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Abstract

We apply definition generators based on open-
weights Large Language Models (LLMs) to
the task of explaining novel word senses, tak-
ing target word usages as an input. To this
end, we employ the datasets from the AX-
OLOTL 24 shared task on explainable seman-
tic change modeling, which features Finnish,
Russian and German languages. We fine-tune
and provide publicly open-source models per-
forming higher than the best submissions of the
aforementioned shared task, which employed
closed proprietary LLMs. In addition, we find
that encoder-decoder definition generators per-
form on par with their decoder-only counter-
parts.

1 Introduction and related work

Recent NLP advancements have sparked interest
in the computational modeling of semantic change.
Thus far, the research community has primarily
focused on identifying words that have changed
their meaning over time. Existing approaches are
primarily based on vector token representations
(embeddings) and thus often do not enable the in-
terpretation of the novel senses a word has gained
(Periti and Montanelli, 2024). Only recently, with
the advent of new generative language models, the
research community has begun to turn its attention
to the interpretation of detected semantic change.
One step in this direction was the AXOLOTL’24
shared task on explainable semantic change model-
ing (Fedorova et al., 2024b).

The shared task was focused on the analysis of
diachronic semantic shifts between two time pe-
riods, a challenge typical for historical linguists
and lexicographers. It consisted of two separate
subtasks, given a set of target word = usages (ex-
amples):

1. find the usages of = in novel senses;

2. provide human-readable descriptions (such as

definitions) of the novel senses.

In this paper, we apply LLM-based definition
generators (Noraset et al., 2017; Gardner et al.,
2022; Segonne and Mickus, 2023) to the second
subtask of AXOLOTL 24, where the participants
were asked to create descriptions or definitions for
novel word senses. ‘Novel’ here means a sense
which is present in a corpus from the newer (‘sec-
ond’) time period, but is not mentioned in a dictio-
nary covering the older (‘first’) time period. In the
simplest form, the task is to provide a correct defi-
nition of a novel sense y of a target word x, given a
bunch of = usages belonging to y. The performance
of the systems was evaluated with BLEU (Papineni
et al., 2002) and BERTScore (Zhang et al., 2020),
comparing the generated definitions to manually
annotated gold definitions. An example instance
from the AXOLOTL’ 24 shared task is given in Ta-
ble 8 in the Appendix.

The AXOLOTL’ 24 shared task was offered in
three languages: Finnish, Russian and German,
with the latter as a ‘surprise language’ without
training and validation datasets. Three teams par-
ticipated in subtask 2, achieving promising perfor-
mance, but still leaving ample room for improve-
ments. One of the teams used GlossBERT (Huang
et al., 2019) fine-tuned with adapters to match us-
age examples to senses and definitions retrieved
from Wiktionary. Two other teams prompted the
GPT 3.5 language model to generate senses and
definitions.

Thus, the best-performing systems relied on a
closed proprietary LLM and a lexical database, re-
spectively. However, the use of a closed model
is not ideal as it lacks transparency, and limits ac-
cessibility for researchers. Similarly, the use of
existing lexical resources such as WordNet or Wik-
tionary at test time contradicts the goal of identify-
ing novel senses, as genuinely new meanings are,
by definition, absent from established ontologies.
For this reason, in this paper we concentrate on
the generative approach only and evaluate defini-
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tion generators built on three different instruction-
tuned open-weights LLMs: mT@, Aya-101 and
TowerInstruct. Our contributions are as follows:

1. We provide open alternatives to the generative
systems used by the AXOLOTL’ 24 partici-
pants.

2. We explore the differences between perfor-
mance of models sharing the same architec-
ture, pretraining procedure (base pretraining
with further instruction tuning) and base pre-
training data, but having different number
of parameters and sizes of the instruction
datasets (mT@ and Aya-101).

3. We investigate how the outputs from fine-
tuned encoder-decoder (mT@ and Aya-101)
and decoder-only (TowerInstruct) models
differ both in terms of automatic metrics and
human evaluation.

4. We investigate how much fine-tuning data is
needed for a reliable definition generator.

Our code is publicly released on GitHub! and
model adapters are available on HuggingFace?.

2 Data

In order to adapt an existing generative LLM for
the task of generating definitions, one needs to fine-
tune it on a corresponding dataset. In this work, we
utilize two resources: the AXOLOTL’ 24 training
data, and definitions and examples from Dbnary
(Sérasset, 2012), a lexicographic resource derived
from Wiktionary.

For Finnish and Russian, we fine-tune two ver-
sions of each model:

1. on AXOLOTL 24 data only (a),

2. on a combination of AXOLOTL 24 and Db-

nary data (a+d).
Since no German training data was provided in
AXOLOTL 24, we use only Dbnary for fine-tuning
the German models.

Some of the AXOLOTL’ 24 test set senses and
definitions ultimately come from Wiktionary. Thus,
to avoid data contamination, we removed from our
Dbnary datasets all the words (along with their
senses, definitions and usages) also present in the
AXOLOTL 24 test and development sets for all lan-
guages.

1https://github.com/ltgoslo/MultilingualDeFGen

2https ://huggingface.co/collections/1tg/
definition-modeling-6580c4598ecea67c7d5b1970

Table 1 shows the sizes of data splits in our ex-
periments (in example-definition pairs). The vali-
dation set for German comes from Dbnary, while
the validation sets for Russian and Finnish come
from AXOLOTL 24. Test sets for all languages
come solely from AXOLOTL 24 (for more statis-
tics, see Section 3 and Appendix A3 of Fedorova
et al., 2024b).

Split ‘ Russian Finnish German

Train (a) 6,494 93,139 -
Train (a+d) | 180,072 119,980 322,937
Dev (a) 2,026 6,554 -

Dev (d) - - 19,398
Test (a) 2,126 6,725 1,152
Table 1: Data split sizes used in our experiments

(example-definition pairs). a stands for AXOLOTL’24,
d stands for Dbnary.

Dbnary greatly increases the amount of fine-
tuning data. As shown in Section 4, including it
improves the performance.

3 Definition generators

This section motivates the choice of models to fine-
tune and describes the training setup.

3.1 Towerlnstruct

TowerInstruct-7B3 is Llama-2-7B decoder-only
model (Touvron et al., 2023) enhanced with con-
tinued pretraining on a mix of 20 billion tokens of
monolingual data in ten different languages — En-
glish, Portuguese, Spanish, French, German, Dutch,
Italian, Korean, Chinese, and Russian — as well
as other bilingual data (including Finnish) (Alves
et al., 2024) and further fine-tuned on instructions
relevant for translation. The choice of a Llama-
based model is motivated by its usage in previous
works (Periti et al., 2024). We refer to our models
fine-tuned from it as TowerDictionary.

3.2 mTO0-XL

mT@-XL* is a version of the multilingual encoder-
decoder mT5 model (originally pre-trained on 108
languages) that was instruction fine-tuned on the
xP3 dataset, containing instructions for 13 training
tasks in 46 languages with English prompts (Muen-
nighoff et al., 2023). This model is 3.7B parameters

3ht’cps: //hf.co/Unbabel/TowerInstruct-7B-v@.?2
*https://hf.co/bigscience/mTO-x1
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in size, about half the size of TowerInstruct-7B.
This model was also used in previous works on
fine-tuning definition generators (Giulianelli et al.,
2023; Kutuzov et al., 2024; Fedorova et al., 2024a).
We refer to our models fine-tuned from it as
mT@DefGen.

3.3 Aya-101

Aya-101° has the same architecture and pretrain-
ing dataset as mt@-XL (and even reuses its tok-
enizer), but is larger in size (13B parameters) and
instruction-tuned on 101 languages, including our
three languages of interest (Ustiin et al., 2024).> We
refer to our fine-tuned models as Aya-101-DefGen.

3.4 Instruction fine-tuning

We employed Quantized Low-Rank Adaptation
(QLoRA) (Dettmers et al., 2023) applied to all lin-
ear layers of the models. Hyperparameters are pro-
vided in Appendix A. For each language, the same
prompt (to be found in Appendix C) was used in
all experiments. We compared several generation
strategies and chose beam search for all models.

3.5 Aggregating different definitions for the
same sense

The fine-tuned models generate one definition
per usage example, but this is not sufficient to
solve AXOLOTL 24 subtask 2, which expects pre-
dictions in the form of ‘target-sense—definition’
triplets. Since the AXOLOTL 24 datasets contain
more than one usage per sense in most cases, this
means that the definitions generated for all usages
of one sense must be ‘aggregated’ to produce a
single definition (the ‘sense label’).

We implemented this aggregation in a very
straightforward manner inspired by Giulianelli et al.
(2023). Definitions for all usages of a given sense
are embedded using the Sentence Transformers
model” (Reimers and Gurevych, 2020). Then, the
‘prototypical embedding’ is found by computing
the average of all definition embeddings, and the
definition with the embedding closest to the proto-
typical one (by cosine similarity) is chosen as the
sense label.

In addition, we ensure that the definitions are
unique across senses: we try to avoid cases when

Shttps://hf.co/CohereForAl/aya-101

®We do not use its successor Aya-23, since it was not
optimized for Finnish.

7https://hf.co/sentence—transformers/
distiluse-base-multilingual-cased-vi

two different senses a and b are assigned one and
the same sense label. For this purpose, before as-
signing a sense label we check whether this defini-
tion has already been assigned to another sense of
the same target word. If the answer is positive, the
current sense label candidate is discarded, and the
definition next closest to the prototypical embed-
dings is chosen. Thus, we loop over candidate defi-
nitions sorted by their frequency until a generated
definition is found which has not been assigned to
any sense yet. Only if no such definition is found
among the usages of the current sense, we fall back
to the most prototypical definition (this results in
non-unique sense labels). In our experiments, us-
ing this technique resulted in small but consistent
improvements across all models and languages.

We have done preliminary experiments to see
if instruction-tuned models could summarize the
definitions of the same sense, but they turned out
to be insufficient to solve this task.

4 Results

The fine-tuned definition generators were used to
create definitions for the usages with novel senses
from the AXOLOTL’24 subtask 2 test sets, which
were then aggregated as described above. In this
setup, we assumed that subtask 1 (finding these
usages) is already solved. Quoting the shared task
organizers, “the evaluation of Subtask 2 therefore
limits itself to evaluating the validity of provided
glosses" (Fedorova et al., 2024b).

The resulting ‘target—sense—definition’ triplets
were evaluated by the official AXOLOTL 24
scoring code®  Table 2 reports the perfor-
mance of TowerDictionary mT@DefGen and
Aya-101-DefGen models, as well as the best re-
sults achieved by generative models for each lan-
guage from the AXOLOTL 24 leaderboard. We
report BLEU and BERTScore, both in the range of
0 — 100.

The winner Definition generators fine-tuned on
open-weights LLMs outperform the best AX-
OLOTL’24 Subtask 2 generative submissions
for all three languages under analysis. While
TowerDictionary and Aya-101-DefGen perform
better than mT@DefGen, it is not possible to define
a winner based only on BLEU and BERTScore,
since differences between TowerDictionary and
Aya-101-DefGen are not statistically significant

8https: //github.com/1ltgoslo/axolotl24_shared_
task/blob/main/code/evaluation/scorer_track2.py
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Model ‘ Russian Finnish German
TowerDictionary (a) 3.98/65.64/6498/6522 5.53/66.19/67.58/66.81 —/—
TowerDictionary (a+d) | 7.22/69.49/68.78 /1 69.04 4.57/65.57/67.34/66.37 2.25/64.26/68.27/66.12

mTO0DefGen (a)
mTO0DefGen (a+d)

6.46/66.97/65.84/66.31
6.01/67.95/66.25/67.00

4.54/63.98/66.54/65.17
5.54/64.72/ 66.67 / 65.61

/-
2.28/63.07 / 65.87 / 64.38

Aya-101-DefGen (a)
Aya-101-DefGen (a+d)

6.69 /68.50/67.74 / 68.00
6.37/68.98/67.57/68.18

5.99/66.85/69.00/67.83
5.15/66.05/68.08 / 66.98

/=
2.39/64.33/67.74 / 65.96

Best AXOLOTL 24

| 2.68/—/-/65.64

232/-/-/67.46

1.00/-/-1765.24

Table 2: AXOLOTL 24 subtask 2 scores (BLEU / BERTScore precision * 100 / BERTScore recall * 100 /
BERTScore F1 * 100); ‘a’ stands for ‘fine-tuned on AXOLOTL’, ‘a+d’ for ‘fine-tuned on AXOLOTL+Dbnary’.
Best AXOLOTL’ 24 are the best generative approaches used by participants. The best results are highlighted with
bold (may be more than one for a language, if the difference is not statistically significant.)

(as per t-test”). For this reason, we have conducted
a manual error analysis.

4.1 Qualitative analysis

We annotated the generated definitions according
to three criteria:

1. The definition has fluency issues (Snover
et al., 2006): it contains repetitions, wrong
dictionary labels such as ‘colloquial’ or
‘metaphoric’, wrong punctuation, or the sen-
tence is grammatically incorrect.

2. The definition has adequacy issues: the
definition contains factual mistakes (e.g.,
‘Eurasian jay: a bird of the Felidae family’), it
refers to the incorrect sense of the word, or is
too broad (e.g., ‘Eurasian jay: a small bird’)
or t0O narrow.

3. The definition is circular: the generated def-
inition contains the target word (‘definien-
dum’) itself (e.g., ‘a table is a sort of a table’).

Fluency and adequacy issues were annotated
manually on random samples of definitions for
Finnish (30 samples) and Russian (32 samples),
and on the entire test set for German (26 samples).
Circularity was detected automatically on the full
test sets. Table 3 shows the results of the error
analysis.

3.7B vs 13B parameters The comparison of
mT@DefGen and Aya-101-DefGen shows that
mT@DefGen more often generates semantically in-
correct definitions and is more prone to repetitions.

9https ://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.ttest_ind.html

A German example: for the sense ‘verringern, re-
duzieren’ (cut down, reduce) of the target word
‘abbauen’ mT@DefGen generated ‘Transitiv: etwas
entfernen, entfernen’ (transitive: to remove some-
thing, remove), while Aya-101-DefGen generated
‘Transitiv: etwas Transitiv: etwas reduzieren, ver-
ringern’ (transitive: to reduce something, to cut
down). For the sense ‘etw. Aufgebautes (z.B.
Krdamerbude) zerlegen, abbrechen’ (to disassem-
ble, to demolish smth. built (e.g. grocer’s shop))
mT@DefGen generated ‘Transitiv, auch reflexiv:; et-
was reduzieren, verringern’ (transitive, also re-
flexive:;to reduce something, to cut down), while
Aya-101-DefGen output ‘Transitiv: etwas entfer-
nen, zerstoren’ (transitive: to remove something,
to destroy). Thus, outputs of Aya-101-DefGen
are adequate, while senses in mT@DefGen’s outputs
are swapped. Therefore, we recommend to pre-
fer Aya-101-DefGen upon mT@DefGen despite its
larger size.

Encoder-decoder vs. decoder-only As for
the model architecture itself (encoder-decoder or
decoder-only), our results correspond with the
findings of the related works that both types
of models are suitable for the task. However,
TowerDictionary performs better in terms of flu-
ency, while Aya-101-DefGen provides better ade-
quacy. There is no clear winner in terms of circu-
larity.

Amount of fine-tuning data Augmenting the
AXOLOTL 24 training set with Dbnary always im-
proves the results of Russian models in BERTScore.
While BLEU on AXOLOTL-only data is higher for
encoder-decoder models, the manual inspection
shows that Russian models trained on AXOLOTL-
only data overfitted to excessively output dictionary
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Model Russian Finnish German
Fluency Adeq. Circ. Fluency Adeq. Circ. Fluency Adeq. Circ.
TowerDictionary (a) 18.8 40.6 15.5 13.33 86.67 15.1 - - -
TowerDictionary (a+d) 53.1 50.0 184 6.67 76.67 14.8 39 577 33
mTODefGen (a) 875 50.0 15.6 43.33 0.8 215 - - -
mTODefGen (a+d) 56.3 438 268 66.67 86.67 21.5 30.8 769 4.9
Aya-101-DefGen (a) 90.6 40.6 10.6 26.67 8333 19.2 - - -
Aya-101-DefGen (a+d) 438 375 199 3333 7333 20.7 154 539 49

Table 3: Share of definitions with fluency-related issues, adequacy-related issues, and containing circularity (%) —
lower values are better. ‘a’ stands for ‘fine-tuned on AXOLOTL’, ‘a+d’ for ‘fine-tuned on AXOLOTL+Dbnary’.

labels, which explains their low fluency. Since
these labels are common in gold data, they boost
BLEU, but do not add much to understanding the
word’s semantics and may cause higher metrics
even if the sense is wrong. Thus, for the Russian
split, BERTScore is a more reliable metric and the
dataset of 7K instances was not sufficient.

For Finnish, the results are controversial across
the models. The reason might be very different
sources of data: while in case of Russian both AX-
OLOTL and Dbnary are sampled from Wiktionary,
in case of Finnish AXOLOTL data were borrowed
from a historical dictionary. Thus, the data do-
main should be still preferred over data quantity
when training definition generators. This obser-
vation also holds for German: its ground truth
definitions are also not from Wiktionary and com-
pletely lack dictionary labels, while the output of
both mT@DefGen and Aya-101-DefGen is full of
‘metaphoric’ etc.

Circular definitions For Russian, Aya-101-Def-
Gen avoids circularity better than the other two
models. For German and Finnish, encoder-decoder
models are less prone to circularity than the
decoder-only model. Also, fine-tuning on Dbnary
has different effects across languages, again prov-
ing the importance of high-quality training data.

4.2 Comparison with AXOLOTL’24
submissions

We compared definitions generated by our models
to those of the AXOLOTL’ 24 Wooper-NLP team,
which submitted predictions for the highest num-
ber of target words. The first notable difference is
that Wooper-NLP’s definitions are twice as long
as the gold answers in terms of character counts,
while the length of the generations from our mod-
els is better aligned with the ground truth. We also
looked through the examples described as problem-

atic in the shared task paper (Fedorova et al., 2024b,
Appendix C6). The definitions generated by our
fine-tuned models seem to avoid the problem that
‘the model doesn’t stop after producing the defini-
tion, but continues with an explanation or excessive
details’. Also, our definitions are not overly narrow
because of repeating named entities from the usage
examples (this explains why GPT3.5’s definitions
are too long and ours are not). The predictions of
the fine-tuned models are also less prone to gram-
matical and spelling errors, and loan translations,
which proves that large proprietary models may
still have issues with language-specific generation;
fine-tuning of open models makes sense even for
large and mid-resource languages.

5 Conclusion

In this work, we use large language models fine-
tuned on definition modeling to generate labels for
novel senses. One can think of this task as updating
a dictionary based on a set of new texts.

The participants of the AXOLOTL 24 shared
task mostly tackled the problem by using the pro-
prietary GPT 3.5 model. We show that one can
instead fine-tune open-weights LLMs and achieve
a better performance in this subtask with contex-
tualized definitions generated by them. We also
publicly share the models.

Our comparison of different base models showed
that instruction-tuned encoder-decoder (T5-like)
models perform on par with their decoder-only
(Llama-like) counterparts. According to automatic
metrics, larger models always outperform smaller
ones, as well as larger fine-tuning datasets often
do. However, not only data quantity, but also its
relevance to the domain matters. Our experiments
also show that few thousands of fine-tuning data in-
stances may not be enough for a complex semantic
task such as definition generation.
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Limitations

An obvious limitation of this paper is its focus on
the second subtask of AXOLOTL’24 only. This
means we are dealing with ‘given’ novel senses,
without the need to actually identify them, and the
evaluation is focused on the ability of the systems
to produce a sensible sense definition from a set
of usages. We leave the challenge of developing
an end-to-end approach that solves both subtasks
jointly for future work.

Language-specific hyperparameter choice and
data preprocessing such as dealing with too long
texts and removing special dictionary labels is be-
yond the scope of this paper. Instead, we try to
make language-independent observations.

It is likely that all three base models have been
exposed to the Russian test set, which is taken from
Wiktionary. However, they produce predictions
that are very different from the ground truth, which
is not surprising, since definition modeling task
was not among their instructions.

It is also important to note that fine-tuned defini-
tion generators inherit the biases and peculiarities
of the lexical resources they were trained on, which
can become a potential risk.
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A Instruction tuning hyperparameters

All models were fine-tuned for 1 epoch with the
settings and hyper-parameters shown in Table 4.

Weight decay Tower 0.001, mtO and Aya 0
Learning rate | Tower le-4, mtO and Aya Se-5
Warmup ratio 0.05

Batch size 16

Optimizer paged_adamw_8bit
LoRA rank 256

LoRA alpha 512

LoRA dropout 0.1

Table 4: Settings and hyper-parameters for model fine-
tuning.

We compared performance of models trained
with adafactor!® and paged_adamw_8bit!! opti-
mizers on the development set and found no signifi-
cant difference in metrics according to t-test, while
the latter required less runtime.

All models were trained on a single AMD
MI250x (64 GB) GPU, except for Finnish Tower-
Dictionary models, which were trained on a single
NVIDIA A100-SXM4-80GB. The training time
varied from hours to two days for the largest com-
bination of model parameters and training data,
Aya-101 fine-tuned on German Dbnary.

Using weight decay allowed to pass the whole
data, while without it the training early stopped
after several hundred steps.

B Generation hyperparameters

Table 5 specifies generation parameters used to
obtain results presented in the table 2.

lOht’cps://huggingf”ace.co/docs/transformers/
main/en/main_classes/optimizer_schedules#
transformers.Adafactor

"https://huggingface.co/docs/bitsandbytes/
reference/optim/adamwibitsandbytes.optim.
PagedAdamW8bit
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num_beams 5
do_sample False
length_penalty 1.1
early_stopping True
repetition_penalty 1.1

Table 5: Settings and hyper-parameters for text genera-
tion.

We compared different generation strategies!'?
both for an encoder-decoder and a decoder-only
model on the Russian development split. The exact
parameters of various generation strategies that we
tried are available in our Github repository'3. The
results can be found in Table 6. The models are
“sensitive” to generation parameters. The best re-
sults obtained from beam search combination with
multinomial sampling and contrastive search'* may
be explained by the known fact (Welleck et al.,
2019) that non-deterministic decoding “‘suffers”
less from repetitions. However, to ensure repro-
ducibility of our results, we have chosen the stan-
dard beam search for our experiments (also the
same paper argues that “being prone” to repetitions
may still depend more on how a model was trained
rather than on decoding strategies).

Strategy mTO0  Tower
greedy search - 63.52
multinomial sampling - 62.8
beam search - 64.15
beam search multinomial sampling 67.11 64.39
contrastive search, repetition penalty 1.1  66.87 64.33
contrastive search, repetition penalty 1.2 61.66 64.05
dola decoding - 63.83

Table 6: Different decoding strategies, Russian develop-
ment set.

12https://huggingface.co/docs/transformers/
en/main_classes/text_generation#transformers.
GenerationConfig

Bhttps://github.com/1ltgoslo/
MultilingualDefGen/blob/
dff165051166b3bdf2a6dedd07904c99868f47ad/src/
modeling/decoder_only_predict.py#L25

14https://huggingface.co/blog/
introducing-csearch

C Prompts

Following Giulianelli et al. (2023), the model input
was formatted like a usage example followed by a
prompt that can be roughly translated to English
as ‘What is the meaning of <target word>?’. The
prompts were suggested by human speakers of the
corresponding languages and are reported in the
Table 7. These prompts were used both for fine-
tuning and for inference.

Language Prompt

Russian Yro rakoe <target word>?

Finnish . Mitd tarkoittaa <target word>?

German . Was ist die Definition von <target word>?

Table 7: Prompts for the definition generation models.
We also experimented with ‘Miké on <target word>?’
for Finnish, but it caused model to generate noun-like
definitions for the target words in other parts of speech.
This caused lower scores, so we do not report it in the
main text.

D Example of an AXOLOTL’24 instance

Target: cell

Sense: CELL_3

Period: new

Usage: In multicellular organisms, groups
of cells form tissues and tissues
come together to form organs

Definition: A unit of a living organism

Table 8: An example instance of the AXOLOTL 24
training set in English. In the test set, the definition
field for the usages from the ‘new’ time period is blank.
For subtask 2, the participants have to submit (farget,
sense, definition) triplets for each novel sense of the
target words.

For subtask 2, the test submission must consist
of ‘target-sense-definition’ triplets (bold in the ta-
ble 8).

E Peculiarities of the German dataset

The lower metrics in Table 2 for German might
be explained by a large share of test instances con-
sisting of many sentences, while all data splits for
other languages and German Dbnary mostly fea-
ture usage examples not longer than one sentence.
In order to avoid truncating usage examples before
the target word occurrence, we splitted the text
into sentences and selected only those containing
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the target word lemmas. We used SpaCy'® model
de_core_news_sm for that.

Bhttps://spacy.io/usage/models
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