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Abstract

Advances in hardware and language model ar-
chitecture have spurred a revolution in natu-
ral language generation. However, autoregres-
sive models compute probability distributions
over next-token choices, and sampling from
these distributions, known as decoding, has re-
ceived significantly less attention than other
design choices. Existing decoding strategies
are largely based on heuristics, resulting in
methods that are difficult to apply or improve
in a principled manner. We develop the the-
ory of decoding strategies for language models
by expressing popular decoding algorithms as
equilibrium states in the language of ergodic
theory and stating the objective functions they
optimize. Using this, we analyze the effect of
the local normalization step required to make
probabilities sum to one in top-k, nucleus, and
temperature sampling. We argue that local nor-
malization distortion is a fundamental defect of
decoding strategies and quantify the size of this
distortion and its effect on mathematical prox-
ies for the quality and diversity of generated
text. This yields conclusions for the design
of decoding algorithms and the detection of
machine-generated text.

1 Introduction

Autoregressive large-language models are poised
to transform industries such as healthcare, finance
and education (Zhao et al., 2024). Rapid advance-
ments in this field have been fueled by scaling
(Hoffmann et al., 2024), transformer network ar-
chitectures (Vaswani et al., 2017), and alignment
processes (Christiano et al., 2017; Rafailov et al.,
2024). However, autoregressive language models
produce conditional distributions over predicted
next tokens, and these must be iteratively sampled
during inference. A suite of decoding methods exist

*Equal contribution.

for this sampling, such as top-k, nucleus, or tem-
perature sampling, but these are based on heuristics
and our understanding of these methods is in its
infancy, with most being developed through trial
and error (Wiher et al., 2022).

This is surprising, since the choice of decod-
ing strategy has a profound impact on the quality
of the generated text and, in some cases, may be
more important than the model architecture (Wiher
et al., 2022). For example, greedy sampling, or the
related concept of beam search, tends to produce
accurate but repetitive or dull text (Holtzman et al.,
2020). In contrast, pure sampling produces much
more varied and interesting text but can produce
text which is ‘incoherent and almost unrelated to
the context’ (Holtzman et al., 2020).

Our primary goal is to fill this gap and initiate
the theoretical study of decoding strategies. As
an application of this theory, we investigate a well-
known defect of popular decoding strategies, which
results from truncating the distribution of possible
next tokens at each step during inference. Trunca-
tion necessitates repeated renormalization to obtain
valid probability distributions, and results in a phe-
nomenon we term local normalization distortion.
The fact that local normalization distorts the result-
ing probability distribution is well-known, but not
well-understood.

Our contributions are as follows.

1. Develop a theoretical framework for analyz-
ing decoding strategies. This involves de-
scribing the probability distributions q pro-
duced by decoding algorithms as equilibrium
states, drawing heavily on the language of er-
godic theory and thermodynamic formalism
(Bowen, 2008). We precisely state the ob-
jective function maximized by each decoding
strategy; see Section 5.

2. Quantify the effect of local normalization dis-
tortion by showing how the probability of ran-
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domly chosen strings change when we replace
a locally normalized decoding strategy with
a globally normalized equivalent. The effect
is large for top-k and temperature sampling,
but much smaller for nucleus sampling; see
Section 6.1.

3. Evaluate language models and decoding
strategies in terms of a quality-diversity trade-
off, as in Caccia et al. (2019). We show, both
theoretically and empirically, that local nor-
malization distortion negatively affects the
performance of the decoding strategy.1

These results show that in the ongoing search for
better decoding strategies for large language mod-
els, careful attention should be paid to local nor-
malization distortion, as it may have a large effect
on proxies for the quality of generated text, and the
size of this effect varies considerably with choice
of decoding strategy. Additionally, in a follow-up
article (Kempton et al., 2025) we show how to use
local normalization distortion to detect machine-
generated text.

2 A Motivating Example

Many autoregressive models for natural language
generation work broadly as follows. Given a vo-
cabulary V , one builds a large neural network to
estimate the likelihood p(yt|y<t) that the next to-
ken in a sequence is equal to yt ∈ V , given the
previous tokens y<t = y0 · · · yt−1 ∈ Vt. Then,
one decides on a decoding strategy (sampling al-
gorithm), which is a way of using the collection of
likelihoods

{p(yt|y<t) : yt ∈ V}

associated with context y<t to choose the next to-
ken yt. For example, one could always choose the
token yt which has highest likelihood p(yt|y<t)
(greedy sampling), or one could allow each token
yt to be chosen with probability equal to the like-
lihood p(yt|y<t) (pure sampling). Let q(·|y<t)
denote the distribution of choices of yt given the
context and chosen decoding strategy.

Having chosen the token yt, one repeats the
process to choose yt+1 given the new context

1Imperfect mathematical proxies for quality and di-
versity of text are used in this analysis, see Section
4. Code to reproduce our experiments is available at
https://github.com/TMKempton/lnd.

Figure 1: Distortion due to local normalization sig-
nificantly impacts the implied probability distribution
during decoding. (a) shows pure sampling, (b) shows
locally normalized sampling, and (c) shows globally
normalized sampling.

y<t+1. One computes the probability of a string
y0 · · · yT ∈ V∗ by

q(y0 · · · yT ) =
T∏

t=1

q(yt|y<t).

In many settings, rather than conditioning on the
whole history y<t one allows only a finite context
length L and conditions on yt−L · · · yt−1, making
the process of generating texts an L-step Markov
process.

A simple example shows how the decoding strat-
egy can dramatically influence q. Suppose we have
a language model that produces model likelihoods
p. We feed in the context ‘The cat sat on’ and ob-
tain the likelihoods of the various choices of the
next two tokens. Let these likelihoods be as de-
scribed in Figure 1. Assume further that we decide
that various choices of tokens are unreliable and
so we wish to restrict our choices to the two most
likely tokens depicted in blue boxes. We now have
probabilities which do not sum to one, and so have
to decide how to normalize them.

Option 1: Global normalization. Compute the
probabilities of complete strings and divide by the
sum of the probabilities of complete strings. In our
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example, the sum of the probabilities of complete
strings is 0.26 = 0.01 + 0.01 + 0.18 + 0.06. We
end up with ‘The cat sat on a fence’ being selected
with probability 0.01/0.26 ≈ 0.038.

Option 2: Local normalization. Renormalize
conditional probabilities locally so that the
probabilities of outward edges from each node
sum to one. For example, we choose the first
word ‘a’ with probability 0.1/0.4 and ‘the’
with probability 0.3/0.4. With local normaliza-
tion, we end up with ‘The cat sat on a fence’
being selected with probability 0.25×0.5 = 0.125.

Observe that these two different methods of
normalizing probabilities yield very different
probability distributions.

3 Decoding Strategies

The decoding strategies we study in this article fall
into two classes, truncation sampling algorithms
(such as nucleus sampling and top-k) and temper-
ature sampling. Truncation sampling algorithms
work by defining an allowed set Ay<t of tokens
that can follow some context, restricting the model
conditional probability distribution p(·|y<t) to this
set and renormalizing it to have mass one.

Definition 3.1 (Truncation Sampling Algorithms).
Given a language model p, a context y<t and an
allowed set Ay<t , define

Z(y<t) =
∑

wt∈Ay<t

p(wt|y<t).

Choose element yt of Ay<t with probability

q(yt|y<t) :=
p(yt|y<t)

Z(y<t)

and set
q(yt|y<t) = 0

for yt ̸∈ Ay<t .

Top-k sampling (Fan et al., 2018) is an exam-
ple of a truncation sampling strategy. Given some
value of k ≥ 1, it is defined by setting the allowed
set Ay<t to be the set of those k tokens with high-
est model probabilities p(yt|y<t). Top-k sampling
restricts to the k most likely tokens at each stage
of language generation, and renormalizes mass at
each stage of generation by dividing model proba-
bilities by the sum of the probabilities of the top-k
tokens.

Nucleus (top-p) sampling (Holtzman et al., 2020)
is defined by choosing a value π ∈ [0, 1], order-
ing tokens w1, w2 · · · ∈ V in order of decreasing
model probability p(wi|y<t) and setting Ay<t =
{w1, · · · , wr} where the threshold r is the smallest
natural number satisfying

∑r
i=1 p(wi|y<t) ≥ π.

Rather than choosing from exactly k tokens at each
stage, nucleus sampling samples from (roughly)
the top proportion π of the probability distribution.
It is worth stressing that

∑r
i=1 p(wi|y<t) is often

much larger than π, and so the normalizing constant
Z(y<t) =

∑r
i=1 p(wi|y<t) can vary significantly

at different contexts.
Several newer truncation-based decoding strate-

gies have been introduced with different clever
ways of choosing the allowed sets Ay<t , see, for
example, locally typical sampling (Meister et al.,
2023), η-sampling (Hewitt et al., 2022), basis-
aware truncation (Finlayson et al., 2023) and mi-
crostat (Basu et al., 2020). One observation about
this body of research is that careful motivation is al-
ways given for the choice of allowed set, but little if
any consideration is given to the way in which the
resulting decoding strategy apportions probability
mass within this allowed set.

Finally, we mention temperature sampling,
which is the only widely used stochastic sampling
algorithm not to fall into the framework of trunca-
tion sampling.

Definition 3.2 (Temperature Sampling (Guo et al.,
2017)). Given some context y<t and a parameter
τ > 0 (usually τ ∈ (0, 1)), define

Zτ (y<t) =
∑

wt∈V
(p(wt|y<t)

1
τ ).

The distribution qτ given by temperature sampling
is defined by

qτ (yt|y<t) =
p(yt|y<t)

1
τ

Zτ (y<t)
.

3.1 Global Normalization

As in our toy example, we could replace the local
normalization in top-k, nucleus and temperature
sampling with a global normalization, in which
rather than normalizing conditional probabilities
by dividing by Z(y<m+i) at each step, one normal-
izes the joint distribution over complete sequences
w1 · · ·wT . For example, if we let AT denote the
set of sequences of length T for which each to-
ken is in the top-k set, globally normalized top-k
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sampling selects string y1 · · · yT ∈ with probability

q′k(y1 · · · yT ) =
p(y1 · · · yT )∑

w1···wT∈AT
p(w1 · · ·wT )

.

(1)
That is, globally normalized top-k sampling sam-

ples according to the measure p conditioned on the
subset AT. Similar statements hold for globally
normalized variants of any restriction sampling al-
gorithm. Globally normalized temperature sam-
pling selects tokens with probability proportional
to p(·|y<t)

1
τ , as is the case when temperature is

used in statistical physics, ergodic theory and frac-
tal geometry (see Appendix C).

We let q′k, q′π and q′τ denote the globally normal-
ized alternatives to top-k, nucleus and temperature
sampling respectively. Globally normalized decod-
ing strategies are computationally infeasible, even
for fairly small values of T . We introduce them
here as a theoretical tool to better understand how
problematic local normalization distortion is. In
Appendix B we explain how to sample from q′k, q

′
π

and q′τ using rejection sampling.

3.2 Local Normalization Distortion
Definition 3.3. Let q be the distribution produced
by a locally normalized decoding strategy, and let
q′ be its globally normalized counterpart. Given
a context y<t, the local normalization distortion
associated to completion yt · · · yT is defined as

q(yt · · · yT |y<t)

q′(yt · · · yT |y<t)
.

In the case of top-k sampling, given context y<t,
there is a constant C such that each completion
yt · · · yT has local normalization distortion

1

C
· 1
∏T−t

i=0 Zk(y<t+i)
,

where Zk is the mass of the top-k tokens at context
y<t+i. The constant C is the normalizing constant
associated to global normalization, which is hard
to compute but can be bypassed in empirical inves-
tigations, see Section 6.

There is a body of work studying global nor-
malization in the context of constrained decoding;
see, for example, Lipkin et al. (2025); Loula et al.
(2025) and references therein. In these works, lo-
cal normalization distortion is seen as a problem
and various algorithms for sampling approximately
from the globally normalized distribution are pro-
posed.

By contrast, Gareev et al. (2024) argue that
global decoding underperforms local decoding for
top-k and top-π sampling. The primary driver of
the effects they observe seems to be the fact that lo-
cal and global sampling produce texts of markedly
different lengths (differing by a factor of four for
some parameter settings), whereas we study gener-
ations of fixed length. Additionally, their approach
differs from ours in that they compare quality of
local and global top-k sampling at the equal val-
ues of k, whereas we compare quality of local and
global top-k sampling at equal values of diversity,
following the approach of Caccia et al. (2019). We
justify our experimental approach in Section 6 and
give further details on the difference between our
work and Gareev et al. (2024) in Appendix H.

We conclude this section with a proposition that
further motivates the study of local normalization
distortion.

Proposition 3.1. Let p be a language model, qτ
denote the distribution arising from temperature
sampling, and q′τ the distribution arising from a
globally normalized version of temperature sam-
pling. Then, as the temperature parameter τ tends
to zero, qτ converges to the distribution putting
all of its mass on the output of greedy sampling,
whereas q′τ converges to the distribution putting all
of its mass on the sequence with globally maximal
log probability.

Proof. See Appendix D.1.

Given the substantial interest in implementing
expensive search algorithms such as beam search
to find sequences with approximately the globally
maximal log probability, we present Proposition
3.1 as initial evidence that local normalization dis-
tortion can have a substantial negative effect and is
worthy of further investigation.

4 Evaluating Decoding Strategies through
a Quality-Diversity Trade Off

When generating text from a language model, one
may have different preferences for the ‘quality’ and
‘diversity’ of the text according to the task being
performed (Caccia et al., 2019; Wiher et al., 2022).
By diversity, we mean the capacity for a model
to produce different samples, while by quality we
mean the average human judged quality of an indi-
vidual sample.

This framing of choice of decoding strategy
choice as a trade-off of quality and diversity is stud-
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ied in Caccia et al. (2019); Ippolito et al. (2019);
Nadeem et al. (2020); Zhang et al. (2021). In par-
ticular, in Caccia et al. (2019), the authors propose
using a ‘temperature sweep’ to find a parameter τ
for which temperature sampling best matches this
preference. Similarly, one can adjust the parame-
ters in top-k or nucleus sampling according to one’s
preferences for diversity versus quality, since re-
stricting token choices to the top of the distribution
prioritizes quality over diversity.

There are no universally accepted definitions of
the diversity and quality of text. One way of evalu-
ating the diversity of stochastically generated text
is to look at the entropy H(q) of the distribution q
of the text, given by

H(q) =
∑

y∈V∗
q(y) log q(y).

The sum here is taken over complete strings.
The gold standard for evaluating the quality of

the generated text is to get human judgment scores,
although this is expensive and fraught with diffi-
culty (Clark et al., 2021). Often the model log-
likelihood log(p) is used as a proxy for quality, so
the quality of a distribution q over possible texts
would be given by

Q(q) =
∑

y∈V∗
q(y) log p(y).

This notion of quality is not without its issues
(Meister et al., 2022), although Zhang et al. (2021)
has a rather compelling graph suggesting that hu-
man judgements of quality of text are well corre-
lated with Q(q) except when Q(q) is very high.

While entropy and average log-likelihood of a
distribution q are imperfect, albeit frequently used,
proxies for diversity and quality, they are precisely
the right objects to describe mathematically the
objective functions maximized by the distributions
resulting from top-k sampling, nucleus sampling
and temperature sampling.

5 Decoding Strategies as Equilibrium
States

In the last section we reviewed the literature on
what a decoding strategy ought to maximize. In this
section we prove results about what popular decod-
ing strategies actually optimize. In particular, we
state results of the form ‘given some context y<m,
the probability distribution q on the set A∗

y<m,k

obtained by sampling according to a certain decod-
ing strategy is the unique probability distribution
on A∗

y<m,k that maximizes the following objective
function...’.

In the language of ergodic theory, what we are
doing is describing the outcome of a decoding strat-
egy as an equilibrium state associated to a certain
potential. While the mathematics of this section is
not hard, it is useful as it allows us to ask whether
the function that our decoding strategy maximizes
is well aligned with the theoretical goals of a de-
coding strategy. In a follow-up paper (Kempton
et al., 2025) we apply the ideas of this section to
build a novel algorithm for detecting text generated
by a language model.

We use the following standard result. As usual,
let 0 log 0 := 0.
Lemma 5.1 ((Bowen, 2008), Lemma 1.1). Let
X = {1, · · · , k} be a finite set and let R =
(r1, · · · , rk) be a probability measure on X as-
signing mass ri to symbol i. Then R is the unique
probability measure maximizing the quantity

−
∑

i∈X
µi logµi

︸ ︷︷ ︸
Entropy H(µ)

+
∑

i∈X
µi log ri

︸ ︷︷ ︸
Average log probability

among probability measures µ = (µ1, · · ·µk) on
X .

The results of this section follow as direct corol-
laries to Lemma 5.1 by analyzing the measures
(r1, ..., rk) given by various decoding strategies.
Details are given in the appendix D. Our first result
concerns top-k decoding.
Corollary 5.1. Given some context y<m and a
choice of k, the distribution qk on A∗

y<m,k pro-
duced by top-k sampling is the unique distribution
maximizing the quantity

H(µ)︸ ︷︷ ︸
Proxy for diversity

+
∑

w∈A∗
y<m,k

µ(w|y<m) log p(w|y<m)

︸ ︷︷ ︸
Proxy for quality

+
∑

w∈A∗
y<m,k

µ(w|y<m) log ϵk(w)

︸ ︷︷ ︸
Distortion term

among distributions µ on A∗
y<m,k. Here

ϵk(w) :=
1

ΠT−m
i=0 Z(y0 · · · ymwm+1 · · ·wm+i−1)

,
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which is the product along the sequence of the
inverse of the mass of the top k tokens.

If our equation above had only the first two terms,
it would show that qk maximizes the sum of math-
ematical proxies for diversity and quality among
distributions supported on A∗

y<m,k. The third term
however, which is an artifact of local normalization,
distorts this goal. If the third term was constant
across sequences y then it would have no effect,
but issues arise when it has a large variance; see
Section 6.1. Next, we consider nucleus sampling.

Corollary 5.2. Given some context y<m and a
choice of π, the distribution qπ on A∗

y<m,π gener-
ated by nucleus sampling is the unique distribution
maximizing the quantity

H(µ) +
∑

w∈A∗
y<m,π

µ(w|y<m) log p(w|y<m)

+
∑

w∈A∗
y<m,π

µ(w|y<m) log ϵπ(w)

among distributions µ on A∗
y<m,π. Here

ϵπ(w) :=
1

ΠT−m
i=0 Z(y0 · · · ymwm+1 · · ·wm+i−1)

,

which is the inverse of the product along the se-
quence wm+1 · · ·wT of the total mass of those to-
kens allowed by nucleus sampling.

Thus nucleus sampling produces a distribution
qπ maximizing a goal related to quality, diversity
and an error term related to both by the length of
the sequence y and the extent to which the mass of
the tokens selected by nucleus sampling overshoots
the target π.

Finally, we consider temperature sampling.

Corollary 5.3. Given some choice of temperature
τ and context y<m, the distribution qτ is the distri-
bution maximizing the quantity

H(µ) +
1

τ

∑

w∈V∗
µ(y1 · · · ymw) log(p(y1 · · · ymw))

+
∑

w∈V∗
µ(y1 · · · ymw)ϵτ (w)

among distributions µ on V∗, where

ϵτ (w) =
1

ΠT−m
i=0 Zτ (y0 · · · ymwm+1 · · ·wm+i−1)

.

When nucleus or top-k sampling set π < 1 or
k < |V|, they produce distributions with lower en-
tropy than p, since token choice has been reduced.

This process also redistributes mass from low prob-
ability tokens to higher probability tokens, reducing
the average log-likelihood. Thus the parameters as-
sociated with nucleus or top-k sampling allow one
to prioritize quality or diversity. This is somewhat
hidden in the statements of Corollaries 5.1 and 5.2,
it appears only in that it is the space of distributions
on A∗ upon which the proxy for diversity, proxy
for quality, and distortion term are maximized.

Temperature sampling is not a truncation algo-
rithm, and the way it modulates between prioritiz-
ing quality and prioritizing diversity is in the factor
1/τ preceding the mathematical proxy for quality
in the main equation of Corollary 5.3. As before,
the third term here is not related to the goal of max-
imizing quality or diversity. It is broadly similar
to the distortion introduced by top-k, except rather
than dividing by the product along a sequence of
the mass contained in the top-k tokens, it divides
by the product along a sequence ym · · · yT of the
L1/τ norm of the distribution p(·|y<m+i).

Finally, we see that global normalization re-
moves the problematic third term in each of the
quantities maximized by our decoding strategies.

Corollary 5.4. In each of corollaries 5.1-5.3, if
the locally normalized probability distribution (qk,
qπ, or qτ ) is replaced by its globally normalized
equivalent, the statement of the theorem remains
the same except without the third term (i.e. the
distortion term) in the expression for the maximized
quantity.

This is important because it shows that, in terms
of the quality-diversity trade off goals of the previ-
ous section, locally normalized decoding strategies
perform strictly worse than their globally normal-
ized counterparts. In Section 6.2 we quantify this
effect.

6 Experiments

In this section we quantify the size of effects pre-
dicted in our theoretical sections. In particular, we
measure the size of local normalization distortion
and its effect on the quality-diversity trade off, mea-
sured through log-likelihood and entropy.

While one may, in some circumstances, care
more about semantic diversity than lexical diver-
sity, or about human judgements of quality than
language model log-likelihood, effects on these
metrics would be downstream of the true mathe-
matical effect of local normalization distortion, and
likely highly dependent on both the language model
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and the task being performed. Thus, for reasons
both of stability and of quantifying our theoretical
results directly, we run our experiments on metrics
present in the objective functions maximized by
decoding strategies.

The experiments of this section are run using
Llama 2-7B (Touvron et al., 2023) on a single
A100 GPU. Detailed setup for each experiment
is contained in the corresponding sections and ap-
pendices. In Appendix E, we repeat our experi-
ments using Pythia 1B and 2.8B (Biderman et al.,
2023), and Llama 3.2 1B and 3.2 3B (Grattafiori
et al., 2024). As predicted above, our experimental
results remain qualitatively unchanged.

The primary challenge to running these experi-
ments is the computational cost of global normal-
ization. To do this efficiently, we introduce a pro-
cess based on rejection sampling in Appendix B.

6.1 How Large is the Distortion due to Local
Normalization under Different Decoding
Strategies?

In assessing how much local normalization distor-
tion affects the mass of a completion ym · · · yT , we
need to compare how much q(ym · · · yT |y<m) is
boosted by local normalization against how much
it would have been boosted by global normaliza-
tion, as in Definition 3.3. Considering, for example,
top-k sampling, if qk denotes the distribution pro-
duced by top-k sampling and q′k denotes its globally
normalized equivalent, we would like to compute

qk(ym · · · yT |y<m)

q′k(ym · · · yT |y<m)
.

This is difficult to compute because globally nor-
malized top-k assigns mass

q′k(ym · · · yT |y<m) =
p(ym · · · yT |y<m)

C

for some constant C, which is very expensive to
compute, particularly on long generations. Instead,
we generate pairs of completions ym · · · yT and
zm · · · zT by top-k sampling and then compute the
ratio of the two local normalization distortions by
computing

qk(ym · · · yT |y<m)

q′k(ym · · · yT |y<m)
/
qk(zm · · · zT |y<m)

q′k(zm · · · zT |y<m)
(2)

which is equal to

qk(ym · · · yT |y<m)

p(ym · · · yT |y<m)
.
p(zm · · · zT |y<m)

qk(zm · · · zT |y<m)
. (3)

Since we are taking the ratio of the two local nor-
malization distortions, the global constants C can-
cel out and so do not need computing.

For k = 5, 50, 150, we start by finding values
of π and τ such that on average, for a randomly
chosen context, y<t, Zk(y<t) ≈ Zπ(y<t) ≈
Zτ (y<t). We are seeking here to tune our param-
eters so that the average amount of renormalizing
done by top-k, nucleus and temperature sampling
is the same.

Having tuned parameters, we then compare the
local normalization distortion across the three de-
coding strategies. Starting with the single word
context ‘The ’, we generate 1000 pairs of comple-
tions of 100 tokens each for each of our decod-
ing strategies and parameter choices. We compute
the relative local normalization distortion given by
the quantity (3) for top-k sampling and equivalent
quantities for nucleus and temperature sampling,
see Appendix A.

Our results are presented in Figure 3 and Table
1. We have two key findings.

Table 1: Local normalization distortion ratios over a
range of comparable decoding strategies. The table is
partitioned into three groups of parameters tuned so that
the average amount of renormalization is approximately
equal. Reported quantiles are the absolute value of the
natural log of the ratio (2).

Decoding Quantile

Strategy 10% 25% 50% 75% 90%

k = 5 1.84 4.50 9.82 16.93 25.07
τ = 0.86 1.18 2.76 5.97 10.80 15.65
p = 0.65 0.73 2.05 4.58 7.91 11.32

k = 50 0.60 1.43 3.26 5.60 7.92
τ = 0.95 0.40 1.05 2.29 3.93 5.83
p = 0.88 0.18 0.44 0.95 1.76 2.70

k = 150 0.36 0.88 1.89 3.35 4.83
τ = 0.98 0.18 0.47 0.95 1.68 2.43
p = 0.95 0.06 0.16 0.34 0.62 0.96

Finding 1. Local normalization distortion has a
large effect. For example, when using temperature
sampling with parameter τ = 0.86 to sample pairs
of sequences w, z, each of length 100, we see that
in half of cases, the ratio qτ (w|c)/qτ (z|c) differs
from the ratio p(w|c) 1

τ /p(z|c) 1
τ by a factor of at

least exp(5.97) ≈ 392. That is, the effect of local
normalization distortion is to distort the relative
probabilities of two completions by a factor of 392.

22222



Figure 2: Evaluating quality against diversity at different parameter values when decoding with top-k, nucleus
sampling, and globally normalized top-k. The ranges were k = 10, 11, . . . , 100 and p = 0.4, 0.41, . . . , 0.9. Higher
values of entropy are better, lower values of negative-log-likelihood are better. We find that at any fixed value of
entropy, globally normalized sampling tends to produce texts with higher log-likelihood.

It is worth stressing that temperature sampling
is more often used with temperatures 0.7 or 0.8, in
which case one would see even larger local normal-
ization distortion.

Finding 2. When parameters k, τ and π are tuned
so that the typical renormalization factors Zk, Zτ

and Zπ are similar, nucleus sampling results in a
much smaller local normalization distortion than
temperature sampling, which in turn gives rise to a
much smaller distortion than top-k sampling.

6.2 How does Local Normalization Distortion
affect the Quality-Diversity Trade Off?

Given a single word context w1 = ‘The ’, we
generate 30 length 15 samples by top-k sam-
pling, nucleus sampling, temperature sampling
and their globally normalized equivalents. We
do this over a range of values of k, π and τ .
For each sample w2 · · ·w16, we assess the qual-
ity by computing the negative log probability
− log(p(w2 · · ·w16|w1)). In addition, we evalu-
ate the diversity of our sample generation process
by approximating the entropy of our generation
process using the Shannon-McMillan-Breimann
theorem (Walters, 2000). That is, for each choice
of decoding strategy and parameter value and each
completion w2 · · ·w16 generated by decoding strat-
egy q, we compute − log(q(w2 · · ·w16|w1)). We
average these values over the different completions
generated for each particular decoding strategy and
parameter value to approximate H(q). Figure 2
shows these proxies for quality and diversity. Note
that lower negative log probability and higher en-
tropy are preferable.

Finding 3. For both top-k and nucleus sampling,
globally normalized sampling outperforms locally
normalized sampling on the quality-diversity trade
off. That is, at any fixed value of entropy, globally
normalized sampling produces texts with higher
log-likelihood.

It is not tractable to compute globally nor-
malized temperature sampling for sensible ranges
of τ , due to the extreme rejection rate of our
rejection sampling algorithm. Fortunately, we do
not require experimental results in this setting
thanks to Corollary 5.4, which states that globally
normalized temperature sampling at temperature τ
yields the unique distribution maximizing entropy
plus 1/τ log-likelihood among measures on on
AT .

7 Conclusions

Our primary contribution is to express popular de-
coding strategies as equilibrium states. In doing so,
one can see that the quantity which they maximize
contains a term relating to local normalization of
probability mass which seems unrelated to any rea-
sonable goal of a decoding strategy. In particular,
this term pulls the resulting probability distribution
away from the quality-diversity maximizing curve.
We have shown experimentally that the effect of
local normalization distortion on the probability of
selecting a string is typically very large (Section
6.1), and that it has a strongly negative effect on the
quality-diversity tradeoff (Section 6.2) when these
quantities are measured through entropy and log-
likelihood. In a follow-up work (Kempton et al.,
2025) we build a detector of machine generated
text based on local normalization distortion which
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outperforms state of the art alternatives. These
factors lead us to the conclusion that local normal-
ization distortion may have a negative effect on
machine-generated text and that it should be care-
fully considered both when practitioners choose a
decoding strategy and in the design of future meth-
ods for detecting machine-generated text.

8 Ethical Considerations

This work considers current decoding strategies for
language models and ways in which these decod-
ing strategies fall short. The most likely practical
applications of it are in the detection of machine-
generated text and in improving language models
so as to make their outputs more human-like.

Although there are no specific ethical concerns
about this work, we do inherit wider ethical ques-
tions around building human-like language models
and detecting machine-generated text. A discus-
sion of these is far beyond the scope of this work;
instead, we encourage the reader to seek out the
wealth of publicly available material on the issues.

9 Limitations

Our experiments are run on the open-source Llama
2 language model (Touvron et al., 2023). While
this is not uncommon for research in computa-
tional linguistics, the setting in which decoding
strategies such as temperature sampling are most
widely deployed is closed-source models such as
with ChatGPT (OpenAI, 2022). Our theoretical
results hold for all language models and we do not
believe the conclusions of our experimental section
would change with language model. It is however
the case that the magnitude of local normalization
distortion would decrease if the entropies of the
next token probability distributions were typically
lower. Thus, language models with higher certainty
about their next token predictions would give rise
to smaller numbers in Table 1, for example.

We have used log-likelihood as a proxy for the
quality of machine-generated text and entropy as
a proxy for its diversity. These metrics are clearly
imperfect. In particular, human judgement of text
quality may be a better metric for the quality of a
text, although obtaining these human judgments is
often prohibitive due to cost (Clark et al., 2021).
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A Computing Local Normalization
Distortion for Nucleus and
Temperature Sampling

In equations 2 and 3 we described how to compute
the ratio of the local normalization distortions of
two strings ym · · · yT and zm · · · zT in the case of
top-k sampling.

The case of nucleus sampling is almost identical,
we need only replace qk with qπ in equation 3.

For temperature sampling, we note that
q′τ (ym · · · yT |y<m) is not proportional to
p(ym · · · yT |y<m), but to p

1
τ (ym · · · yT |y<m).

Thus, to compute the ratio of the local normal-
ization distortions for two strings ym · · · yT and
zm · · · zT in the case of temperature sampling, we
replace equation 3 with

qτ (ym · · · yT |y<m)

p
1
τ (ym · · · yT |y<m)

.
p

1
τ (zm · · · zT |y<m)

qτ (zm · · · zT |y<m)
.

B Rejection sampling algorithms

We can sample from q′k, q
′
π and q′τ using rejection

sampling. This remains incredibly computation-
ally intensive, but it is significantly easier than
computing the probability of each possible string
w1 · · ·wT as in equation (1).

In the case of top-k and nucleus sampling, with
set of allowed completions A∗

y<m
given context

y<m, one can sample according to the globally
normalized variant of top-k or nucleus as follows:

Step 1. Sample a completion ym · · · yT according
to the model probability p.

Step 2. Accept the completion ym · · · yT if it is
in the allowed set A∗

y<m
, otherwise reject it and

repeat step 1.
In the case of temperature sampling, given con-

text y<m one can sample according to a globally
normalized variant of temperature sampling as fol-
lows:

Step 1. Sample a completion ym · · · yT according
to the model probability p.

Step 2. Accept this completion with probability
p(ym · · · yT |y<m)

1
τ
−1. If the completion is not

accepted, return to step 1.
We see that with each attempt to sample accord-

ing to globally normalized temperature sampling,
sample ym · · · yT is generated with probability

p(ym · · · yT |y<m)× p(ym · · · yT |y<m)
1
τ
−1

= p(ym · · · yT |y<m)
1
τ .
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For further information on rejection sampling
and faster algorithms which approximate rejection
sampling see Lipkin et al. (2025).

C Global Temperature Normalization in
Ergodic Theory and Fractal Geometry

We mentioned in Section 3.1 that global normaliza-
tion of measures is a standard method in statistical
physics, ergodic theory and fractal geometry. A
short explanation of this remark is that globally
normalized temperature sampling corresponds to
taking the Gibbs-equilibrium measure associated
to potential log p at temperature 1

τ . Similarly, when
using a truncation sampling algorithm with allowed
set A, globally normalized sampling corresponds
to sampling from the Gibbs-equilibrium measure
associated to potential log p on the sequence space
defined by A. For both of these comments, see
Bowen (2008).

For a more direct example, consider extremely
long texts generated by pure sampling from a lan-
guage model with finite context length L. The
ergodic theory of Markov chains tells us that, with
high probability, the average value of the log proba-
bility of a token from the text (‘time average’) will
be close to the space average
∫

contexts v<t

∫

v∈V
p(v|v<t)dp(v|v<t)dp(v<t).

One might ask what can be said about the set
of texts for which the average log probability of
tokens takes some different value α. How are typ-
ical such texts distributed? How many are there?
Such questions are answered through the multifrac-
tal analysis of ergodic averages, see, for example,
Falconer (2007). Solutions involve globally (rather
than locally) normalized temperature sampling.

D Proofs

D.1 Proof of Proposition 3.1

We recall Proposition 3.1, which stated that the
limit as temperature tends to zero of locally nor-
malized temperature sampling is greedy decoding,
whereas the limit as temperature tends to zero of
globally normalized temperature sampling is the
distribution achieving globally maximal average
log-likelihood.

The statement on local temperature sampling
has been widely noted. It is merely the statement
that for any probability vector (p1, · · · , pk), with

a unique value pi larger than all other values, the
vector


 p

1
τ
1

∑k
j=1 p

1
τ
j

,
p

1
τ
2

∑k
j=1 p

1
τ
j

, · · · , p
1
τ
k

∑k
j=1 p

1
τ
j

,




converges to the unit vector with a 1 in position i
as τ → 0.

The statement on global temperature sampling
is more subtle and is a key result linking ‘zero
temperature limits of Gibbs measures’ and ‘ergodic
optimization’, see for example Brémont (2002);
Jenkinson (2019).

D.2 Proof of Corollary 5.1.
We take Lemma 5.1 and set X = A∗

y<m,k to be the
set of completions ym · · · yT belonging to the top-k
set. Our distribution qk is a probability measure on
this set. Then Lemma 5.1 says that qk is the unique
probability measure maximising the quantity

H(µ) +
∑

w∈A∗
y<m,k

µ(w|y<m) log qk(w|y<m)

among probability measures µ on the top-k set
A∗

y<m,k. Note that

qk(w|y<m)

=

T−m∏

i=0

qk(wm+i|y0 · · · ymwm+1 · · ·wm+i−1)

=
T−m∏

i=0

p(wm+i|y0 · · · ymwm+1 · · ·wm+i−1)

Zk(y0 · · · ymwm+1 · · ·wm+i−1)

=
p(w|y<m)

∏T−m
i=0 Zk(y0 · · · ymwm+1 · · ·wm+i−1)

.

Taking logs and splitting the formula for
log qk(w|y<m) into two distinct terms gives the
result.

D.3 Proofs of Corollaries 5.2, 5.3 and 5.4.
These corollaries follow from Lemma 5.1 in an
identical manner to the above proof of Corollary
5.1.

E Supplementary Figures and
Replication on other Language Models

Figure 3 is a companion to Table 1 giving the re-
sults of Section 6.1 across all quantiles.

The experiments reported in the main body of
the text were carried out using Llama 2 7B. We
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Figure 3: For each graph we generate pairs of texts according to top-k, nucleus or temperature sampling with Llama
2 7B. Parameters for the decoding strategies are tuned so that typical renormalizing quantitites Zk, Zπ and Zτ are
of the same size. We then plot the log of the ratio of the local normalization distortion for the pair of generated texts,
and then plot the cumulative distribution function. We see in each case that nucleus sampling produces the smallest
local normalization distortion, followed by temperature sampling and top-k sampling.

repeat these experiments here for other language
models from the Llama and Pythia families, and
find that results align. We tune values of p and τ
to k as described in Section 6.1. This process will
have some noise and we note that the tuned values
are slightly different for each model.

F A Comment on Timescales for
Normalization

In this article we have discussed two different
timescales for renormalizing probabilities which do
not sum to one, namely locally renormalizing con-
ditional probabilities at each timestep and globally
renormalizing probabilities of strings w1 · · ·wT at
time T, where T is the length of the string we wish
to generate. There is (at least in theory) a third natu-
ral option, which is to renormalize ‘at time infinity’.
For example, in the case of temperature sampling
at temperature τ , this corresponds to taking the
Gibbs measure associated to potential p

1
τ (Bowen,

2008). Precisely, there exists a unique measure q′′τ
on the set A∞ such that there exist constants C,P ,
independent of T , such that

1

C
≤ q′′τ ({z ∈ A∞ : z1 · · · zT = w1 · · ·wT })

p
1
τ (w1 · · ·wT ) exp(T.P )

≤ C.

The constant P , known as the topological pressure,
could in theory be explicitly computed as the maxi-
mal eigenvalue of a very large matrix.

Normalizing at time infinity has some theoreti-
cal appeal, in that it produces a Markov measure

whose transition probabilities do not depend on the
sequence length T .

G A Note on Quality and Diversity

Quality and diversity are broad terms which could
admit several interpretations. The notion that our
metrics attempt to capture can be described as fol-
lows. Consider the scenario in which a language
model is prompted ‘please tell me a joke’. In our
interpretation, the model would be judged high on
the quality metric even if it always responded with
the same joke, provided the joke was a good one.
The model would be judged high on the diversity
metric provided there is a high chance that, when
prompted twice, it would produce different outputs,
even if these outputs are nonsense, or if an individ-
ual output repeats itself, or if the different outputs
are semantically similar.

H Comparisons with the Article: Gareev
et al. (2024)

We would like to thank one of our anonymous ref-
erees for making us aware of the article Gareev
et al. (2024). Their headline conclusion, ‘in most
configurations, global decoding performs worse
than the local decoding versions of the same algo-
rithms’, seems in direct opposition to ours, while
their results are actually entirely consistent with
our own. We carefully point out how the apparent
inconsistencies arise.
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Figure 4: Figure 2 repeated for Llama 3.2 1B.

Figure 5: Figure 2 repeated for Llama 3.2 3B.

Figure 6: Figure 2 repeated for Pythia 1B.

Figure 7: Figure 2 repeated for Pythia 2.8B.
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Figure 8: Figure 3 repeated for Llama 3.2 1B.

Figure 9: Figure 3 repeated for Llama 3.2 3B.

Figure 10: Figure 3 repeated for Pythia 1B.
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Figure 11: Figure 3 repeated for Pythia 2.8B.

H.1 Parameter Pinning and Results on
Diversity

In comparing the effect of local and global decod-
ing on (proxies for) quality and diversity, we fol-
low the approach of Caccia et al. (2019) of plotting
quality and diversity on the same plot (as in Fig-
ure 2). This allows us to compare, for example,
locally normalized top-k vs globally normalized
top-k across the whole range of parameters. Ga-
reev et al. (2024) show that, for any fixed value
of k, local decoding produces text which is more
diverse than global decoding. We show that, at
any desired level of quality of output, local decod-
ing produces text which is less diverse than global
decoding. There is no contradiction here and we
agree with their result, as can be seen that the blue
and red dots in Figure 2 are generally to the left of
the orange and green dots. The apparent discrep-
ancy arises since, if one wishes to compare local
and global top-k at some fixed threshold for quality,
one needs to use different values of k for the local
and global decoding.

H.2 Results on Quality

As with diversity, Gareev et al. (2024) plot quality
against parameter for local and global decoding,
rather than plotting quality and diversity. However,
in the case of their results on quality, we do not
think this is the cause of the apparent discrepancy
between our results and theirs. Instead, we think
there are two fundamental factors.

MAUVE, their measure of quality, works by
measuring both type 1 errors, where a language
model produces un-human like text, and type-2 er-
rors, where a language model fails to capture the
full diversity of human language. This does not
align with our desired notion of quality, which re-

lates only to type-1 errors, see Section 4. Instead,
in our language, MAUVE measures a convex com-
bination of quality and diversity, and as such there
is no clear discrepancy between their results and
ours.

We suspect however that a much larger factor
is at play. In our experiments we produce texts
of constant length. Gareev et al. (2024) have a
rather clever way of approximately sampling from
the globally normalized distribution, which allows
them to produce much longer texts. A consequence
of not requiring fixed length generation is that their
globally sampled texts are much shorter than their
locally sampled ones, for some parameters by a
factor of nearly 4. This length discrepancy is the
first of their three suggested explanations of their
results. The fact that global and local sampling
produce outputs of such starkly differing lengths is
very interesting, but isn’t really what we were hop-
ing to measure when we talk about quality. Indeed,
the fact that our generated texts are of constant
length has allowed us to avoid the thorny ques-
tion of whether we should be measuring quality, or
quality per token, and we hope that further research
might look at how our theoretical results would be
affected if one were to normalize by generation
length.

I Licenses

We have used Llama 2, Llama 3, and Pythia mod-
els under their respective community license agree-
ments.2. Use for research is consistent with the
terms of these licenses.

2See https://huggingface.co/meta-llama and
https://huggingface.co/EleutherAI.
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