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Abstract

Transformer-based models are highly vulner-
able to adversarial attacks, where even small
perturbations can cause significant misclassifi-
cations. This paper introduces I-Guard, a de-
fense framework to increase the robustness of
transformer-based models against adversarial
perturbations. I-Guard leverages model inter-
pretability to identify influential parameters re-
sponsible for adversarial misclassifications. By
selectively fine-tuning a small fraction of model
parameters, our approach effectively balances
performance on both original and adversarial
test sets. We conduct extensive experiments
on English and code-mixed Hinglish datasets
and demonstrate that I-Guard significantly im-
proves model robustness. Furthermore, we
demonstrate the transferability of I-Guard in
handling other character-based perturbations.

1 Introduction

Transformer-based Pre-trained Language Models
(PLM) and Large Language Models (LLM) have
achieved remarkable performance across various
NLP tasks (Waswani et al., 2017). However, exten-
sive research has shown that they are vulnerable to
small perturbations which can significantly affect
their performance (Wang et al., 2022b; Le et al.,
2022; Qiang et al., 2024; Nguyen and Le, 2024).
These weaknesses raise concerns about the robust-
ness and reliability of such models, particularly in
real-world applications.

There have been many attempts to study the
adversarial robustness of these models across dif-
ferent NLP tasks (Sofi et al., 2022a; Goyal et al.,
2023a; Ballout et al., 2024; Mamta and Cocarascu,
2025). Numerous studies have explored strategies
to improve adversarial robustness in transformer-
based models (Devlin et al., 2019), with data aug-
mentation and adversarial training being widely ex-
amined (Goyal et al., 2023b; Morris et al., 2020a).

Data augmentation aims to improve model gen-
eralization by generating diverse text variations,
but it often requires significant human effort to
curate and validate high-quality augmented data.
Adversarial training enhances model resilience by
exposing it to adversarial examples during training.
However, this approach is computationally expen-
sive, requiring models to be re-trained from scratch
using both original and carefully crafted adversar-
ial data. Defense methods based on adversarial
training also introduce new regularization functions
(Liu et al., 2022; Yang et al., 2023) or apply pertur-
bations to the embedding space (Ren et al., 2020;
Nguyen Minh and Luu, 2022). However, these ap-
proaches depend on a continuous input space and
struggle with the discrete nature of text, making it
difficult to generate meaningful and semantically
coherent interpolations (Nguyen and Le, 2024). De-
spite these efforts, achieving robust NLP models re-
mains a challenging task. There is a growing need
for transparent and efficient methods to enhance
adversarial robustness without excessive manual
intervention or computational overhead.

In this paper, we propose I-Guard, an
interpretability-guided model training method to
selectively modify model’s parameters to increase
the robustness of PLMs and LLMs towards adver-
sarial attacks. For this, we employ model inter-
pretability based on Shapley values (Lundberg and
Lee, 2017) to analyze the contribution of each pa-
rameter in misleading the model in the presence
of adversarial perturbations. For traditional PLMs
such as BERT, I-Guard can be applied to the com-
plete model. However, for LLMs with billions of
parameters, directly interpreting every parameter
is computationally expensive. To address this chal-
lenge, we integrate I-Guard with LoRA (Low-Rank
Adaptation) (Hu et al., 2022) to find the contribu-
tion of each parameter in the LoRA adapters with
the help of a probing task.

To measure the efficacy of I-Guard, we con-
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sider realistic adversarial attacks, such as phonetic
and visual (i.e. LEET) perturbations, which are
commonly used in social media. Phonetic vari-
ations are especially pronounced in code-mixed
texts, where people frequently switch between lan-
guages when writing (Das et al., 2022) and spell
words phonetically based on their native language’s
pronunciation, leading to diverse spelling patterns
(Crystal, 2018). We evaluate I-Guard on two tasks,
fact verification and code-mixed sentiment analy-
sis (Hindi+English). In addition, we also investi-
gate the transferability of our proposed approach
to handle other character-based perturbations such
as character deletion, character insertion, and char-
acter repetition. Our results show that the proposed
defense mechanism effectively enhances the ro-
bustness of PLMs and LLMs against adversarial
perturbations.

Our contributions are as follows:

1. We propose I-Guard, a novel interpretability-
guided parameter training framework to en-
hance the robustness of PLMs and LLMs
against phonetic and LEET-based adversarial
attacks.

2. To demonstrate the generalizability of our
approach, we conduct experiments on En-
glish and code-mixed datasets. Our results
show that I-Guard maintains a balanced per-
formance on both original test set and adver-
sarial test set compared to other baselines.

3. We assess the transferability of I-Guard in
strengthening model resilience against vari-
ous character-level perturbations and achieve
good defense performance.

2 Related Work

2.1 Adversarial Robustness
Several studies have shown that high-performing
transformer-based models are susceptible to adver-
sarial attacks and minor input perturbations (Lin
et al., 2021; Neerudu et al., 2023; Gupta et al.,
2024). Adversarial attacks have been explored in a
variety of NLP tasks, including sentiment analysis
(Jin et al., 2020a; Yuan et al., 2023; Mamta et al.,
2023), machine translation (Wang et al., 2021b; Sai
et al., 2021; Morris et al., 2020b), argument mining
(Mayer et al., 2020; Sofi et al., 2022b), toxic con-
tent detection (Yuan et al., 2023), question answer-
ing (Goel et al., 2021; Moradi and Samwald, 2021;
Kiela et al., 2021; Yuan et al., 2023; Gupta et al.,
2024), and natural language inference (Wu et al.,

2021; Morris et al., 2020b; Li et al., 2021; Yuan
et al., 2023). Whilst the majority of character-based
attacks rely on researchers defining text manipula-
tion strategies, Le et al. (2022) introduced a realis-
tic phonetic perturbation attack by collecting 600K
human-written text variations from real-world data
and utilizing them for adversarial attacks.

Adversarial defense strategies in NLP can be
broadly classified as adversarial training-based de-
fense, data augmentation, and regularization-based
defense (Wang and Lin, 2025). Most works em-
ploy an adversarial training approach which re-
trains the model from scratch by adding adversar-
ial examples to the training data (Li et al., 2019;
Wang et al., 2021a, 2020; Jin et al., 2020b; Si et al.,
2020). Other approaches incorporate adversarial
training as a regularization technique; for exam-
ple, Flooding-X (Liu et al., 2022), adversarial label
smoothing (Yang et al., 2023), and temperature
scaling (Raina et al., 2024) have proven effective
in improving adversarial robustness. Some stud-
ies utilize adversarial training based on Genera-
tive Adversarial Networks (Ren et al., 2020) or
Virtual Adversarial Training (Li and Qiu, 2021),
where perturbations are introduced in the model’s
embedding space. Denoising-based methods have
been proposed to improve adversarial robustness
by applying changes to the embedding space of
text (Yuan et al., 2024; Ji et al., 2024). However,
these approaches often lack semantic correctness
and can lead to incoherent modifications (Chen
et al., 2020). In addition, there is a lack of explain-
ability and transparency in the regularization-based
defense methods (Goyal et al., 2023b). Another
line of work focuses on ensembling-based methods,
where multiple input text variants are generated
at inference time, and predictions are aggregated
across these variants. However, these approaches
can be inefficient, as they require running the model
on each variant, leading to increased inference time
proportional to the number of ensembles (Li et al.,
2023; Zeng et al., 2023).

2.2 Detection-based Defense
There are several methods for detecting adversarial
perturbations in text (Goyal et al., 2023c). Some
approaches focus solely on identifying and filter-
ing these adversarial inputs, while others use spell
checkers or rule-based techniques to correct the
perturbations. However, these corrections often
rely on predefined rules or dictionaries, which may
be ineffective when the spelling of a word devi-

22174



ates from those present in the corpus or dictio-
nary. Approaches for identifying adversarial per-
turbations include the Synonym Encoding Method
(Wang et al., 2021c), frequency-aware randomiza-
tion frameworks (Bao et al., 2021) for detecting
word substitutions, and robust density estimation
(Yoo et al., 2022), among others. Our objective
is to improve the robustness of models against ad-
versarial perturbations, in particular phonetic and
LEET-based attacks, which are inspired by real-
world noise in the data. Rather than filtering such
perturbations, we aim to build models that are ro-
bust and capable of handling them effectively.

2.3 Transformers Interpretation
The remarkable success of pre-trained transformer-
based models has driven researchers to explore
their interpretability in-depth, aiming to explain
their black-box nature (Petroni et al., 2019; Liu
et al., 2019; Hewitt and Manning, 2019). Many
works define neurons as dimensions within contex-
tualized representations and investigate the linguis-
tic information encoded by these representations
(Durrani et al., 2020; Dalvi et al., 2019). Other stud-
ies focus on analyzing multi-head self-attention
layers (Clark et al., 2019; Voita et al., 2019) and ex-
amine the roles of different attention heads across
various tasks (Gould et al., 2024; Conmy et al.,
2023; Hanna et al., 2024).

Several works (Geva et al., 2021; Dai et al.,
2022a) have explored the neurons in the feed-
forward neural networks within transformer mod-
els, revealing that neurons in these layers en-
code word patterns and conceptual knowledge.
For instance, Dai et al. (2022b) examined knowl-
edge neurons in feed-forward networks, demon-
strating their function in encoding factual knowl-
edge for fill-in-the-blank tasks in BERT. Similarly,
Wang et al. (2022a) identified skill neurons within
the feed-forward layers of pre-trained transform-
ers after prompt tuning for a task, showing that
these neurons capture task-specific abilities. More
recently, Yu and Ananiadou (2024) proposed a
method to study neuron-level knowledge attribu-
tion in large language models by identifying query
neurons which activate value neurons, offering
deeper insights into model predictions. Kulkarni
and Weng (2024) proposed a test-time defense pri-
marily for image classification. Their approach
focuses on neuron-level interpretability, computing
importance based on methods like Leave-One-Out
(LO-IR) or CLIP-Dissect (CD-IR) to identify and

mask unimportant neuron activations at test time.
Our work differs from the aforementioned stud-

ies as follows. Instead of identifying neuron con-
tributions, we conduct a fine-grained analysis of
model parameters, focusing on those responsible
for misleading the model. Based on this analy-
sis, we further fine-tune the model to enhance its
robustness against adversarial manipulations.

3 Methodology

3.1 Problem Formulation

Attack Goal For a given inputX consisting of n
tokens {x1, x2, . . . , xn} and an associated ground
truth label y, the attack objective is to generate a
perturbed version X ′ such that the target model
M misclassifies it, i.e., M(X ′) ̸= y (untargeted
attack). In the case of two-input tasks, where the in-
put consists of X and E, the adversary applies per-
turbations only to X , resulting in a modified input
X ′, while keeping E unchanged. The goal remains
to mislead the model such that M(X ′, E) ̸= y.
The attack is carried out using phonetic and LEET-
based perturbations, following prior work (Le et al.,
2022; Das et al., 2022).1

Defense Goal The defense mechanism must
meet the following requirements: 1) Enhance ro-
bustness against phonetic and LEET-based pertur-
bations; and 2) Ensure that the performance on the
actual test set remains consistent with the original
performance.

3.2 I-Guard Framework

In this section, we present I-Guard, a defense
framework that enhances the robustness of the
model against phonetic and LEET-based pertur-
bations. Figure 1 depicts the main steps in I-Guard.
The adversarial generator applies perturbations to
actual examples to mislead the trained model M .
We then identify the influential parameters respon-
sible for the misclassification of adversarial exam-
ples using a subset of the misclassified adversarial
examples and their corresponding actual examples.
To determine these influential parameters, I-Guard
leverages a model interpretation technique based
on Shapley values (Lundberg and Lee, 2017). In
the case of LLMs, our approach involves identify-
ing specific LoRA parameters that contribute most
to adversarial misclassifications. These selected pa-
rameters are then optimized to improve the model’s
robustness.

1See Appendix B for adversarial examples.
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Figure 1: Key steps of I-Guard.

Adversarial Sample Generation To generate ad-
versarial samples, we perform a black-box attack
on BERT (Devlin et al., 2019) and Llama (Touvron
et al., 2023) models. We follow Le et al. (2022) and
Das et al. (2022) to apply perturbations to English
and Hindi+English (Hinglish), respectively. To
implement the phonetic and LEET-based perturba-
tions for BERT, we follow Mamta and Ekbal (2022)
to identify the important tokens. For Llama, we
use feature ablation to identify the most important
words for the model’s predictions (Miglani et al.,
2023). Next, we perturb the words in descending
order of their importance scores until a successful
attack is executed or all words have been perturbed.

Model Interpretation Shapley values originate
from cooperative game theory, where players con-
tribute to the overall outcome of a game (Lundberg
and Lee, 2017). Here, we treat model parameters as
players in a cooperative game, where their collec-
tive interaction determines the model’s predictions.
The Shapley value for each parameter represents its
marginal contribution across all possible parameter
combinations, providing a comprehensive measure
of its importance. The mathematical formulation
for the Shapley values is:

Ip(v) =
∑

S⊆Ω\{p}
|S|!(|Ω|−|S|−1)!

|Ω|! [v(S ∪ {p})− v(S)]

(1)
where ψp(v) represents the contribution score of
parameter p, with Ω = {1, 2, ..., n} denoting the
complete set of n model parameters. The term S
encompasses all possible parameter subsets, and
v(S) represents the model’s prediction using only
the parameters in subset S, with other parameters
left out. This formulation ensures a fair attribution
of importance to each parameter by considering all
possible combinations of parameter interactions.

Computing Shapley values (Equation 1) presents
significant computational challenges, particularly
for large neural networks. The computational com-

plexity of O(2Ω) makes direct calculations ineffi-
cient for models with millions of parameters (Kang
et al., 2023). Furthermore, in large-scale neural
networks, the individual impact of single parame-
ters on the overall prediction is typically minimal,
making exhaustive computation inefficient.

To overcome this, we estimate the marginal
contributions through random sampling by sam-
pling k sized parameter subsets from Ω several
times. This sampling-based approach significantly
reduces computational overhead. As discussed in
Kang et al. (2023), the marginal contribution cal-
culation is approximated using the norm of weight-
gradient products:

|v(S ∪ p)− v(S)| ≈ |−L (ω +∆ωi, x, y) + L(ω, x, y)|

≈
∣∣∣∣
∂L

∂ωi
∆ωi

∣∣∣∣ =
∣∣∣∣
∂L

∂ωi

∣∣∣∣ |∆ωi| =
∣∣∣∣
∂L

∂ωi

∣∣∣∣ |ωi| ,
(2)

This approximation leverages the first-order Tay-
lor expansion of the loss function L. The contri-
bution of parameter ωi is approximated using the
gradient of the loss with respect to the parameter
and its magnitude.

Identifying Parameters for Adversarial Misclas-
sifications To identify the key parameters respon-
sible for adversarial misclassification, we follow
a systematic approach involving adversarial sam-
ple generation, dataset partitioning, and Shapley
value-based parameter importance estimation. The
process is shown in Algorithm 1.

First, we generate adversarial samples for a spe-
cific perturbation type using the training set (line
2). We then pass the generated adversarial sam-
ples through the trained model M and analyze
the predictions. Based on the classification out-
comes, we make a subset of the dataset for mis-
classified Adversarial Samples. This includes orig-
inal (Dact) and corresponding adversarial samples
(Dadv) where examples are initially classified cor-
rectly by the model M , but their adversarial coun-
terparts are misclassified (lines 3-13).

To understand the influence of individual model
parameters in adversarial misclassifications, we ap-
ply Shapley value-based parameter importance es-
timation to both Dact and Dadv (lines 38-39). This
method assigns importance scores (Iact and Iadv)
to each parameter by evaluating its contribution to
the model’s predictions. The importance estima-
tion process relies on repeated random sampling
(K iterations), where, in each iteration m, a subset
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Algorithm 1 Parameter Identification for Adversar-
ial Misclassifications
Require: Model M , Training datasetDtrain, Perturbation type

ϵ, Sampling iterations K, Sample size k, Importance
threshold t, Fine-tuning epochs E

Ensure: Refined model M∗

1: // Generate adversarial samples
2: Dadvtr ← GenerateAdversarialSamples(Dtrain,M, ϵ)
3: // Initialize dataset partitions
4: Dact ← {}, Dadv ← {}
5: for (x, y) in Dtrain do
6: xadv ← Dadvtr[x]
7: ypred ←M(x)
8: yadv ←M(xadv)
9: if ypred = y and yadv ̸= y then

10: Dact ← Dact ∪ {(x, y)}
11: Dadv ← Dadv ∪ {(xadv, y)}
12: end if
13: end for
14: // Initialize importance score vectors
15: Iact ← 0|M|, Iadv ← 0|M|
16: // Compute parameter importance
17: function CALCULATEIMPORTANCE(D,M )
18: for (x, y) in D do
19: for m = 1 to K do
20: k ← k × |M | ▷ Compute k% of elements
21: mask_indices← RandomSample(M,k) ▷

Select k random indices from complete model M or
LoRA adapters

22: Mmasked ←M
23: Mmasked[mask_indices]← 0
24: L ← L(y,Mmasked(x))
25: Compute∇MmaskedL
26: start_in, end_in← 0, 0
27: for par in Mmasked.Params() do
28: start_in, end_in← end_in, end_in + |par|
29: if par.gradient ̸= None then
30: w ←Mmasked[start_idx : end_idx]
31: Iact[start_idx : end_idx] ←

Iact[start_idx : end_idx] + ∥par.gradient.flatten() · w∥
32: end if
33: end for
34: end for
35: end for
36: return I
37: end function
38: // Compute parameter importance for actual samples

Iact ← CalculateImportance(Dact,M)
39: // Compute parameter importance for adversarial samples

Iadv ← CalculateImportance(Dadv,M)
40: // Compute importance difference and identify crucial

parameters
41: Idiff ← Iadv − Iact
42: Pcritical ← SelectTopParameters(Idiff, t)
43: // Freezing selective parameters
44: M∗ ←M
45: for each layer l in M∗ do
46: for each submodule sm in l do
47: if sm ∈ Pcritical then
48: sm.requires_grad← True
49: else
50: sm.requires_grad← False
51: end if
52: end for
53: end for
54: Fine-tune M∗ on Dtrain and Dadvtr
55: return M∗

of parameters is randomly chosen to assess their
marginal contribution. For subset selection, we use
RandomSample(M,k), which selects k% parame-
ter indices to be temporarily zeroed out, forming a
zeroed out modelMmasked (lines 18-23). Here, |M |
is the size of model, i.e., total number of parameters
present in the model. A forward pass with Mmasked
model produces predictions ŷ = Mmasked(x), fol-
lowed by computing the loss L(y, ŷ). Backprop-
agation then yields gradients ∇MmaskedL, which,
when multiplied by parameter values, approximate
the marginal contributions (lines 24-31).

Finally, the importance scores for each parame-
ter are accumulated across multiple iterations and
batches (lines 27-34). Since there exists a one-
to-one correspondence between the actual and ad-
versarial subsets, some parameters which are cru-
cial for correctly classifying Dact may not hold
the same significance in Dadv. This discrepancy
arises due to the perturbations altering the input
space, causing certain parameters to play a more
dominant role in misclassifications. Therefore, to
pinpoint the parameters responsible for adversarial
misclassification, we compute the difference be-
tween importance scores Iadv and Iact (line 41).
This difference highlights parameters that signifi-
cantly contribute to the misclassification of adver-
sarial samples. I-Guard adapts parameter inter-
pretation strategy for different types of language
models, considering their architectural differences
and computational requirements.
Pre-trained Language Models For BERT like
models, I-Guard applies Shapley value-based
model interpretation to the complete model as
shown in Figure 1. This involves analyzing the
contributions of parameters across all layers and
components of the entire BERT model.
Large Language Models Due to the high compu-
tational cost associated with fine-tuning and inter-
preting LLMs, I-Guard applies Shapley-based in-
terpretation to the LoRA adapters (Hu et al., 2022)
as shown in Figure 1. I-Guard utilizes a model fine-
tuned using the LoRA technique. We perform this
initial fine-tuning with a Causal Language Mod-
eling (CLM) objective, rather than a direct clas-
sification objective. This choice underscores the
generic nature of our approach. After LoRA-based
fine-tuning, we perform linear probing to adapt
the LLM’s learned representations for classifica-
tion tasks. This is because the CLM loss, designed
for next-token prediction, does not inherently pro-
vide a direct gradient signal which is required to
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understand the influence of the parameters on a
downstream classification task.

Probing We train a classifier (probe) on the top
of hidden representation of the last layer to map
this hidden representation to the task label. Dur-
ing fine-tuning, the weights of the LLM and LoRA
adapters are frozen to ensure that the probe is using
the existing task-specific information, rather than
modifying the underlying representation. There-
fore, only the parameters of the linear probe are
updated during this training phase.

After training, we freeze parameters and use
Shapley-based model interpretation (lines 17-37)
to calculate the importance of LoRA parameters.
As the trained probe transforms the hidden states
into differentiable class logits, this transformation
enables the calculation of a loss that is directly
linked to the classification task.

Selective Parameter Optimization Based on the
final importance scores, we identify the top t most
influential parameters (line 42). In transformer-
based models, each layer consists of Self-Attention
Weights (Query, Key, and Values), Feed-Forward
Network weights (intermediate or output), and
Layer Norm Weights. Instead of fine-tuning indi-
vidual weights, we selectively fine-tune the specific
submodules (e.g., output Feed-Forward Network,
submodules of LoRA) where these important pa-
rameters are located, while keeping the rest of the
model frozen (lines 42-53). The model is then fine-
tuned on a mix of actual and adversarial samples
(line 54).

4 Experiments

4.1 Datasets

We conduct extensive evaluation of I-Guard on
English and Hinglish datasets, covering two tasks.
Fact verification (English) We use CLIMATE-
FEVER (Diggelmann et al., 2020) which contains
claims related to climate change along with their
evidence. Each claim is labeled with one of three
classes: supports, refutes, and not-enough-info
(NEI). The dataset includes 7,675 annotated claim-
evidence pairs split into train (5,756), validation
(767), and test set (1,152).
Sentiment analysis (Hindi + English) We use
a Hinglish dataset comprising posts from various
public Facebook pages (Joshi et al., 2016). Each
Hinglish post is labeled with one of three sentiment
categories: positive, negative, or neutral. In total,

the dataset includes 3,879 instances split into train
(2,482), validation (621), and test set (776).2

4.2 Baselines
We compare I-Guard with the following baselines:
BERT (Devlin et al., 2019): We fine-tune BERT-
base and BERT-base-multilingual (mBERT) mod-
els on English and Hinglish datasets, respectively,
by adding a dense layer on top of it.
Llama: We fine-tune Llama-3.2-1B model on En-
glish and Hinglish datasets using LoRA adapters
with CLM objective.
Adversarial Training: We create adversarial sam-
ples using phonetic and LEET-based perturbations
and incorporate them into the original training data,
re-training the model from scratch on the combined
dataset.
LoRA based Adversarial Training: We re-train
the LoRA adapters of Llama from scratch on the
combined dataset.
I-Guard-Adv: We fine-tune the selective parame-
ters of the model on only adversarial samples.

5 Results and Discussion

Table 1 shows the accuracy and F1 score on both
the actual test set and adversarial test set (TS), as
well as the percentage of fine-tuned parameters
(PT) for both datasets. For Llama, we show the
number of fine-tuned LoRA adapters.

English Dataset The accuracy and F1 scores for
BERT-base and Llama models drop significantly
under phonetic and LEET-based perturbations. For
instance, under phonetic perturbations for BERT
(FV Phonetic), the F1 score drops by 36.72%. The
most widely used adversarial defense, adversar-
ial training, significantly improves both accuracy
and F1 scores for these perturbations in BERT and
Llama models. However, this approach is computa-
tionally expensive, as the model needs to be trained
from scratch (100% PT and all LoRA adapters).

I-Guard-Adv also effectively handles phonetic
and LEET-based perturbations by fine-tuning much
fewer parameters than adversarial training. In
phonetic perturbations, I-Guard achieves an F1

score of 59.53% while fine-tuning only 21.79% of
BERT’s parameters, compared to adversarial train-
ing, which requires 100% fine-tuning. Similarly,
for Llama, only 20 LoRA adapters are updated. For
LEET-based perturbations also, I-Guard enhances
the robustness while fine-tuning fewer parameters.

2See Appendix A for detailed experimental details.
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Phonetic LEET
Original TS Adv TS Original TS Adv TS
Acc F1 Acc F1 PT Acc F1 Acc F1 PT

FV

BERT-base 71.61 62.70 51.21 25.98 - 71.61 62.70 49.91 22.52 -
Adv training 71.44 61.02 75.17 65.42 100% 71.61 59.96 76.90 68.24 100%
I-Guard-adv 60.58 58.03 73.87 64.38 21.79% 59.80 57.21 73.43 64.98 26.11%
I-Guard 69.27 62.40 69.79 59.53 21.79% 72.13 63.74 74.82 66.82 26.11%

SA

mBERT 67.26 62.58 40.46 28.09 - 67.26 62.58 40.25 20.77 -
Adv training 67.13 64.80 60.43 56.93 100% 65.72 60.83 72.16 67.60 100%
I-Guard-adv 68.68 65.00 56.31 50.38 28.98% 59.77 58.17 71.77 66.39 27.67%
I-Guard 67.96 64.94 56.31 51.36 28.98% 67.78 64.72 67.13 61.20 27.67%

Table 1: Results on Fact Verification (FV) and Sentiment Analysis (SA) for BERT. Here, TS: test set, Adv TS:
Adversarial test set, PT: percentage of fine-tuned parameters.

Phonetic LEET
Original TS Adv TS Original TS Adv TS
Acc F1 Acc F1 LM Acc F1 Acc F1 LM

FV

Llama 57.20 35.84 15.00 8.98 224 57.20 35.84 18.76 10.81 224
LoRA Adv 43.23 33.70 31.93 18.03 224 51.11 29.71 31.93 18.03 224
I-Guard-adv 59.45 35.76 42.75 22.30 20 57.60 32.16 39.26 20.92 20
I-Guard 58.77 35.58 39.09 20.83 20 56.27 33.24 40.13 21.02 20

SA

Llama 45.74 38.6 19.29 14.91 224 45.74 38.60 22.55 13.56 224
LoRA Adv 51.80 39.04 35.28 25.19 224 50.23 42.73 39.94 29.11 224
I-Guard-adv 51.15 39.73 36.98 26.05 25 51.59 41.35 38.53 28.49 24
I-Guard 52.06 39.59 38.65 27.97 25 49.87 38.68 40.46 30.01 24

Table 2: Results on Fact Verification (FV) and Sentiment Analysis (SA) for LLama. Here, TS: test set, Adv TS:
Adversarial test set, LM: fine-tuned LoRA modules.

BERT I-Guard
Acc F1 Acc F1

FV
Char Delete 49.82 22.52 68.05 55.92
Char Insert 49.56 22.47 66.49 52.99
Char Repetitiion 50.00 22.93 68.66 58.05

SA
Char Delete 37.75 26.20 52.83 48.15
Char Insert 35.69 26.63 48.84 44.65
Char Repetitiion 46.64 38.06 54.76 50.04

Table 3: Transferability of I-Guard to other attacks.

Moreover, adversarial training and I-Guard-adv
reduce the F1 score on the original test set (BERT).
In contrast, I-Guard not only improves robustness
against adversarial perturbations, but also enhances
performance on the original test set, thereby main-
taining a good balance between performance on
both the original and adversarial test sets.

Hinglish Dataset We observe a similar phe-
nomenon on the sentiment analysis task, where
I-Guard achieves better generalization compared
to adversarial training-based defense for the BERT
and Llama models. This demonstrates that I-Guard
can enhance robustness against adversarial text per-
turbations by fine-tuning fewer parameters com-
pared to adversarial training-based defense. We
also conducted experiments on a larger dataset (see
Appendix D).

5.1 Transferability to other Perturbations

In addition, we assess the transferability of model
trained using I-Guard to other types of adversarial
attacks. Specifically, we generate adversarial test
sets using character repetition, character deletion,
and character insertion perturbations (Moradi and
Samwald, 2021) as discussed in Section 3.2.

The results are presented in Table 3. We observe
a significant drop in accuracy and F1 score for
BERT (base and multilingual) across all types of
perturbations in both English and Hinglish. How-
ever, our proposed method demonstrates robustness
against these perturbations, leading to improved
accuracy and F1 scores in both languages. This
indicates that I-Guard not only defends against
the phonetic perturbations considered, but also of-
fers enhanced generalization capabilities to handle
other related perturbations effectively.

5.2 Ablation Study

Affect of t We experiment with different values
of t (top t parameters from Idiff ) to understand
their impact on the robustness and actual perfor-
mance of the model. Table 4 presents BERT’s
behaviour for various parameter values. For the
English language, we observe that fine-tuning only
0.016% (for t=50) of the model parameters signif-
icantly improves its robustness against phonetic
perturbations. Similarly, for LEET-based perturba-
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Phonetic LEET
Original TS Adv TS Original TS Adv TS

t Acc F1 Acc F1 PT Acc F1 Acc F1 PT

FV

50 67.88 61.58 68.48 57.07 0.016 67.27 60.91 67.36 56.50 0.018
100 68.14 61.60 68.48 57.57 0.020 67.53 60.82 68.66 58.28 0.023
150 69.18 62.34 69.77 59.39 21.791 67.62 60.95 68.83 58.51 0.024
200 69.35 62.54 69.79 59.39 21.793 72.13 63.74 74.82 66.82 26.105
250 69.27 62.40 69.79 59.53 21.794 72.04 63.85 73.78 64.99 26.106
300 69.27 62.40 69.79 59.53 21.798 72.04 63.85 73.78 64.99 26.106

SA

50 68.42 64.08 48.32 39.97 0.019 68.29 63.82 47.42 34.55 0.017
100 68.29 63.81 48.06 39.55 0.020 68.55 65.67 64.17 57.89 0.021
150 68.42 64.28 51.03 44.64 0.022 67.65 64.51 65.07 58.53 0.382
200 68.42 64.28 51.03 44.64 0.023 67.78 64.72 67.13 61.20 27.67
250 67.91 63.94 56.31 51.36 24.65 67.78 64.71 67.13 61.20 30.34
300 67.96 64.94 56.31 51.36 28.98 67.43 64.21 67.13 61.20 32.21

Table 4: Affect of choosing different parameter values (top t).

tions, fine-tuning just 0.018% of the model param-
eters greatly enhances its robustness.

Increasing the value of t results in improved per-
formance on both the actual and adversarial test
sets. However, further increasing the number of
fine-tuned parameters can negatively impact the
model’s performance. For example, increasing t
from 200 to 250 leads to performance decrease on
adversarial test set (FV LEET). Further increasing
the number of parameters from 250 to 300 results
in the same performance as when t is set to 250. In
case of the Hinglish language also, fine-tuning only
0.019% (phonetic) and 0.017% (LEET) of the pa-
rameters improves performance on both the actual
and adversarial test sets. Increasing the number of
parameters from 250 to 300 (SA phonetic) does not
affect the robustness, but it does lead to an increase
in performance on actual test set.

We also observe that for the top 50, 100, and 150
indices (FV LEET), the percentage (PT) remains
low (less than 1%). This indicates that these indices
correspond primarily to a small subset of param-
eters within a few submodules. However, when
the number of top t parameters increases from 150
to 200, there is a substantial rise in PT, suggest-
ing that the additional indices span across multiple
submodules, significantly increasing the number of
parameters being fine-tuned. Beyond 200 indices,
the PT stabilizes at around 26.11%, indicating that
most of the newly added weight parameters belong
to already unfrozen submodules rather than intro-
ducing entirely new ones. This pattern is consistent
for both languages and perturbations.

Random parameter selection We randomly se-
lect 30% model parameters and fine-tune them on
(i) adversarial data; (ii) mixture of adversarial and
original data to observe the impact of model inter-
pretability on targeted parameter optimization. We

Data Original TS Adv TS
Acc F1 Acc F1

Random Mix 67.55 64.67 62.98 57.76
I-Guard 67.78 64.72 67.13 61.2
Random Adv 44.58 41.05 74.8 70.09

I-Guard-adv 59.77 58.17 71.77 66.39

Table 5: Results on LEET perturbations for sentiment
analysis by ablating model interpretability component.

compare this random selection with two variants
of our approach, I-Guard and I-Guard-adv. The
results for BERT are reported in Table 5.

I-Guard outperforms random parameter fine-
tuning on both the original and adversarial test
sets. Thus, leveraging interpretability techniques to
identify and optimize the most relevant parameters
leads to more robust performance. When training
the model only on adversarial test data, random
selection achieves higher accuracy and F1 score,
but at the cost of a significant reduction in accu-
racy on the original test set. However, I-Guard-adv
performs better on the original test set, highlight-
ing that a targeted optimization approach focused
on adversarial data can enhance model robustness
without overfitting to adversarial examples. We
also fine-tuned the last layer of the model (see re-
sults in Appendix C.2).

Affect of k We conducted an ablation study by
varying the value of k in Shapley calculation and
subsequently evaluating the fine-tuned model’s per-
formance (Llama). k represents the sample-size
of parameters considered within each repeat of
Shapley approximation. The results for different k
values on both clean and adversarial performance,
are presented in Table 7. We observe a slight im-
provement in adversarial test set accuracy and F1

score as k increases from 10 to 50. This means
a larger sample-size k leads to more fair and sta-
ble comparisons in Shapley approximation, poten-
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Original Claim Adversarial Claim Original Label BERT-base Llama BERT Adv Training LoRA Adv Training I-Guard
1 There are many lines of evi-

dence which clearly show that
the atmospheric co2 increase is
caused by humans.

There are many lines of evi-
dence which clearly show that
the atmospheric co2 increse is
caused by humans.

Support NEI Support Support Support Support

2 Climate change will also reduce
the number of cold days and
cold spells.

Climate changee wil also re-
duece the number of cooooold
days and cold spells.

Support NEI NEI Support Support Support

3 In the past, warming has never
been a threat to life on earth.

In the past, warming has
neveeeeer been a threat to life
on earth.

Refute NEI Support Refute Refute Refute

4 Temperatures in the arctic have
soared recently, and scientists
are struggling to explain exactly
why.

- Support Support Support NEI NEI Support

5 New study confirms evs consid-
erably worse for climate than
diesel cars.

- Refute Refute Refute NEI NEI Refute

Table 6: Behaviour of different models on adversarial (1-3) and original examples (4-5).

Original TS Adv TS
Acc F1 Acc F1 k

Llama 45.74 38.60 22.55 13.56
I-Guard 50.90 38.52 39.43 28.00 k=10
I-Guard 49.87 38.68 40.46 30.01 k=25
I-Guard 50.51 38.50 40.59 29.76 k=50

Table 7: Affect of k values on LEET perturbations for
sentiment analysis.

tially yielding more accurate and robust importance
scores for parameters critical to adversarial defense.
The model’s performance on the original test set
remains stable across the different k values, demon-
strating that the parameter selection method does
not significantly compromise the model’s clean ac-
curacy, regardless of the k chosen. These results
indicate that an even smaller value of k is effective.
The reason for this stability lies in the combined
power of k and the number of repeats. The mul-
tiple repeats ensure a comprehensive exploration
of different parameter combinations. In each sub-
sequent repeat, another set of parameters is ran-
domly chosen for the k coalition. This extensive
averaging across diverse combinations effectively
mitigates the variance that might arise from smaller
individual k values, leading to stable and robust
final Shapley importance scores. We also observe
the impact of sample size on model interpretation
(Appendix C.1).

5.3 Qualitative Analysis
We analyze the behavior of different models on
adversarial and original samples for the English
language in Table 6, where we apply phonetic per-
turbations to the original claims (evidence remains
unchanged), leading to misclassification by the
BERT-base model (examples 1–3) and Llama (2-3).
It can be seen that when perturbations are applied to
claims from the Support (1–2) or Refute (3) classes,
the BERT-base model misclassifies them to NEI

class and Llama model misclassifies them to other
two classes. However, both adversarial training
and our proposed I-Guard correctly classify these
adversarial samples, indicating that these models
understand phonetic perturbations.

Examples 4 and 5 illustrate the behavior of the
models on actual examples. In these examples,
the adversarial training-based defense misclassifies
claims from the Support and Refute classes as NEI,
whereas I-Guard correctly classifies them.

6 Conclusion

We proposed I-Guard, a defense mechanism
designed to handle adversarial perturbations in
transformer-based models. I-Guard employs
model interpretability to identify the parameters re-
sponsible for adversarial misclassifications and ap-
plies selective fine-tuning. While the widely used
adversarial training-based defense improves robust-
ness, it requires re-training from scratch and can
lead to a drop in performance on the actual test sets.
Our experiments on English and Hinglish datasets
demonstrate that I-Guard enhances both adversar-
ial and actual test performance, ensuring better
generalization while fine-tuning fewer parameters.
Additionally, we showed the transferability of our
approach in handling other related character pertur-
bations. In future work, we aim to extend I-Guard
to other models to assess its efficiency and robust-
ness in more complex architectures.

Limitations

This study, like most others, has limitations that
could be addressed in future research. Currently,
we focus only on English and Hinglish datasets and
have not evaluated the performance of I-Guard on
other low-resource language pairs. Expanding our
approach to additional languages, particularly those
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with different scripts, would be a valuable direc-
tion for future work. Additionally, our evaluation
primarily considers text-based adversarial attacks,
such as phonetic and LEET perturbations. How-
ever, adversarial robustness in multimodal settings
(e.g., text with images) remains unexplored. Fu-
ture work could investigate I-Guard’s robustness in
multimodal scenarios. We also plan to integrate the
selection of t into an automated hyperparameter op-
timization framework (e.g., Bayesian optimization)
to systematically identify the value that maximizes
robustness or generalization.
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A Experimental Setup

We use PyTorch and HuggingFace (Wolf, 2019) to
implement all models. We focus on transformer-
based fine-tuned classification models due to their
success in NLP tasks. The BERT-base model con-
sists of 12 transformer layers, a hidden dimension
of 768, and 12 self-attention heads, totaling 110
million trainable parameters.

I-Guard has access to 200 misclassified samples
and their corresponding actual examples to calcu-
late the contribution of each weight parameter. We
set k (weights in each iteration) to 25% and the
number of iterations K to 10. The model was op-
timized using Adam, with weight updates guided
by categorical cross-entropy loss. All experiments
were conducted on an NVIDIA A100-SXM4 GPU
with 40 GB of memory.

B Adversarial Samples

Table presents a few adversarial examples for pho-
netic and LEET based perturbations.

C Ablation Study

C.1 Sample size for model interpretation

To observe the impact of sample size on model in-
terpretation, we consider all misclassified samples
and their corresponding actual samples for Shapley
value calculations instead of randomly choosing
200 misclassified samples. Results are presented
in Table 9. We observe that both variants exhibit
similar performance with minor variations, demon-
strating that I-Guard can effectively determine the
importance of parameters using only a subset of
the data rather than all misclassified samples.

C.2 Fine-tuning Last Layer

We fine-tune the last layer of the model on (i) ad-
versarial samples and (ii) a mixture of adversarial
and original data and compare against I-Guard and
I-Guard-adv. Results for the sentiment analysis
task under LEET-based perturbations are reported
in Table 10.

We observe similar phenomena in this case. The
results show that fine-tuning the last layer on ad-
versarial data yields better performance on the ad-
versarial test set compared to I-Guard-adv, but this
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Original Claim Phonetic Perturbations LEET Perturbations
1 Human activities (mainly

greenhouse-gas emissions)
are the dominant cause of the
rapid warming since the middle
1900s (ipcc, 2013).

Humaaaan activities (mainly
greenhouse-gas emissions)
areeee the dominant cause of
the rapid warming since the
middle 1900s (ipcc, 2013).

Hvm4n act1vit1es (mainly
greenhouse-gas emissions) ar3
the dominant cause of the
rapid warming since the middle
1900s (IPCC, 2013).

2 In the past, warming has never
been a threat to life on earth.

In the past, warming has
neveeeeer been a threat to life
on earth.

In the past, w4rming has n3v3r
been a threat to life on earth.

3 Sea level rise due to global
warming is exaggerated.

Seaa level risee due to global
warming is exaggerated.

Sea level r1se due to gl0bal
warm1ng is exagg3rated

4 Clouds provide negative feed-
back.

Clouds provde negtive feed-
back.

Clouds pr0vide n3gat1ve feed-
back.

Table 8: Examples of adversarial inputs generated using phonetic and LEET perturbations

Phonetic LEET
S Original TS Adv TS Original TS Adv TS

Acc F1 Acc F1 Acc F1 Acc F1

FV 200 69.27 62.40 69.79 59.53 72.13 63.74 74.82 66.82
All 70.35 62.87 69.27 59.13 69.79 62.28 73.01 65.98

SA 200 67.96 64.94 56.31 51.36 67.78 64.72 67.13 61.20
All 67.64 64.87 56.70 51.50 67.19 64.69 67.55 61.86

Table 9: Affect of choosing different sample size for model interpretation. Here S is number of samples.

Original TS Adv TS
Acc F1 Acc F1

Last layer 48.45 46.15 73.58 68.65
I-Guard-adv 59.77 58.17 71.77 66.39

Last layer 63.56 60.66 63.33 57.16
I-Guard 67.78 64.72 67.13 61.2

Table 10: Results on LEET perturbations for sentiment
analysis by fine-tuning only last layer.

Original TS Adv TS
Acc F1 Acc F1 PT

mBERT 90.31 73.32 71.62 46.28 -
Adv training 89.45 71.78 90.77 73.59 100%
I-Guard-adv 67.73 59.77 90.17 78.46 7.20%

I-Guard 90.2 73.08 90.82 75.96 7.20%

Table 11: Results on HSOL dataset for phonetic pertur-
bations.

comes at the cost of large drop in accuracy on the
original test set. In contrast, I-Guard-adv maintains
a better balance between performance on both the
original and adversarial test sets.

Additionally, when fine-tuning the last layer on
a mix of original and adversarial data, we observe
that I-Guard consistently outperforms this last layer

fine-tuning approach on both actual and adversarial
test set.

D Results on Large Dataset

To demonstrate the effectiveness of our proposed
approach, we conducted experiments on the Hate
Speech and Offensive Language (HSOL) dataset.
The HSOL dataset consists of tweets categorized
into three classes: hate speech, offensive but not
hate speech, and neither offensive nor hate speech.

It contains 24,783 tweets, which are split into
training (18,587), validation (2,478), and test
(3,718) sets. Results for the phonetic perturbation-
based adversarial attack are presented in Table 11.
We observe that both accuracy and F1 scores drop
significantly under this attack. Further, adversarial
training-based defense improves performance on
the adversarial test set by fine-tuning 100% of the
parameters on a mixture of actual and adversarial
data. Our proposed approach effectively defends
against this attack by fine-tuning only 7.20% pa-
rameters. It outperforms the adversarial training
based defense on both the actual and adversarial
test set. In addition, we compute Shapley values
using a subset of the data (i.e., 200 misclassified
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samples and their corresponding actual examples).
This illustrates that I-Guard can enhance adver-
sarial robustness by fine-tuning fewer parameters
compared to adversarial training-based defenses,
even in the case of larger datasets.
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