as we know, it hasn’t been
utilized in any other projects.

What (other) tasks could the dataset be used
for?

ANS: The dataset can be utilized for both general
G2P conversion and specific homograph pronun-
ciation disambiguation. Additionally, it could be
valuable for tasks involving context understanding,
such as word sense disambiguation. While not all
sense disambiguations involve pronunciation dif-
ferences, words with multiple pronunciations often
convey distinct meanings that require contextual
clarification.

Is there anything about the composition of the
dataset or the way it was collected and pre-
processed/cleaned/labeled that might impact fu-
ture uses? For example, is there anything that
a dataset consumer might need to know to avoid
uses that could result in unfair treatment of individ-
uals or groups (e.g., stereotyping, quality of service
issues) or other risks or harms (e.g., legal risks, fi-
nancial harms)? If so, please provide a description.
Is there anything a dataset consumer could do to
mitigate these risks or harms?

ANS: We do not believe that the dataset carries
such risks.

Are there tasks for which the dataset should not
be used? If so, please provide a description.

ANS: We do not foresee any specific limitations
regarding potential uses of the dataset.

Any other comments?

ANS: No.

I.6 Distribution

Will the dataset be distributed to third parties
outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was
created? If so, please provide a description.

ANS: Yes, the dataset is available to the public
under a CC-0 license.

How will the dataset be distributed (e.g., tarball
on website, API, GitHub)? Does the dataset
have a digital object identifier (DOI)?

ANS: The dataset is publicly available on Hug-
ging Face and GitHub. A permanent DOI
(10.57967/hf/6420) has been assigned to ensure
citability. Links to the repositories are provided in
the paper.

When will the dataset be distributed?

ANS: The dataset is made publicly available, and
the repository links are included in the paper.

Will the dataset be distributed under a copy-
right or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If
so, please describe this license and/or ToU, and pro-
vide a link or other access point to, or otherwise
reproduce, any relevant licensing terms or ToU, as
well as any fees associated with these restrictions.

ANS: The dataset will be shared under the CC-0
license, allowing free use.

Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances? If so, please describe these re-
strictions, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing
terms, as well as any fees associated with these
restrictions.

ANS: No, there are no IP-based or other restric-
tions imposed on the data associated with the in-
stances.

Do any export controls or other regulatory re-
strictions apply to the dataset or to individual
instances? If so, please describe these restric-
tions, and provide a link or other access point to,
or otherwise reproduce, any supporting documen-
tation.

ANS: No, there are no export controls or other
regulatory restrictions applicable to the dataset or
individual instances.

Any other comments?

ANS: No.
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I.7 Maintenance

The questions in this section are intended to
encourage dataset creators to plan for dataset
maintenance and communicate this plan to dataset
consumers.

Who will be supporting/hosting/maintaining the
dataset?

ANS: The dataset will be stored on public data
repositories and maintained by the authors for up-
dates.

How can the owner/curator/manager of the
dataset be contacted (e.g., email address)?

ANS: The authors can be contacted via email
addresses provided in the author list.

Is there an erratum? If so, please provide a link
or other access point.

ANS: There is currently no erratum.

Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances)?
If so, please describe how often, by whom, and
how updates will be communicated to dataset con-
sumers (e.g., mailing list, GitHub)?

ANS: We intend to update the dataset if signifi-
cant errors are identified or if valuable community
contributions can be incorporated. However, we
do not plan to establish a formal mechanism for
communicating changes. Updates can be tracked
through the version history available on the hosting
platforms (e.g., GitHub).

If the dataset relates to people, are there applica-
ble limits on the retention of the data associated
with the instances (e.g., were the individuals in
question told that their data would be retained
for a fixed period of time and then deleted)? If
so, please describe these limits and explain how
they will be enforced.

ANS: There are no retention limits specified for
the dataset.

Will older versions of the dataset continue to be
supported/hosted/maintained? If so, please de-
scribe how. If not, please describe how its obsoles-
cence will be communicated to dataset consumers.

ANS: No, older versions will not be maintained.
We do not plan to implement a specific mechanism
to notify consumers of updates. Instead, changes
can be observed through the version history avail-
able on the hosting platforms (e.g., GitHub).

If others want to extend/augment/build
on/contribute to the dataset, is there a mecha-
nism for them to do so? If so, please provide
a description. Will these contributions be val-
idated/verified? If so, please describe how. If
not, why not? Is there a process for communi-
cating/distributing these contributions to dataset
consumers? If so, please provide a description.

ANS: Contributions are very welcome. Contrib-
utors can open issues or submit pull requests on
GitHub, or contact the authors directly for error
reports or improvements.

Any other comments?

ANS: No.
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