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Abstract

Multimodal entity alignment aims to identify
equivalent entities in heterogeneous knowledge
graphs by leveraging complementary informa-
tion from multiple modalities. However, ex-
isting methods often overlook the quality of
input modality embeddings during modality
interaction—such as missing modality genera-
tion, modal information transfer, modality fu-
sion—which may inadvertently amplify noise
propagation while suppressing discriminative
feature representations. To address these is-
sues, we propose a novel model—CLAMEA
for capturing latent modal association for
multimodal entity alignment. Specifically, we
use a self-attention mechanism to enhance
salient information while attenuating noise
within individual modality embeddings. We
design a dynamic modal attention flow fusion
module to capture and balance latent intra- and
inter-modal associations and generate fused
modality embeddings. Based on both fused
and available modalities, we adopt variational
autoencoder (VAE) to generate high-quality
embeddings for the missing modality. We use
a cross-modal association extraction module to
extract latent modal associations from the com-
pleted modality embeddings, further enhanc-
ing embedding quality. Experimental results
on two real-world datasets demonstrate the ef-
fectiveness of our approach, which achieves an
absolute 3.1% higher Hits@1 score than the
sota method 1.

1 Introduction

Multimodal Knowledge Graphs (MMKGs) (Peng
et al., 2023) are an extension of traditional knowl-
edge graphs that integrate information from mul-
tiple modalities, such as text, images, and triples.
MMKGs have demonstrated wide applicability in
tasks like question answering (Chen et al., 2022c)
and recommendation systems (Wang et al., 2019).
*Corresponding author.
1Code: https://github.com/Quanquan429/CLAMEA

Figure 1: (a) indicates that modality embeddings are
not processed before modality interaction, resulting in
low-quality embeddings and ultimately leading to align-
ment failure. (b) indicates that processing modality
embeddings in advance (modal feature enhancement;
capturing latent modal associations) improves the qual-
ity of the embeddings and leads to successful alignment.

Multimodal Entity Alignment (MMEA) aims to
identify equivalent entities in MMKGs by leverag-
ing their multimodal information.

The process of MMEA can be broadly divided
into two stages: modality embedding and modality
interaction. Current MMEA methods primarily fo-
cus on optimizing modality embeddings or improv-
ing modality interaction mechanisms to enhance
overall model performance. Prominent examples
for modality embedding encoders include TransE
(Bordes et al., 2013), BERT (Devlin et al., 2019),
and ResNet (He et al., 2016), which have become
well-established for deriving relational, attribute,
and visual embeddings, respectively.

Modality interaction refers to the integration of
multimodal information, such as missing modality
generation, modal information transfer and modal-
ity fusion. Specifically, EVA (Liu et al., 2021)
employs weighted concatenation to fuse modal-
ity embeddings. MSNEA (Chen et al., 2022a)
uses the visual modality to guide other modalities.
MEAformer (Chen et al., 2023) adopts an attention-
based dynamic weighting and concatenation strat-

22278

https://github.com/Quanquan429/CLAMEA


egy to fuse modality embeddings. ACK-MMEA
(Li et al., 2023) constructs attribute-consistent
MMKGs by fusing and generating modality em-
beddings. GEEA (Guo et al., 2023) employs a
Variational Autoencoder (VAE) to generate more
expressive modality embeddings. PMMEA (Tang
and Wang, 2024) enhances modality embeddings
by incorporating positional information.

Although existing methods have achieved
promising results, they often overlook the qual-
ity of input modality embeddings during modal-
ity interactions—such as missing modality genera-
tion (Guo et al., 2023), modal information transfer
(Zhu et al., 2023), and modality fusion (Chen et al.,
2023)—which may lead to noise amplification and
the suppression of key information, ultimately af-
fecting the entity alignment performance.

As shown in the Figure 1, the quality of the
input modality embeddings significantly affects
the quality of the modality embeddings obtained
after interaction, which in turn impacts the final
alignment performance. Moreover, studies such as
IBMEA (Su et al., 2024a), SimDiff (Li et al., 2024)
similarly indicate that highlighting alignment infor-
mation and suppressing irrelevant information are
crucial, and the quality of embeddings plays a key
role in the outcomes of subsequent interactions.

To address the above issues, we propose a novel
method—CLAMEA, which aims to improve the
quality of modality embeddings by capturing la-
tent modal associations. Firstly, we introduce a
self-attention mechanism to highlight the key infor-
mation in modal embeddings and suppress noise,
thereby enhancing modal embeddings. Secondly,
we design a Dynamic Modal Attention Flow Fu-
sion module to capture and balance latent intra- and
inter-modal associations, generating fused modal-
ity embeddings. Thirdly, we leverage both the
fused and avaiable modalities to generate embed-
dings for missing modalities, thereby mitigating
the negative impact of missing modalities. Finally,
we further extract the latent modal associations
between modalities to further optimize the modal
embedding.

The main contributions of this paper are summa-
rized as follows:

• We focus on latent modal associations, aiming
to capture and extract latent intra- and inter-
modality associations more deeply to improve
the quality of modality embeddings.

• We propose a new model, CLAMEA, to cap-

ture latent modal associations by designing
a dynamic modal attention flow mechanism,
cross-modal association extraction, dynamic
missing modality generation, and modal fea-
ture enhancement. In the whole process, the
collaborative optimization of modal embed-
dings and interaction is achieved.

• We conducted extensive experiments on
two real-world datasets, FB15K-DB15K and
FB15K-YG15K, and the results show that
our method achieves an absolute 3.1% higher
Hits@1 score than the sota method, demon-
strating excellent performance.

2 Related work

2.1 Entity Alignment

Traditional entity alignment aims to identify se-
mantically equivalent entities across different
knowledge graphs by comparing their attributes,
names, and structural information. Details are in
Appendix A.

2.2 Multimodal Entity Alignment

Multimodal entity alignment significantly im-
proves alignment performance by integrating in-
formation from different modalities. For example,
EVA (Liu et al., 2021) is the first to combine im-
ages with structure, relations, and attributes for
entity alignment, and assign a learnable weight to
each modality. MSNEA (Chen et al., 2022a) adopts
a vision-dominant approach to guide the learning
of relational and attribute modalities. MEAformer
(Chen et al., 2023) dynamically predict modality
weights using an attention mechanism. GEEA
(Guo et al., 2023) uses a variational autoencoder
(VAE) (Kingma et al., 2013) to predict modal in-
formation for entity alignment. IBMEA (Su et al.,
2024a) integrates low-dimensional unimodal em-
beddings into high-dimensional representations.
SimDiff (Li et al., 2024) enhancing the utiliza-
tion of multimodal data by adding and removing
noise vectors. LoginMEA (Su et al., 2024b) pro-
pose a novel local-to-global interaction network
for MMEA. TMEA (Chen et al., 2024) tackling
uncertain correspondences through a commonality
extraction mechanism. These methods effectively
fuse multimodal information to boost performance.
However, most existing methods fail to consider
the quality of modality embeddings before modal-
ity interaction. To address this issue, we propose a
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novel approach that captures latent modal associa-
tions and enhance modality embeddings, thereby
improving model performance.

3 Problem Definition

3.1 Multimodal Knowledge Graph (MMKG)
A multimodal knowledge graph (MMKG) consists
of visual, attribute, and relational modalities. It can
be represented as G = (E ,R, I,A,V, T R,T A,P),
where E , R, I, A, V , T R, T A, and P represent
the sets of entities, relations, images, attributes, at-
tribute values, relational triples, attribute triples,
and entity-image pairs, respectively. The rela-
tional triple set T R = {(hh, r, ht) | hh, ht ∈
E , r ∈ R} consists of relational triples, each of
which is composed of a head entity hh, a rela-
tion r, and a tail entity ht. The attribute triple set
T A ={(h, a, v) | h ∈ E , a ∈ A, v ∈ V} consists
of attribute triples, where each triple contains an
entity h, one of its attributes a, and the correspond-
ing attribute value v. The entity-image pair set
P = {(h, i) | h ∈ E ,i ∈ I} represents the set of
pairs consisting of an entity h and an image i.

3.2 Multimodal Entity Alignment (MMEA)
The task of Multimodal Entity Alignment (MMEA)
aims to identify semantically equivalent enti-
ties between two multimodal knowledge graphs.
Formally, given two input MMKGs G1 =
(E1,R1, I1,A1,V1, T R1, T A1,P1) and G2 =
(E2,R2, I2,A2,V2, T R2, T A2,P2), the output is
a set of aligned entity pairs, defined as D =
{(h1, h2) | h1 ∈ E1, h2 ∈ E2, h1 ≡ h2}, where
≡ indicates that the two entities are semantically
equivalent in the real world.

4 Methodology

This section presents the technical details of our
proposed CLAMEA model, as shown in Figure
2. The model consists of five main modules: 1)
Multimodal Knowledge Encoder (MKE) which en-
codes information from different modalities; 2)
Modal Feature Enhancement (MFE) which opti-
mizes modality embeddings using self-attention; 3)
Dynamic Modal Attention Flow Fusion (DMAFF)
which captures and balances latent modal associa-
tions to generate fused modalities; 4) Dynamic
Missing Modality Generation (DMMG) which
combines Variational Autoencoder (VAE) and dy-
namic modal fusion mechanism to generate miss-
ing modality from available modalities; 5) Cross-

modal Association Extraction (CMAE) which ex-
tracts associations among modalities using cross-
modal attention mechanisms to enhance modality
embeddings. Additionally, we incorporate con-
trastive learning and iterative optimization strate-
gies.

4.1 Multimodal Knowledge Encoder
In this module, we use TransE (Bordes et al., 2013),
the pre-trained visual model ResNet (He et al.,
2016), and the pre-trained BERT (Devlin et al.,
2019) to generate relational modality embedding
hr
o, visual modality embedding hv

o, and attribute
modality embedding ha

o of entities, respectively.
Please refer to Appendix B for details.

4.2 Modal Feature Enhancement
In MMEA, the importance of each piece of infor-
mation in the modality embedding varies. Certain
information is essential for entity alignment, while
other information has minimal or even detrimen-
tal effects (Su et al., 2024a). To address this, this
module enhances the ability to capture information
within the modality using a self-attention mecha-
nism (Vaswani et al., 2017), emphasizing key in-
formation and suppressing irrelevant information,
thus achieving modality embeddings enhancement.
The specific enhancement method is defined as
follows:

hm = Concat(head1, . . . , headη)Wh+bh, (1)

head i = Att(hm
o WQ

i ,h
m
o WK

i ,hm
o WV

i ), (2)

Att(Qm,Km,Vm) = softmax
(
QmKT

m√
d

)
Vm, (3)

where m ∈ {a, r, v}, Q, K, V represent the query,
key, and value, respectively, softmax(·) is the ac-
tivation function, d is the dimension of the key,
η is the number of heads, WQ

i , WK
i , WV

i are the
projection matrices for the i-th attention head, and
Wh, bh are the projection matrix and bias vector.

4.3 Dynamic Modal Attention Flow Fusion
In MMKGs, entities contain information from dif-
ferent modalities, often displaying complex and
tightly coupled semantic associations. Existing
methods mostly focus on processing modality em-
beddings based on intra-modal information, ne-
glecting inter-modal associations. Furthermore,
different modalities have varying importance, mak-
ing it difficult for simple fusion strategies to bal-
ance the associations among modalities.
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Figure 2: The overall framework of CLAMEA.

Inspired by DFAF (Gao et al., 2019), we make
improvements based on its framework. DFAF is
originally applied to the Visual Question Answer-
ing (VQA) task. It should be noted that after modal-
ity interactions are completed, multiple modality
interactions are still retained separately, without
forming a unified fused modality. This mechanism
cannot directly meet the requirements of our task.
To address this issue, we innovatively introduce a
dynamic weight fusion strategy based on the atten-
tion mechanism to integrate the interacted modal
information. We adapt this strategy and apply it
for the first time to the MMEA, providing a novel
and feasible solution for modality fusion.

Specifically, we introduce a dynamic fusion
Modal Attention Flow (MAF) mechanism (Gao
et al., 2019). MAF is further divided into Inter-
Modal Attention Flow and Dynamic Intra-Modal
Attention Flow. This mechanism effectively trans-
mits information within and among modalities,
capturing and balancing modality association.

We use two modalities, A and B, as an example
for explanation. First, a inter-modal attention mod-
ule captures the attention flow between modalities,
enabling their interaction. Then, intra-modal at-
tention modules are used to capture the attention
flow within each modality, where intra-modal in-
teractions are dynamically modulated by informa-
tion from the other modality. Finally, the dynamic
weight fusion module integrates the information
from both inter-modal and intra-modal attention,

adaptively weighting them.

4.3.1 Inter-Modal Attention Flow

We first apply a linear transformation to the modal-
ity embeddings of A and B, then compute the atten-
tion flow between them to capture the inter-modal
association, followed by feature aggregation to
update the modality embeddings. This process
enables the identification of cross-modal relation-
ships and captures important information between
modalities. The detailed computation is as follows:

Aupdate = softmax

(
QAK

⊤
B√

d

)
VB, (4)

Bupdate = softmax

(
QBK

⊤
A√

d

)
VA, (5)

After obtaining the updated modality embed-
dings, we concatenate them with the initial embed-
dings to ensure that the original modality informa-
tion is preserved. Finally, a fully connected layer is
applied to transform the concatenated embeddings,
resulting in the updated modality embeddings As

and Bs, which are then fed into the Dynamic Intra-
Modal Attention module.

As = Linear ([A,Aupdate ]) , (6)

Bs = Linear ([B,Bupdate ]) , (7)
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4.3.2 Dynamic Intra-Modal Attention Flow
The Dynamic Intra-Modality Attention module re-
ceives modality embeddings that already contain
cross-modal association. We first perform aver-
age pooling on the modality embeddings. The
pooled cross-modal embeddings are then mapped
to a latent space through a learnable linear transfor-
mation, followed by a Sigmoid activation function
to generate gating vectors. These gating vectors
are used to scale the query and key features of the
target modality, thereby enhancing or suppressing
specific information within the embeddings. The
detailed formulation is as follows:

GAs←Bs = σ (Linear(AvgPool(Bs))), (8)

GBs←As = σ (Linear(AvgPool(As))), (9)

QÂ = (1+GAs←Bs)⊙QAs,

QB̂ = (1+GBs←As)⊙QBs,

KÂ = (1+GAs←Bs)⊙KAs,

KB̂ = (1+GBs←As)⊙KBs,

(10)

In the formula, ⊙ denotes element-wise multipli-
cation. The scaling factor takes the form of 1 + G,
which not only preserves the original embedding
distribution (with a base value of 1) but also en-
hances the embeddings through the cross-modal
gating G. The key aspect of this mechanism is
that the gating G is derived from the conditional
information of heterogeneous modalities. This es-
tablishes semantic dependencies across modalities.

hA = Linear(As + Âupdate), (11)

hB = Linear(Bs + B̂update), (12)

Âupdate = softmax

(
QÂKÂ√

d

)
VAs, (13)

B̂update = softmax

(
QB̂KB̂√

d

)
VBs, (14)

Finally, the fused embedding is obtained through
a dynamic weighted summation (Dsum) of each
modality-specific unimodal embedding hm with its
corresponding dynamic weight wm, as follows:

hAB =
∑

m∈{A,B}
wm · hm, (15)

Detailed explanation of wm, please refer to Ap-
pendix C.

4.4 Dynamic Missing Modality Generation

In MMKGS, entities often suffer from missing
information in the visual or attribute modalities.
Such missing data leads to the incompleteness of
MMKGs, which in turn affects entity alignment.
Generally, the relational modality of MMKGs
is complete, as determined by its characteristics.
Therefore, this module focuses on the generation
of visual and attribute modalities (Li et al., 2023).

In this module, inspired by (Chen et al., 2022b,
2024), we leverage the existing modality infor-
mation to generate pseudo-embeddings for the
missing modalities. Specifically, we utilize the
fused modality embeddings har and hvr produced
by the Dynamic Modal Attention Flow Fusion
module, along with the available modality embed-
dings, to generate pseudo-embeddings for the miss-
ing modalities through Variational Autoencoders
(VAEs) (Kingma et al., 2013). We used multiple
VAEs to learn latent representations. For each VAE,
hx is the target modality embedding, zx is the latent
representation of hx, qϕ(zx|hx) is the probabilistic
encoder, and pθ(hx|zx) is the probabilistic decoder.
The loss function of the VAE is defined as follows:

L(θ,φ;hx) = Eqφ(zx|hx) [log pθ(h
x | zx)]

−DKL [qφ(z
x | hx) ∥ p(zx)] , (16)

where DKL(·) is the KL divergence. The total VAE
loss is computed as:

Lvae = L(θ,φ;ha) + L(θ,φ;hv) + L(θ,φ;hr)

+ L(θ,φ;hvr) + L(θ,φ;har), (17)

We minimize the distance between latent modal-
ity representations to improve the quality of miss-
ing modality generation:

Lm = MSE(za, zvr) + MSE(zv, zar)+

MSE(za, zr) + MSE(zv, zr), (18)

where MSE(·) denotes mean squared error.
Through this operation, zvr, zr is used to approxi-
mate za, and zar, zr is used to approximate zv.

Inspired by (Zhang et al., 2019), we fuse pseudo-
embeddings generated from different modalities
and use them as the missing modality embeddings.
For example, for the attribute modality we feed
the latent representations zvr and zr into the de-
coder pθ(ha|za) to generate pseudo-embeddings
ha
1 and ha

2, respectively. Subsequently, a dynamic
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weighted summation (Dsum) of the two pseudo-
embeddings is performed to generate the missing
attribute modality embedding:

ga = w1 · ha
1 + w2 · ha

2, (19)

4.5 Cross-modal Association Extraction
In MMEA, due to the heterogeneity between
modalities, extracting latent associations between
different modalities often presents challenges. At
the same time, we observe that modality associa-
tions exist not only between individual modalities,
but also between the fused modalities and individ-
ual modalities. On the basis of Multi-Modal Com-
monality Enhancement module of TMEA (Chen
et al., 2024), we propose a Cross-modal Associ-
ation Extraction module. In particular, we intro-
duce the extraction of associations between fused
modalities and individual modalities. That is, the
proposed module not only focuses on associations
among individual modalities but also considers
those between fused and individual modalities,
enabling a more comprehensive capture of latent
cross-modal associations. We conduct experiments
to validate the effectiveness of our improvements
and demonstrate that latent associations also exist
between fused and individual modalities.

For example, when performing Association Ex-
tracting (AE) between the attribute modality (a),
the visual modality (v), and the relational modal-
ity (r), we not only consider associations between
individual modalities but also the associations be-
tween the fused modality and individual modal-
ities. Specifically, we concatenate and fuse the
visual and relational modalities to generate a fused
modality hvr, and then extract the latent associa-
tions between ha and hvr. The specific definition
of modality association extraction is as follows:

ĥr = wrhr + wvMH rv(h
v,hr) + waMH ra(h

a,hr)

+ wavMH rav(h
av,hr), (20)

ĥa = waha + wvMH av(h
v,ha) + wrMH ar(h

r,ha)

+ wrvMH arv(h
rv,ha), (21)

ĥv = wvhv + wrMH vr(h
r,hv) + waMH va(h

a,hv)

+ wraMH vra(h
ra,hv), (22)

where MH∗#(h∗, h#) represents the multi-head
attention output between modality h∗ and h# for
extracting modality associations. The weights w∗

are learnable attention fusion weights, hxy is the
concatenated fusion of the other two modalities.

To enhance association extraction, we introduce
an orthogonality loss to ensure that the residuals
are uncorrelated with the original modalities. Tak-
ing MHrv(hv, hr) as an example, it represents the
modality association between hv and hr. The cor-
responding residual hr−MHrv(hv, hr), which re-
flects the part uncorrelated with hv, should be as
orthogonal as possible to hv. The orthogonality
loss is defined as:

Ls = Srth(Sd(h
r,hv),hv) + Srth(Sd(h

r,ha),ha)+

Srth(Sd(h
a,hr),hr) + Srth(Sd(h

a,hv),hv)+

Srth(Sd(h
v,hr),hr) + Srth(Sd(h

v,ha),ha), (23)

Srth(x, z) = (xzT )2, (24)

Sd(h
∗,h#) = h∗ −MH ∗#(h#,h∗), ∗,# ∈ {r, a, v}, (25)

where Sd(·) is the difference computation function,
Srth(·) is the orthogonality constraint function, and
Ls serves as the overall loss function of this mod-
ule, aiming to extract latent cross-modal associa-
tions and enhance modality embeddings. Detailed
analysis of Ls, please refer to the Appendix D.

4.6 Modal Fusion and Optimization
We obtain the final entity embedding by directly
concatenating (Cat) the modality embeddings, and
adopt a multimodal contrastive learning (Chen
et al., 2022a) for optimization. The definitions
are as follows:

hM = Concat(ĥv, ĥr, ĥa), (26)

Lmcl = Lcl(h
M
1 ,hM

2 ) + Lcl(h
r
1,h

r
2)

+ Lcl(h
a
1,h

a
2) + Lcl(h

v
1,h

v
2), (27)

Lall = LTransE + Lvae + αLm + βLs + Lmcl, (28)

where hM denotes the final entity embedding, h∗1
and h∗2 represent the sets of entity embeddings for
modality ∗ in KGs G1 and G2, respectively. For
a more detailed explanation of the optimization,
please refer to Appendix E.

5 Experiment

In this section, we conduct extensive experiments
on two real-world datasets. We first briefly intro-
duce the experimental settings, and then present
and analyze the results to verify the effectiveness
of the CLAMEA model. For more detailed experi-
mental setup, please refer to Appendix F.
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Method
FB15K-DB15K FB15K-YG15K

Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR

EVA (Liu et al., 2021) 0.556 0.666 0.716 0.609 0.103 0.217 0.278 0.164
MSNEA (Chen et al., 2022a) 0.653 0.768 0.812 0.708 0.443 0.626 0.698 0.529

MCLEA (Lin et al., 2022) 0.441 0.640 0.710 0.534 0.406 0.579 0.645 0.488
ACK-MMEA (Li et al., 2023) 0.304 - 0.549 0.387 0.289 - 0.496 0.360

GEEA (Guo et al., 2023) 0.343 - 0.661 0.450 0.298 - 0.585 0.393
MEAformer (Chen et al., 2023) 0.578 - 0.812 0.661 0.444 - 0.692 0.529

PMF (Li et al., 2023) 0.624 - - 0.702 0.543 - - 0.620
DESAlign (Wang et al., 2024b) 0.580 - 0.815 - 0.448 - 0.713 0.541

IBMEA (Su et al., 2024a) 0.631 - 0.813 0.697 0.521 - 0.708 0.584
LoginMEA (Su et al., 2024b) 0.667 - 0.854 0.735 0.622 - 0.818 0.691

SimDiff (Li et al., 2024) 0.615 - 0.820 0.678 0.530 - 0.736 0.595
PMMEA (Tang and Wang, 2024) 0.645 - 0.780 0.691 0.561 - 0.716 0.614

PCMEA (Wang et al., 2024a) 0.6763 0.8214 0.8872 0.7280 0.5896 0.7518 0.8347 0.6460
TMEA (Chen et al., 2024) 0.786 - 0.903 - 0.593 - 0.757 -

Ours (CLAMEA) 0.8176 0.8989 0.9225 0.8551 0.6319 0.7677 0.8122 0.6956

Table 1: Performance comparison of multimodal entity alignment methods on two datasets using 20% of the
aligned entity pairs. The best results are highlighted in bold, and the second-best are underlined.

5.1 Experiment Setup

5.1.1 Datasets and Evaluation Metrics
We evaluate the proposed model on two widely
used monolingual datasets: FB15K-DB15K and
FB15K-YAGO15K (Liu et al., 2019). We evaluate
the model performance using Hits@N and Mean
Reciprocal Rank (MRR) metrics. For detailed in-
formation, please refer to Appendix G.

5.1.2 Baseline Methods
Given the potential risk of data leakage (Song et al.,
2024) during the training process of MMEA meth-
ods rely on large language models (LLMs), and
for the sake of fairness, we compared CLAMEA
with multimodal entity alignment methods that do
not involve LLMs. These methods include EVA
(Liu et al., 2021), MSNEA (Chen et al., 2022a),
MCLEA (Lin et al., 2022), ACK-MMEA (Li et al.,
2023), GEEA (Guo et al., 2023), MEAFormer
(Chen et al., 2023), PMF (Li et al., 2023), DE-
SAlign (Wang et al., 2024b), IBMEA (Su et al.,
2024a), LoginMEA (Su et al., 2024b), SimDiff
(Li et al., 2024), PMMEA (Tang and Wang, 2024),
PCMEA (Wang et al., 2024a), TMEA (no LLMs
involved version) (Chen et al., 2024). For all base-
lines, the experimental results are from their origi-
nal papers.

5.2 Performance Comparison

We evaluate CLAMEA on FB15K-DB15K and
FB15K-YG15K datasets and compare it with sev-
eral representative and sota MMEA approaches.

When using only 20% of the aligned entity pairs
for training, the performance of each method is
shown in Table 1. Our proposed CLAMEA demon-
strates superior performance on both datasets.
CLAMEA has made significant progress. In partic-
ular, CLAMEA achieves an absolute improvement
of 3.1% in Hits@1 on FB15K-DB15K compared
to the sota method. With only 20% of aligned en-
tity pairs used for training, CLAMEA achieved
impressive Hits@1 scores of 81.76% and 63.19%
on the two datasets, respectively.

We observe that CLAMEA does not achieve sota
performance on the Hits@10 metric for the FB15K-
YG15K dataset. We speculate that this may be due
to the small number of relations in the FB15K-
YG15K dataset and the large number of candidate
entities corresponding to the same relation, which
makes many candidate entities present very close
results in the ranking evaluation.

5.3 Ablation Analysis

To validate the effectiveness of modalities, mod-
ules, and components in the CLAMEA model, we
conduct ablation experiments. We first remove
specific modalities: relations (w/o R), visual (w/o
V), and attributes (w/o A). Since there are inter-
actions between modalities, we only remove the
relevant modalities from the final modal fusion and
loss function. We remove the following modules:
MFE, DMAFF, DMMG, and CMAE. Additionally,
we further remove key strategies and components
within these modules: IT (without iterative strat-
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Figure 3: Comparison of different proportions of aligned entity pairs on FB15K-DB15K and FB15K-YG15K.

Method
FB15K-DB15K FB15K-YG15K

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

CLAMEA 0.8176 0.9225 0.8551 0.6319 0.8122 0.6956

w/o R 0.5402 0.6491 0.5783 0.3352 0.4851 0.3873
w/o V 0.3623 0.6218 0.4487 0.4248 0.6602 0.5035
w/o A 0.7867 0.8984 0.8261 0.5189 0.7031 0.5831

w/o MFE 0.8089 0.9202 0.8475 0.6081 0.7913 0.6719
w/o DMAFF 0.7924 0.9089 0.8338 0.5871 0.7739 0.6524
w/o DMMG 0.8051 0.9154 0.8443 0.6138 0.7999 0.6782
w/o CMAE 0.6998 0.8384 0.7466 0.4639 0.6485 0.5272

w/o IT 0.6926 0.8436 0.7465 0.5236 0.7239 0.5923
w/o MAF 0.8013 0.9158 0.8395 0.5913 0.7807 0.6578
w/o Lm 0.8115 0.9170 0.8492 0.5965 0.789 0.6643
w/o Ls 0.8105 0.9187 0.8492 0.6128 0.7944 0.6782
w/o G 0.8105 0.9143 0.8402 0.5845 0.7766 0.6499

Table 2: Ablation studies to evaluate the impact of
module components across two datasets.

egy), MAF (remove Modal Attention Flow), Lm

and Ls (remove loss functions), G (removing the
gating mechanism in DMAFF). As shown in Table
2, we find that removing the MFE module leads to
a performance drop on both datasets, which indi-
cates that the module effectively enhances modal
embeddings. After removing the DMAFF mod-
ule, the performance dropped more significantly,
further validating that the DMAFF effectively cap-
tures and balances modal associations, thereby im-
proving the quality of modal embeddings. The re-
moval of the DMMG module also results in perfor-
mance degradation, suggesting that missing modal-
ity information has a significant impact on align-
ment tasks. Similarly, removing the CMAE mod-
ule causes a notable performance decrease, further
confirming the importance of modal association.
It also verifies that associations exist between the
fused modalities and individual modalities, and ex-
tracting these associations can effectively improve
the quality of modality embeddings. We provide a
detailed experimental analysis of CMAE compared

to TMEA to demonstrate the efficiency of CMAE.
Please refer to Appendix H.

When iterative strategy (w/o IT) is not used,
the model’s robustness decreases significantly, fur-
ther validating the importance of this strategy. Re-
moving the modal attention flow component (w/o
MAF) also led to performance degradation, indi-
cating the effectiveness of this component. It also
shows that this component can effectively capture
the latent modal associations. Detailed analysis
of the MAF component, please refer to Appendix
I. Finally, removing the latent modality represen-
tation optimization loss function in the DMMG
module (w/o Lm), the orthogonality loss function
in the CMAE module (w/o Ls), and the gating
mechanism in DMAFF (w/o G) all lead to varying
degrees of performance degradation, which empha-
sizes the critical role of these components in the
model.

At the same time, we conduct a detailed exper-
imental analysis of the fusion strategies involved
in the model to validate the correctness of our se-
lection. Please refer to Appendix J. For analysis of
model consumption and overfitting, please refer to
the Appendix K.

5.4 Performance under Varying Ratios

To further evaluate the effectiveness of the pro-
posed CLAMEA model, we conducted experi-
ments on two datasets using 20%, 50%, and 80%
of aligned entity pairs for training. To ensure exper-
imental rigor, we only compared against models
for which performance metrics under varying align-
ment ratios were explicitly reported in the papers.

As shown in the Figure 3, CLAMEA consis-
tently outperforms across all training ratios. On
the FB15K-DB15K dataset, CLAMEA achieves
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an MRR and Hits@1 score exceeding 80% under
all training settings. Moreover, on the FB15K-
YG15K dataset, CLAMEA significantly surpasses
other methods in terms of Hits@1 and MRR un-
der both 50% and 80% alignment settings. The
results show that, except for the Hits10 metric on
the 20% aligned entities of the FB15K-YG15K
dataset, where CLAMEA does not achieve opti-
mal performance, it achieved the best performance
across all other alignment ratios.

6 Conclusion

This paper proposes a novel MMEA method called
CLAMEA, which aims to address the issue of
modality embedding quality in input modality in-
teractions by capturing latent modal associations.
Specifically, we design a dynamic modal atten-
tion flow fusion module to capture and balance
the associations between modalities, a cross-modal
association extraction module to further extract
latent cross-modal associations, and a modal fea-
ture enhancement module and a dynamic missing
modality generation module to enhance and gener-
ate modality embeddings, respectively. Extensive
experiments on two datasets demonstrate the effec-
tiveness of CLAMEA.

Limitations

CLAMEA has contributed to the development of
MMEA, but there are still shortcomings, especially
when extracting latent modal associations, which
are easily influenced by the structure. For example,
when using same training data proportions, there is
a significant difference in the final results between
FB15K-DB15K and FB15K-YAGO15K. Future
research should focus on addressing structural is-
sues like those in the FB15K-YAGO15K data and
enrich the structure. For example, enriching KGs
information through knowledge graph completion
and replacing ineffective entity modal information
can help improve alignment accuracy.
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A Entity Alignment

As knowledge graphs (KGs) expand in real-world
applications, research has gradually shifted from
rule-based matching methods (Jean-Mary et al.,
2009) to more expressive embedding-based ap-
proaches (Chen et al., 2016; Zhu et al., 2017; Bor-
des et al., 2013; Sun et al., 2018). These methods
map entities in KGs to vector spaces, ensuring
that semantically similar entities are closer in ge-
ometric space. Among these approaches, models
based on relation translation mechanisms leverage
the structural path properties between entities and
emphasize the geometric similarity of aligned en-
tities during optimization (Chen et al., 2016; Bor-
des et al., 2013). Graph neural network (GNN)-
based methods (Wang et al., 2018; Sun et al., 2020;
Velickovic et al., 2017; Kipf and Welling, 2016;
Chen et al., 2023) further explore the neighborhood
information of entities, enhancing their contextual
representations through multi-level aggregation of
graph structures. However, these methods struggle
to accommodate diverse modal knowledge.

B Modal Embedding

B.1 Relational Embedding

The form of the relational modality is (hh, r, ht) ∈
TR. We use the TransE (Bordes et al., 2013) model
to encode the relational modality. The score func-
tion f(hh, r, ht) and the margin-based loss func-
tion LTransE are defined as follows:

f(hh, r, ht) = ∥hr
h + r− hr

t∥22, (29)

LTransE =
∑

τ∈TR

∑
τ−∈T−

R
max (0, γ + f(τ)− f(τ−)) , (30)

where hr
h and hr

t are initial relational feature vec-
tors of the head and tail entities, respectively, and r
is the embedding of the relation r. ∥ · ∥2 is the L2
norm, γ is the margin hyperparameter, and T−R is
the set of negative examples. In this way, we obtain
the entity relational modality embedding hr

o.

B.2 Visual Embedding

We use the pre-trained visual model ResNet (He
et al., 2016) to process the image features xv to
obtain the visual embedding. It can be formulated
as:

hv
o = Wv · xv + bv, (31)

where Wv is the weight matrix for the linear trans-
formation of the features, and bv is the bias term.

B.3 Attribute Embedding
We convert attribute triples into corresponding
short sentences (Chen et al., 2024). For example,
given two attribute triples related to “Trump” —
(“Trump”, “birthday”, “1946-6-14”) and (“Trump”,
“age”, “79”) — we construct the short sentences H:
“birthday is 1946-6-14, age is 79”.

Then, we use a pre-trained BERT (Devlin et al.,
2019; Tang et al., 2020) model to encode these
short sentences, thereby forming the attribute em-
bedding of the corresponding entity. The computa-
tion is as follows:

ha
o = Wa ·

1

n

n∑

i=1

BERT(wi) + ba, (32)

where wi denotes the i-th word in the short sen-
tence H , BERT(·) represents the hidden feature
vector from the last layer of BERT, Wa is the
weight matrix, and ba is the bias vector.

C Dynamic Modal Attention Flow Fusion
Weighted

To generate the fused modality representation , we
assign dynamic weights wm to the modality fea-
tures obtained from the Dynamic Intra-Modality
Attention Flow module. These weights are dynam-
ically calculated based on the interaction strength
between modalities, defined as follows:

wm =
exp(

∑
j∈M

Nh∑
i=0

β
(i)
mj/

√
|M|×Nh)

∑
k∈M

exp(
∑

j∈M

Nh∑
i=0

β
(i)
kj

√
|M|×Nh),

(33)

The attention weight βmj between an entity’s
modality m and j in each attention head is for-
mulated as:

βmj =
exp

(
Q⊤mKj/

√
dh

)
∑

n∈M
exp

(
Q⊤mKn/

√
dh

)
,

(34)

where M ∈ {a, r, v} denotes the set of modalities,
Nh is the number of attention heads, dh = d/Nh,
and β

(i)
mj represents the interaction weight between

modality m and j under the i-th attention head.

D CMAE Loss Function Analysis

It is worth noting that we did not include the fused
modality in the loss function, as existing loss func-
tion has already effectively optimized the unimodal
embeddings. We hypothesize that incorporating
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Figure 4: Comparison results of optimized the fused
modality and non-optimized fused modality. Ls denotes
the loss function that does not optimize the fused modal-
ity, while Lsf denotes the loss function that does

the fused modality into the loss function may lead
to ineffective or even adverse optimization of each
modality, ultimately affecting the overall perfor-
mance of the model. To verify this, we conduct
relevant experiments.

We conduct experiments on the FB15K-DB15K
and FB15K-YG15K datasets using 20% of the
aligned entity pairs. As shown in the Figure 4,
Ls consistently outperforms Lsf on both datasets,
which supports our hypothesis.

E Optimization

E.1 Multimodal Contrastive Learning
Approach

The multimodal contrastive learning approach
guides the model to learn by comparing the sim-
ilarity between positive and negative entity pairs
from multiple modality perspectives. Specifically,
positive entity pairs refer to correctly aligned en-
tity pairs, while negative entity pairs refer to mis-
aligned entity pairs. The specific definition of con-
trastive representation learning is as follows:

Lcl(h
∗
1,h

∗
2) =

1

2|T |
∑

(h1,h2)∈T

[
(1− y) · d2(h∗

1,h
∗
2)

+ y ·max
(
γcl − d(h∗

1,h
∗
2), 0

)2]
, (35)

where ∗ ∈ {M, r, a, v} represents the modality
type—M represents the final fusion modality, r rep-
resents the relational modality, a represents the at-
tribute modality, and v represents the visual modal-
ity, h∗1 and h∗2 represent the entity embeddings of
modality ∗ in KGs G1 and G2, respectively. T is
the set of entity pairs including both positive and

Figure 5: The results of the parameters on Hits@1 for
the FB15K-DB15K

negative samples, d(·, ·) is the cosine similarity
function, y indicates whether a given entity pair is
aligned, and γcl is the margin hyperparameter used
in contrastive learning.

E.2 Optimization Strategy Description
To integrate all the designed loss functions, the
final optimization objective Lall is defined as:

Lall = LTransE + Lvae + αLm + βLs + Lmcl, (36)

where α and β are hyperparameters. During the
training phase, we minimize Lall and update the
model parameters via backpropagation.

Meanwhile, we adaopt a bidirectional iterative
strategy (Mao et al., 2020) to enhance the effective-
ness of model training.

E.3 Parameter Analysis
We introduced α and β in the objective function to
regulate the influence of different loss terms. We
experiment with five different values for each pa-
rameter and validate on 20% of the aligned entity
pairs on the FB15K-DB15K datasets. As shown
Figure 5, the model achieves optimal performance
when both α and β are set to 0.01. This indicates
that excessively large or small loss weights signifi-
cantly affect the model’s performance.

F Experimental Details

The dimensionality of all entity modality features
is set to 100. For modality feature enhancement,
variational autoencoder (VAE), and cross-modal as-
sociation extraction, the number of attention heads
is set to 2. The latent representation dimension of
the VAE is 64. For the dynamic weight calcula-
tion in attention, the number of heads Nh is set to
5. In LTransE, we set γ = 1, and in Lcl, γcl = 2.
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Dataset KGs Ent Rel Attr Rel-Triples Attr-Triples Ent-Image Ent-pairs

FB15K-DB15K DB15K 12842 279 225 89197 48080 12837 12846

FB15K-YG15K
FB15K 14951 1345 116 592213 29395 13444

11199YG15K 15404 32 7 122886 23532 11194

Table 3: The statistics of datasets FB15K-DB15K and FB15K-YG15K

Figure 6: Performance comparison between improved
CMAE and TMEA

We use the Adam optimizer with a learning rate of
0.001 and a batch size of 5000. All experiments
are performed on an NVIDIA GeForce RTX 3090
GPU.

G Datasets and Evaluation Metrics

G.1 Datasets

Table 3 presents the detailed data statistics of
the FB15K-DB15K and FB15K-YG15K datasets.
These datasets cover different entity alignment ra-
tios (20%, 50%, and 80%) to comprehensively as-
sess the robustness of models under varying levels
of supervision.

G.2 Evaluation Metrics

Hits@N measures the proportion of correctly
aligned entities ranked in the top-N candidates,
while MRR (Mean Reciprocal Rank) reflects the
average ranking quality of the correctly aligned en-
tities. Higher values of both metrics indicate better
entity alignment performance.

H Analysis of Cross-modal Association
Extraction

We further validate the effectiveness of the CMAE
module while also verifying a conclusion we pro-
posed. As mentioned earlier, CMAE is inspired
by the Multi-Modal Commonality Enhancement
module in TMEA (Chen et al., 2024), and improve-

ments were made based on this. We conduct exper-
iments on the FB15K-DB15K dataset using 20%
of the aligned entity pairs, comparing the pre- and
post-improvement modules. As shown in the Fig-
ure 6, the results show clear advantages across all
metrics, validating the effectiveness of CMAE and
confirming our conclusion that associations exist
not only between individual modalities but also
between fused and individual modalities.

I Further Analysis of Modal Attention
Flow

To fully demonstrate the effectiveness of the Modal
Attention Flow (MAF), We conducted experiments
on both datasets, using 20%, 50%, and 80% of
the aligned entity pairs respectively.The results,
as shown in Figure 7, indicate that removing the
attention flow mechanism leads to a significant per-
formance drop. A clear decline in performance was
observed across all datasets and evaluation metrics.
This strongly suggests that the proposed dynamic
modal attention flow mechanism can effectively
capture and balance the complex associations of
the modalities. Different modalities are capable
of guiding information updates within each other.
These results provide strong evidence for the effec-
tiveness of MAF.

J Analysis Modal Fusion Strategies

We experimented with five specific fusion strate-
gies using 20% of the aligned entity pairs on the
FB15K-DB15K dataset: attention-based dynamic
weighted concatenation (Dcat), static weighted
concatenation (Wcat), direct concatenation (Cat),
attention-based dynamic weighted summation
(Dsum), and static weighted summation (Wsum),
to evaluate the effectiveness of the data fusion
strategies used in our model. The evaluation met-
rics used are Hits@1 and MRR. There are three
modality fusions involved in the CLAMEA model:
Attention Flow Fusion (AFF), Modality Genera-
tion Fusion (MGF), and Final Modal Fusion (FMF).
In both AFF and MGF, we used the Dsum strat-
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Figure 7: Demonstrating the impact of modal information flow on model performance across different ratios of
training data

Figure 8: Results of Different Fusion Strategies

egy. In FMF, we adopted the Cat strategy. As
shown in Figure 8, the Dsum strategy achieved
the best performance in both the AFF and MGF.
In the FMF, the Cat strategy exhibited the high-
est performance. Comparative analysis shows that
concatenation is generally more effective in gen-
erating the final fused entity representation than
summation. We speculate that the summation strat-
egy may mask the unique features of each modality,
leading to information redundancy or interference,
which negatively affects the quality of the final
entity embedding and thus the alignment perfor-
mance.

From the Figure 8, we observe that when the
fusion strategy in the AFF module is replaced with
Wcat or Cat, the code encounters NaN issues and

Figure 9: Time and memory comparison of different
models

fails to run. We conduct an analysis and found
that this problem does not occur when the learning
rate is sufficiently low or when gradient clipping is
applied. Based on this observation, we judge that
the NaN issue may be caused by gradient explosion
under high learning rates.

We do not use too low learning rate and gra-
dient clipping because too low learning rate or
using gradient clipping will significantly limit the
model optimization speed, increase training time,
and may cause the model to fall into local optimum,
reducing model performance.

K Model Cost and Overfitting Analysis

We compare the time and memory consumption
of the model with TMEA (Chen et al., 2024) and
MEAformer (Chen et al., 2023). As shown in the
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Figure 10: Hits@1 Performance on Validation and Test
Sets

Figure 9, although CLAMEA consumes more time
and memory than TMEA, it outperforms TMEA
comprehensively in terms of model performance.
Meanwhile, compared to MEAformer, CLAMEA
requires less memory and achieves absolute im-
provements of 23.96% and 18.79% in Hits@1 on
the two datasets, fully demonstrating the effective-
ness of our model.

During the model training process, we use the
MRR metric on the validation set to select and save
the model with the best performance. As shown
in the Figure 10. We observe that the variation
trends of Hits@1 scores on the validation and test
sets are generally consistent. Overfitting has never
occurred during our experiments.
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