Temporal Consistency for LLM Reasoning Process Error Identification

Jiacheng Guo!, Yue Wu?, Jiahao Qiu', Kaixuan Huang!, Xinzhe Juan?,
Ling Yang'?, Mengdi Wang!

'Department of ECE, Princeton University
2AlI Lab, Princeton University
3Department of CSE, University of Michigan

{jg9904, jq3984, kaixuanh, 1y1988, mengdiw}@princeton.edu
frankwupku@gmail.com, xinjuan@umich.edu

Abstract

Verification is crucial for effective mathemat-
ical reasoning. We present a new tempo-
ral consistency method where verifiers itera-
tively refine their judgments based on the pre-
vious assessment. Unlike one-round verifica-
tion or multi-model debate approaches, our
method leverages consistency in a sequence
of self-reflection actions to improve verifica-
tion accuracy. Empirical evaluations across
diverse mathematical process error identifica-
tion benchmarks (Mathcheck, ProcessBench,
and PRM800K) show consistent performance
improvements over baseline methods. When
applied to the recent DeepSeek R1 distilled
models, our method demonstrates strong per-
formance, enabling 7B/8B distilled models to
outperform all 70B/72B models and GPT-40
on ProcessBench. Notably, the distilled 14B
model with our method achieves performance
comparable to Deepseek-R1.

1 Introduction

Large language models (LLMs) have shown im-
pressive capabilities in reasoning tasks (Grattafiori
et al., 2024; Yang et al., 2024b; Jaech et al., 2024;
Guo et al., 2025; Yang et al., 2025), but still often
make mistakes when generating complex multi-
step solutions. To address this issue, Process Re-
ward Models (PRMs) (Lightman et al., 2023; Luo
et al., 2024b) have been introduced to guide gen-
erations. Instead of providing feedback solely on
the final answer, PRMs evaluate every intermedi-
ate step in the reasoning chain, thereby aligning
the model’s chain of thought with correct logical
sequences.

However, existing PRMs face several key limita-
tions that hinder their broader applicability. First,
training a PRM requires large-scale, high-quality
annotated datasets, making the process highly data-
intensive and costly to scale (Guo et al., 2025).

Second, PRMs exhibit poor out-of-domain gener-
alization; models trained on specific problem dis-
tributions often struggle to accurately evaluate rea-
soning steps when confronted with diverse problem
types (Zeng et al., 2025; Lin et al., 2024). Finally,
the effectiveness of PRMs is intrinsically limited
by the capability of the base model (Luo et al.,
2024a). These challenges highlight the need for
further research to develop more scalable process
supervision techniques in LLMs.

An alternative way is to adopt some training-
free approaches like majority voting (Wang et al.,
2022) or debate-based approaches (Du et al., 2023),
which have shown effectiveness in aggregating
opinions and resolving conflicts between multiple
reasoning trajectories.

Nevertheless, we found that both methods show
limitations when applied to mathematical process
error identification tasks. Majority voting often
fails when errors are identified by only a minority
of LLMs (Huang et al., 2024). Debate-based ap-
proaches sometimes struggle due to an asymmetry
in mathematical reasoning: erroneous reasoning
paths tend to generate lengthy, seemingly logical
justifications, while correct reasoning paths pro-
vide only simple justifications. This asymmetry can
cause debate methods to favor incorrect justifica-
tions, as more elaborate (though flawed) arguments
may overshadow simple (but correct) justifications.

To address these limitations, we develop a sim-
ple but effective training-free approach to enhance
process error identification capabilities. The intu-
ition is to leverage the consistency between a se-
quence of self-reflection actions because the LLMs
should be more likely to remain consistent and con-
fident when asked to review correct validations.
As shown in Figure 2, we propose the Temporal
Consistency method, where each LLM iteratively
checks its identifications, and the final output is
only produced when multiple LLMs demonstrate
consistent self-checking over time, effectively re-

22114

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 22114-22129
November 4-9, 2025 ©2025 Association for Computational Linguistics

Mathcheck* ProcessBench PRM800K
100 100 100
+3.7
+4.5 +3.5
80 80 +10.6 8
— — +6.6 —
S o +16.5 S
& 60| +4656 S 60 & 60 +86
[[[
o o 2 +15
3 3 +37.9 3 +10.0
2w 2w 2 4
ha e e +29.0
20 20 20
0 0 0
88 _o1-40 i) AAB -8B _oT-A0 18 AAB -8B _oT-40 18 _AAB
. na-C" GP Aawe! § \y . na-C" P A.awe! : A\ . 0aC" P awer ¥ v
o o R«.o'\s\““owe o st R_o'\s\\\\—awe D qa-ost R«—o\s\\\\—OWe

Deepseek-R1

Base Model

Our Improvement

Figure 1: Performance improvements for various models on process error identification benchmarks.

Initial Verification Phase

Verifier

—tdp | Self-check

Iterative Self-checking Phase

Convergence Check

Consistency with
self-check?

—<\%
®

Figure 2: Overview of our Temporal Consistency approach, where each LLM iteratively examines its own verification
results until reaching a stable result (stopping criteria defined in Section 2). The self-checking mechanism allows
LLMs to refine their judgments based on previous verifications, potentially correcting initial misidentification.

ducing unstable incorrect identifications.

We further evaluate our approach across three
annotated mathematical step datasets, PRMS00K
(Lightman et al., 2023), ProcessBench (Zheng
et al., 2024a), and MathCheck*! (Zhou et al.,
2024). Our experiments demonstrated consis-
tent performance gains across different models,
benchmarks, and difficulty levels. We then con-
ducted experiments on R1 distilled models (Guo
et al.,, 2025), where our method achieved re-
markable improvements: as shown in Figure 1
for Deepseek-R1-Distill-Llama-8B, improvements
of 46.6% on MathCheck*, 37.9% on Process-
Bench, and 29.0% on PRM800K; for Deepseek-
R1-Distill-Qwen-7B, improvements of 3.5% on
MathCheck*, 16.5% on ProcessBench, and 11.5%
on PRMS8OOK; for Deepseek-R1-Distill-Qwen-
14B, improvements of 3.7% on MathCheck*,
10.6% on ProcessBench, and 8.6 % on PRMS00OK.
Notably, our method enables distilled 7B/8B mod-
els to achieve 71.3%/67.2% on ProcessBench, sur-
passing all existing 70B/72B models and GPT-40

'We use MathCheck* to denote a balanced dataset that
combines MathCheck’s process judging problems (containing
only incorrect solutions) with problems with correct solutions
from ProcessBench.

reported in Zheng et al. (2024a). With our method
applied, the distilled 14B model demonstrates per-
formance comparable to Deepseek-R1’s. As shown
in Figure 3, our Temporal Consistency method es-
tablishes a new type of test-time scaling law. Un-
like conventional approaches that scale by increas-
ing the number of parallel samples, our method
scales through iterative refinement over time (tem-
poral dimension). Due to space constraints, we
have included a comprehensive discussion of re-
lated work in Appendix A.

2 Methodology

In this section, we introduce our method that uti-
lizes multiple rounds of validation to improve iden-
tification accuracy. We begin by defining the pro-
cess error identification task.

Task Definition. Given a problem P and its step-
by-step solution S = {sg, s1,...,Sn—1}, Where
each s; represents the i-th solution step, our objec-
tive is to identify the first incorrect step, if any, and
output a location index loc € {—1,0,...,n — 1}.
Here, loc = —1 indicating that all steps are cor-
rect, while for loc > 0, s1oc represents the first

22115

Cost vs. Performance across Different Methods and Models

80
Greedy Decoding
Majority Voting
Multi-Model Debate

Temporal Consistency (Ours)
704

Deepseek-R1-Qwen-7B
60 1
Deepseek-R1-Qwen-7B

GPT-40 mini

507 Deepseek-R1-Llama-8B

401

F1 Score (%)

301 Deepseek-R1-Llama-8B

Mistral 7B Instruct v0.3

Mistral 7B InMistral/7B}Instruct v0.3

104

HamilLEBlintruct Llama 3.1 88 Instrudiama 3.1 8B Instruct

Deepseek-R1-Qwen-7B

Deepseek-R1-Llama-8B

Deepseek-R1-Qwen-7B

Deepseek-R1-Llama-8B

GPT-40 mini

Mistral 7B Instruct v0.3

GPT-40
GPT-40

GPT-40
GPT-40
GPT-40 mini

GPT-40 mini

Llama 3.1 8B Instruct

1073

102

Cost per Problem ($)

Figure 3: Cost v.s. Performance across different methods and models on ProcessBench. The x-axis (logarithmic
scale) shows the cost per problem in dollars (based on OpenRouter pricing 2), while the y-axis shows the F1 Score

percentage.

incorrect step.

We now introduce the Temporal Consistency
algorithm. This method adds a temporal dimen-
sion to the verification process by having each
LLM consider its own previous assessment, lever-
aging consistency in a sequence of self-reflection.
We employ K LLMs as verifiers, denoted by
LLM',...,LLM®. The algorithm has three
phases:

Initial Verification Phase. For each i ¢
{1,..., K}, given a problem P, a solution S, and
a designated process error identification prompt
XVerifys LLM’ examines the solution step by step.
It identifies the location of the first incorrect step
loc, and provides the corresponding reasoning
response resi:

(loct, res}) = LLM* (P, S, Xverify)

These initial verifications establish a set of indepen-
dent assessments.

Iterative Self-checking Phase. For time steps
t > 2, let (locj_,,res;_;) represent the ver-
ification results from the previous iteration for

Zhttps://openrouter.ai

each i € {1,...,K}. With a designated self-
verification prompt Xseif-checks LLM’ performs a
subsequent self-assessment:

(loct, rest)
= LLM‘(P, S, Xself-check, 10Ct_1, rest ;).

The distinction between the initial verification
phase and the self-checking phase is incorporating
previous verification results to provide additional
context. This temporal dependency enables the
LLMs to potentially correct initial misidentifica-
tions. Figure 4 illustrates the self-checking mecha-
nism.

Convergence Check. After each iteration ¢, the
algorithm determines the majority identification
Toc; by applying a majority voting function:

., locl)

[{i : loc} = loc}|. (1)

Majority Vote(loc;}, . .

argmax
loce{—1,:,n—1}

This function aggregates the verification outcomes
from K different LLMs and returns the error step
that is most frequently identified. Specifically,
[{i : loc" = loc}| counts the number of LLMs

22116

then bought a new package of spoons. \[0). /)

Her husband also bought a package of 5 rﬁ3
new spoons and gave them to her. loci =0
Paragraph<0> incorrectly states

Second, in total, she received 5 + 5= 10

Julia was preparing for a dinner party at loc} =1 lock = 1
her house, where she intended to serve ("Paragraph<0> correctly states... e g g
. B Paragraph 0:... This step is correct... Paragraph 0: This step is correct,
stew. She noticed that she was out of Paragraph<1>incorrectly states ey
lastic spoons, so she bought a new that Juli ives 10 l{ X 'llb (FETRBERD o, V(BRI X }|> oo
L2 LRI g at Julia receives 10 new Self-check correct here. This is an error due to Self-chedk Paragraph 1: The first verifier
package of spoons. Later, her husband spoons. The first error occurs in . t' i tly id § i
15 el 3 R TR 6 B M S9SETE | ()) an incorrect assumption. @/ \correc y identifies an error. @/
and gave them to Julia...
) (e2=0) [lo=1] _ (eg=i)
X (Paragraph<0> incorrectly states) /Paragraph 0:... It does not calculate)
verify the total number of spoons as yet, so the first verifier is incorrect. Paragraph<0> correctly states...
{ | Steps (S) 5 o 10... We can determine that the { Xself.check '-l» Paragraph 1:..This paragraph is { Xself-check 'I» Paragraph<1> correctly identifies
First, initially, Julia had no spoons. She first error occurs in paragraph indeed incorrect because ... The an error, and explains ...

that Julia initially had no
new spoons from both her purchase v

and her husband's purchase. (s, is
incorrect)...
(U

TS THE IS e Xself-check ¥ This paragraph incorrectly Xself.check | Paragraph<1> correctly identifies
o calculates... the first error index is an error, and explains ...
\occurs in paragraph (0). ® 1 @ @
J ~ = 2 S 7

Self-checking Self-checking

_earliest error index is 1. ') g @/

~ [eg=1]

Paragraph<0> correctly states...

loci = 1
/Paragraph 0:... The first verifieris
wrong because ...Paragraph 1:...

Figure 4: Example of the self-checking process: The first error occurred in step 1. Initially, two LLMs incorrectly
identified the first incorrect step, while one correctly located the first incorrect step. After self-checking, all LLMs

achieve the correct identification.

that have identified step loc as incorrect. The algo-
rithm then evaluates the stability of these identifi-
cations across all LLMs. Let p; be the proportion
of agents supporting loc;, formally defined as

i : loct = Toc,
pt:HZ OCtK oo},)

When sufficient stability and consensus are reached,
the algorithm terminates and outputs the final iden-
tification. Detailed stopping conditions defined
with loc; and p; are provided in Section 2.1.

This approach leverages the strengths of multiple
independent verifications and consistency across
the temporal dimension. By allowing each LLM to
build on its previous assessments while remaining
isolated from others, the algorithm minimizes the
risk of reinforcing arguments that appear plausi-
ble but are incorrect. The complete algorithm is
detailed in Algorithm 1.

2.1 Stopping Criteria

In practice, most agents converge to an identifica-
tion within just a few rounds, making further self-
checks computationally redundant. To enhance ef-
ficiency, we propose a heuristic stopping criterion
that permits early termination for "high confidence"
problems while allowing continued self-checking
for "low confidence" problems.

For any round ¢ € {1,...,T}, let loc; denote
the majority identification defined in equation 1,
and p; be the proportion of agents supporting 1loc;
defined in equation 2. Based on these definitions,
we design two stopping conditions over g consecu-
tive rounds, where ¢ is a given consistency require-
ment:

1. Majority Stability:

loci ¢y1 = loci_gy2 = = locy,

Algorithm 1 Temporal Consistency

Input: Problem P, solution S, number of
LLMs K, initial verification prompt Xverify, self-
checking prompt Xsejf.check, CONsistency require-
ment ¢, max rounds 7.
/* Initial Verification Phase */
for i = 1 to K in parallel do
(loci, res}) < LLM*(P, S, Xverify)
end for
/* Iterative Self-checking Phase */
for round ¢t = 2 to 7" do
for LLM ¢ = 1 to K in parallel do
(loct, res!) <
LLM(P, S, Xself.check, LOCi_1,resi ;)
end for
Toc; <+ MajorityVote(loc;, ..., lock)
pe + |{i: loci = Toci}|/ K
if £ > ¢ then
stable < /\?;g(ﬁt_j = Toci—g+1)
growing < A0 (pi—j > pij1)
if stable and growing then
return loc,
end if
end if
end for
return locr {Return final majority if max
rounds reached }

2. Growing Consensus:

Dt—q+1 < Pt—gt2 < - < Py

22117

The majority stability condition requires that the
majority identification remains unchanged over the
past g rounds, ensuring a consistent outcome in ma-
jority voting. Concurrently, the growing consensus
condition needs the proportion of agents supporting
the majority identification to not decrease across
these g rounds. The underlying intuition is that the
correct answer should be identified with "increas-
ing confidence" over the past ¢ rounds.

The algorithm terminates when both conditions
are satisfied or when the maximum number of
rounds 7' is reached. The consistency requirement
q is a parameter that can be adjusted according to
task-specific requirements.

2.2 Comparison with Existing Methods

Existing majority voting approaches (Cobbe et al.,
2021; Li et al., 2022; Wang et al., 2022) perform
multiple generations simultaneously, essentially
scaling horizontally to enhance stability. In con-
trast, our method allows each LLLM to build upon
its previous assessments, achieving vertical scaling
over time. This sequential self-reflection enables
each verification to benefit from prior insights.

Moreover, our approach differs from multi-
model debate methods (Du et al., 2023) in treat-
ing LLM independence. Although debate methods
allow models to exchange information, thus en-
abling them to see other agents’ answers and gain
additional perspectives, this openness risks influ-
ence from persuasive yet incorrect arguments. For
further illustration, an example can be found in Ap-
pendix C. In contrast, our method maintains strict
isolation between LLMs. Each LLM focuses solely
on its own reasoning process, thereby reducing the
risk of propagating elaborate but erroneous argu-
ments.

3 Experiments

3.1 Experimental Setup

Dataset. We evaluate our method on Process-
Bench (Zheng et al., 2024a), a comprehensive
dataset combining multiple mathematical problem-
solving benchmarks. The dataset consists of 3,400
problems from four sources: 400 from GSM8K
(Cobbe et al., 2021), 1,000 from MATH dataset
(Hendrycks et al., 2021), 1,000 from Olympiad-
Bench (He et al., 2024), and 1,000 from Omni-
MATH (Gao et al., 2024). Each problem includes
both generated solutions and human-annotated pro-
cesses. Additionally, we incorporate 516 process

judging problems based on GSM8K from Math-
Check (Zhou et al., 2024) and 300 randomly se-
lected problems based on MATH dataset from
PRMS8O0OO0K (Lightman et al., 2023). Since the pro-
cess judging problem in MathCheck only contains
incorrect solutions, we combine it with the GSM8K
problems with correct steps from ProcessBench
to create a balanced dataset, which we denote as
MathCheck*. For PRM800K, we consider both
0 and 1 annotations as correct steps and -1 as in-
correct steps. We evaluate the F1 score for all
benchmarks, which is the harmonic mean of the
accuracies on incorrect and correct samples.

Baseline Methods. We compare our approach
against three baseline methods: (1) Verification
with greedy decoding (Zhang et al., 2022), where
a single agent generates a verification determinis-
tically, (2) Majority voting among multiple agents
(Wang et al., 2022), where multiple agents indepen-
dently generate verifications, and the final decision
is made based on majority voting and (3) Verifica-
tion with debate-based reasoning (Du et al., 2023),
where multiple agents generate verifications inde-
pendently, and they will receive the answer from
the other agents and then generate a new identifica-
tion.

Parameter Setting. To ensure a fair compari-
son, we employ 5 parallel agents in each of the
three methods: majority voting, debate-based veri-
fication, and our Temporal Consistency approach.
Following Du et al. (2023), the debate method pro-
ceeds in two rounds: an initial verification round
followed by a debate round. Our method im-
plements convergence criteria requiring stability
across 3 consecutive rounds, with a maximum of
10 rounds. We use Deepseek distilled models (Guo
et al., 2025) in all our experiments except those in
Table 1. Appendix B shows complete experimental
configurations and implementation details.

3.2 Main Results

Improvement over Diverse Dataset. Figure 5
presents the performance comparison across three
datasets for Deepseek-R1-Llama-8B. Our Tempo-
ral Consistency approach consistently outperforms
baseline methods across all evaluation settings.
On Mathcheck®, our method achieves an F1
score of 82.5%, showing an improvement of 46.6%
over greedy decoding and 25.8% over multi-model
debate. For ProcessBench, we observe consistent
improvements with our method achieving 67.2%

22118

Mathcheck *
80

o Greedy Decoding

Majority Voting 82.5% 70 Majority Voting
80 Multi-Model Debate Multi-Model Debate
Temporal Consistency (Ours)
60
70
< £ 48.9%
o 60 56.7% 0% °
& &
- 50 v 40
35.9% 35.5% 0 29.3%

20

ProcessBench

Greedy Decoding

Temporal Consistency (Ours)

PRMB800K

60 Greedy Decoding
Majority Voting
Multi-Model Debate
Temporal Consistency (Ours)
46.7%

67.2%
50.2%
57.6%

41.7%

21.2%

Figure 5: Performance comparison across three datasets (Mathcheck®, ProcessBench, and PRM800K). Our Temporal
Consistency approach (green) consistently outperforms baseline methods, including greedy decoding (yellow),

majority voting (orange), and multi-model debate (red).

Model Method Mathcheck® ProcessBench PRMS800K
Greedy Decoding 78.8 52.9 34.0
. Majority Voting 80.4 54.2 37.9
GPT-4o mini Multi-Model Debate 79.9 54.6 38.0
Temporal Consistency (Ours) 84.8 58.2 39.0
Greedy Decoding 87.3 62.5 41.6
Majority Voting 89.0 65.9 42.6
GPT-40 Multi-Model Debate 90.8 66.8 50.7
Temporal Consistency (Ours) 91.8 69.1 51.6
Greedy Decoding 13.3 6.4 24
Majority Voting 5.9 5.1 6.8
Llama 3.1 8B Instruct \1 /1 Model Debate 6.8 5.6 2.6
Temporal Consistency (Ours) 60.2 35.5 22.1
Greedy Decoding 26.4 20.3 13.0
. Majority Voting 26.3 17.6 12.1
Mistral 7B Instruct vO.3 v 1 1i-Model Debate 26.2 17.7 12.1
Temporal Consistency (Ours) 374 22.5 13.3

Table 1: Performance comparison across different models. Numbers represent F1 score (%). The best performance
for each model is highlighted in bold. Our method consistently outperforms baselines across all models and

benchmarks.

F1 score, compared to 29.3% for greedy decoding
and 57.6% for multi-model debate. On PRMS0OK,
our method maintains its advantage with 50.2% F1
score, showing a 29.0% improvement over greedy
decoding.

Improvement over Different Base Models. To
demonstrate the generalizability of our approach,
we conducted experiments across different lan-
guage models, including GPT-40 mini, GPT-
40 (Hurst et al., 2024), Llama 3.1 8B Instruct
(Grattafiori et al., 2024) and Mistral 7B Instruct
(Jiang et al., 2023). We evaluated these models
on Mathcheck®, ProcessBench, and PRM80OK.
As shown in Table 1, our Temporal Consistency
method consistently outperforms baseline meth-

ods across all benchmarks. This consistent perfor-
mance across different models demonstrates the
effectiveness of our approach.

Improvement for Distilled Models. We further
evaluate our method and the baseline methods on
the recently released Deepseek R1 distilled mod-
els (Guo et al., 2025), including DeepSeek-R1-
Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-
8B. As shown in Table 2, our Temporal Con-
sistency method demonstrates remarkable ef-
fectiveness on 7B/8B-scale models, achieving
71.3% and 67.2% accuracy on ProcessBench with
DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-
Distill-Llama-8B respectively, surpassing GPT-

22119

Model Method Mathcheck® ProcessBench PRMS800K
Greedy Decoding 86.0 54.8 46.2
Majority Voting 89.3 64.8 55.1

Deepseek-R1-Qwen-7B 1 1i-Model Debate 84.8 61.7 51.2
Temporal Consistency (Ours) 89.5 71.3 57.7
Greedy Decoding 35.9 29.3 21.2
Majority Voting 35.5 48.9 41.7

Deepseek-R1-L1ama-8B 1 11i Model Debate 56.7 57.6 46.7
Temporal Consistency (Ours) 82.5 67.2 50.2

Table 2: Performance comparison of Deepseek R1 distilled models on three benchmarks. Numbers represent F1
score (%). The best performance for each model is highlighted in bold.

F1 Score vs Consistency Requirement (q)

67.2%
66.2%

£
&

o0 aa

oo

@ N = o

55.1%

4 48.9%

Consistency Requirement (q)

Figure 6: Performance comparison across different con-
sistency requirements on ProcessBench for Deepseek-
R1-Llama-8B. Higher consistency requirements, indi-
cating stricter stability requirements, correlate with im-
proved F1 scores.

40 (69.1%) and all 70B/72B models reported
in Zheng et al. (2024a), including Llama-3.3-
70B-Instruct (58.0%), Qwen2.5-Math-72B-Instruct
(45.5%) and Qwen2.5-72B-Instruct (61.2%) (Yang
et al., 2024a).

Differepgitibrigerafafyensistency Requirement.

We investigated the impact of different consistency
requirements on model performance using Process-
Bench. As shown in Figure 6, we experimented
with consistency requirements ranging from 0 to 3,
where higher values indicate stricter requirements
for output stability. The F1 score demonstrates
a consistent upward trend as the consistency re-
quirement increases, starting from 48.9% without
the self-checking requirement (parameter = 0) and
reaching 67.2% with the strictest stability require-
ment (parameter = 3). This correlation suggests
that requiring more stable outputs through multiple
verification rounds leads to more accurate results.

Performance Across Problem Difficulty. To an-
alyze our method’s effectiveness across varying

Across Problem Difficulty

Greedy Decoding
Majority Voting
Multi-Model Debate
70.2% Temporal Consistency (Ours)
64.2%
58.8%
53.5%

2
3

56.3%

44.3%

F1 Score (%)

31.6%
27.0%

n
3

Easy Hard

Figure 7: Performance comparison across problem dif-
ficulty levels. Problems are categorized as Easy (from
GSMSK and MATH) or Hard (from OlympiadBench
and Omni-MATH). Our method shows particular ad-
vantages on harder problems, maintaining more stable
performance than baseline approaches.

complexity levels, we categorized ProcessBench
problems into two groups following the difficulty
definition in Zheng et al. (2024a): Easy (derived
from GSMS8K and MATH) and Hard (derived from
OlympiadBench and Omni-MATH). Figure 7 il-
lustrates the performance comparison across these
categories.

All methods demonstrate strong performance
on easy problems, with our approach achieving
70.2% F1 score. The performance gap becomes
more evident for hard problems, where our method
maintains robust performance at 64.2%.

Cost-Performance Analysis. To understand the
trade-offs between computational resources and
verification performance, we conducted experi-
ments with various parameter configurations of
our method. Figure 8 illustrates how performance
scales with increased computational budget across
different parameter settings. We observe a gen-
eral trend where higher computational investment
yields better verification results

22120

Mathcheck* ProcessBench PRMS80O0OK
Method F1 (%) Avg. Rounds F1 (%) Avg.Rounds FI1 (%) Avg. Rounds
Ours 89.5 3.13 71.3 3.32 57.7 3.55
w.0. Stopping Criteria 88.4 10 71.3 10 53.7 10

Table 3: Comparison between our method and a baseline that simply combines self-consistency and self-correction
on DeepSeek-Distill-Qwen 7B. Our approach not only significantly reduces the average number of rounds but also
improves performance, demonstrating the effectiveness of our stopping criteria.

Cost vs. Performance for with Different Parameters

Average F1 Score (%)

070012 0.0013 0.0014 0.0015

00016 00017 00018 00019 00020
Cost per Problem ($)

Figure 8: Cost-performance analysis of our method with
different parameter configurations (max rounds and con-
sistency requirement) on ProcessBench for Deepseek-
R1-Llama-8B. The horizontal axis shows the cost per
problem, while the vertical axis shows the average F1
score. As the computational budget increases, we ob-
serve improved performance, demonstrating the effec-
tiveness of additional test-time scaling computation re-
sources.

Effectiveness of the Stopping Criteria. To
demonstrate the effectiveness of our approach com-
pared to simply combining self-consistency and
self-correction, we conducted additional experi-
ments on DeepSeek-Distill-Qwen 7B. We com-
pared our method with a baseline that lacks our
stopping criteria (i.e., running all models directly
up to the maximum number of rounds). Table 3
results demonstrate that using our stopping crite-
ria improves efficiency while maintaining or im-
proving accuracy. This shows that continuing self-
checking beyond the point of correct validations
can sometimes lead to performance degradation.
Without our stopping criteria, the model could ter-
minate on an incorrect solution at maximum rounds.
Our method prevents this by detecting high tem-
poral consistency early, preserving accuracy while
eliminating unnecessary computation.

Ablation Study. To understand the contribution
of each component in our approach, we conducted

Ablation Study

Base

Single Agent 67.2%
Single Round Self-check

Ours

55.1%
53.5%

F1 Score (%)

30 29.3%

20

Figure 9: Ablation study results for ProcessBench
demonstrating the effectiveness of both iterative gen-
eration and multi-agent components, with their combi-
nation yielding the best performance.

an ablation study on ProcessBench, with results
shown in Figure 9. We evaluated four configura-
tions: the greedy decoding method, Temporal Con-
sistency without multi-agent, self-checking without
iterative generation, and our method. The results
demonstrate that both components contribute to
the overall performance. Starting from the base
F1 score of 29.3%, each component independently
improves performance, with the multi-agent self-
checking and iterative mechanisms contributing
improvements of 24.2% and 25.8%, respectively.
The combination achieves the best performance
with an F1 score of 67.2%.

4 Conclusion

We presented an Temporal Consistency approach
for improving mathematical process error identifi-
cation in language models. Our method leverages
temporal consistency patterns in verification be-
havior, allowing LLMs to recheck their judgments
through multiple rounds. We demonstrated how
this approach effectively improves verification ac-
curacy across different models and problem types
through empirical evaluation.

Our key insight is that the temporal stability of
verifications can serve as a reliable indicator of

22121

correctness. This finding opens new directions for
developing methods focusing on consistency over
time rather than agreement across agents. Our re-
sults suggest that incorporating temporal dynamics
can enhance the reliability of mathematical reason-
ing methods.

Limitations

While our approach demonstrates consistent im-
provements across different settings, it has several
limitations. First, the method requires multiple
rounds of verification, leading to increased com-
putational costs. Second, our method has been
evaluated in the context of mathematical tasks and
it may not hold in other reasoning tasks.

References

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, and 1 others. 2024. Graph of thoughts:
Solving elaborate problems with large language mod-
els. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, pages 17682—17690.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin
Liu, Winson Cheng, Archit Sharma, and Noah D
Goodman. 2024. Stream of search (sos): Learn-
ing to search in language. arXiv preprint
arXiv:2404.03683.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, and 1 others. 2024. Omni-
math: A universal olympiad level mathematic bench-

mark for large language models. arXiv preprint
arXiv:2410.07985.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv e-prints, pages arXiv—2407.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.

2025. rstar-math: Small Ilms can master math reason-
ing with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding
Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, and 1 oth-
ers. 2024. Olympiadbench: A challenging bench-
mark for promoting agi with olympiad-level bilin-
gual multimodal scientific problems. arXiv preprint
arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang
Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao Dong.
2025. Advancing language model reasoning through
reinforcement learning and inference scaling. arXiv
preprint arXiv:2501.11651.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Siyuan Huang, Zhiyuan Ma, Jintao Du, Changhua
Meng, Weigiang Wang, and Zhouhan Lin. 2024.
Mirror-consistency: Harnessing inconsistency in ma-
jority voting. arXiv preprint arXiv:2410.10857.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han,
and Rui Zhang. 2024. When can llms actually cor-
rect their own mistakes? a critical survey of self-
correction of llms. Transactions of the Association
for Computational Linguistics, 12:1417-1440.

22122

Jikun Kang, Xin Zhe Li, Xi Chen, Amirreza Kazemi,
Qianyi Sun, Boxing Chen, Dong Li, Xu He, Quan He,
Feng Wen, and 1 others. 2024. Mindstar: Enhancing
math reasoning in pre-trained 1lms at inference time.
arXiv preprint arXiv:2405.16265.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li.
2024. Args: Alignment as reward-guided search.
arXiv preprint arXiv:2402.01694.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave
Marwood, Shumeet Baluja, Dale Schuurmans, and
Xinyun Chen. 2025. Evolving deeper 1lm thinking.
arXiv preprint arXiv:2501.09891.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, and
1 others. 2022. Competition-level code generation
with alphacode. Science, 378(6624):1092—-1097.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Yong Lin, Skyler Seto, Maartje ter Hoeve, Katherine
Metcalf, Barry-John Theobald, Xuan Wang, Yizhe
Zhang, Chen Huang, and Tong Zhang. 2024. On
the limited generalization capability of the implicit
reward model induced by direct preference optimiza-
tion. Preprint, arXiv:2409.03650.

Runze Liu, Junqgi Gao, Jian Zhao, Kaiyan Zhang, Xiu
Li, Biqing Qi, Wanli Ouyang, and Bowen Zhou.
2025. Can 1b llm surpass 405b 1lm? rethinking
compute-optimal test-time scaling. arXiv preprint
arXiv:2502.06703.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei
Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav
Rastogi. 2024a. Improve mathematical reasoning in
language models by automated process supervision.
Preprint, arXiv:2406.06592.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and 1 others. 2024b. Im-
prove mathematical reasoning in language models
by automated process supervision. arXiv preprint
arXiv:2406.06592.

Ruilin Luo, Zhuofan Zheng, Yifan Wang, Yiyao Yu,
Xinzhe Ni, Zicheng Lin, Jin Zeng, and Yujiu Yang.
2025. Ursa: Understanding and verifying chain-of-
thought reasoning in multimodal mathematics. arXiv
preprint arXiv:2501.04686.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2024. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36.

Ning Miao, Yee Whye Teh, and Tom Rainforth. 2023.
Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning. Preprint, arXiv:2308.00436.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Ji-
ayi Geng, Huazheng Wang, Kaixuan Huang, Yue
Wu, and Mengdi Wang. 2024. Treebon: Enhanc-
ing inference-time alignment with speculative tree-
search and best-of-n sampling. arXiv preprint
arXiv:2410.16033.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang
Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh
Agarwal, Jonathan Berant, and Aviral Kumar.
2024. Rewarding progress: Scaling automated pro-
cess verifiers for 1lm reasoning. arXiv preprint
arXiv:2410.08146.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

Vighnesh Subramaniam, Yilun Du, Joshua B Tenen-
baum, Antonio Torralba, Shuang Li, and Igor Mor-
datch. 2025. Multiagent finetuning: Self improve-
ment with diverse reasoning chains. arXiv preprint
arXiv:2501.05707.

Zhengyang Tang, Ziniu Li, Zhenyang Xiao, Tian Ding,
Ruoyu Sun, Benyou Wang, Dayiheng Liu, Fei Huang,
Tianyu Liu, Bowen Yu, and 1 others. 2025. Enabling
scalable oversight via self-evolving critic. arXiv
preprint arXiv:2501.05727.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2024. Alphazero-like tree-search can guide large
language model decoding and training. In Forty-first
International Conference on Machine Learning.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024. Math-shepherd: Verify and reinforce llms step-
by-step without human annotations. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9426-9439.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024. Inference scaling laws:
An empirical analysis of compute-optimal inference
for problem-solving with language models. arXiv
preprint arXiv:2408.00724.

22123

https://arxiv.org/abs/2409.03650
https://arxiv.org/abs/2409.03650
https://arxiv.org/abs/2409.03650
https://arxiv.org/abs/2409.03650
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2308.00436
https://arxiv.org/abs/2308.00436
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024a. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024b. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. Preprint, arXiv:2409.12122.

Ling Yang, Zhaochen Yu, Bin Cui, and Mengdi
Wang. 2025. Reasonflux: Hierarchical 1lm reason-
ing via scaling thought templates. arXiv preprint
arXiv:2502.06772.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao,
Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. 2024c. Buffer of thoughts: Thought-
augmented reasoning with large language models.
Advances in Neural Information Processing Systems.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu,
Joseph E Gonzalez, Bin Cui, and Shuicheng Yan.
2024d. Supercorrect: Supervising and correcting
language models with error-driven insights. arXiv
preprint arXiv:2410.09008.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Thomas Zeng, Shuibai Zhang, Shutong Wu, Christian
Classen, Daewon Chae, Ethan Ewer, Minjae Lee,
Heeju Kim, Wonjun Kang, Jackson Kunde, Ying
Fan, Jungtack Kim, Hyung Il Koo, Kannan Ram-
chandran, Dimitris Papailiopoulos, and Kangwook
Lee. 2025. Versaprm: Multi-domain process re-
ward model via synthetic reasoning data. Preprint,
arXiv:2502.06737.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024.
Generative verifiers: Reward modeling as next-token
prediction. arXiv preprint arXiv:2408.15240.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024a. Processbench:
Identifying process errors in mathematical reasoning.
Preprint, arXiv:2412.06559.

Xin Zheng, Jie Lou, Boxi Cao, Xueru Wen, Yugqiu Ji,
Hongyu Lin, Yaojie Lu, Xianpei Han, Debing Zhang,
and Le Sun. 2024b. Critic-cot: Boosting the reason-
ing abilities of large language model via chain-of-
thoughts critic. arXiv preprint arXiv:2408.16326.

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu,
Jindong Wang, Derek F Wong, Xiaowei Huang, Qi-
ufeng Wang, and Kaizhu Huang. 2024. Is your
model really a good math reasoner? evaluating math-
ematical reasoning with checklist. arXiv preprint
arXiv:2407.08733.

22124

https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2502.06737
https://arxiv.org/abs/2502.06737
https://arxiv.org/abs/2412.06559
https://arxiv.org/abs/2412.06559

A Related Work

Datasets and Benchmarks for Process Error De-
tection. Process error detection in mathematical
reasoning requires annotations at the step level, cur-
rently available in three major datasets. PRM80OK
(Lightman et al., 2023) pioneered this direction by
providing human-annotated reasoning steps based
on the MATH dataset (Hendrycks et al., 2021),
focusing on high school and college-level mathe-
matics. MathCheck (Zhou et al., 2024) extends this
approach to elementary mathematics by synthesiz-
ing solutions with incorrect steps from GSM8K
problems (Cobbe et al., 2021), offering a system-
atic evaluation of step-by-step verification. Most
recently, ProcessBench (Zheng et al., 2024a) ex-
pands the coverage of mathematical difficulty by
providing expert-annotated solution steps across
four distinct datasets: GSM8K, MATH, and no-
tably, OlympiadBench (He et al., 2024) and Omni-
MATH (Gao et al., 2024) for competition and
olympiad-level challenges. Our experimental eval-
uation across these benchmarks provides compre-
hensive insights into our method’s effectiveness
from basic arithmetic to advanced mathematical
reasoning.

Process Error Identification Methods. Ap-
proaches to error detection in language models
can be categorized into two main streams. The
first focuses on training specialized verification
models, such as process reward models (Light-
man et al., 2023; Luo et al., 2024b; Setlur et al.,
2024; Wang et al., 2024; Zhang et al., 2024) and
finetuned language models (Cobbe et al., 2021;
Kang et al., 2024; Zheng et al., 2024b; Yang et al.,
2024d; Tang et al., 2025; Luo et al., 2025; Guan
et al., 2025). While these training-based meth-
ods have shown promising results, they require
additional training data and significant computa-
tional resources, especially for larger models. The
second stream explores inference-time verification
through prompting techniques like self-reflection
(Miao et al., 2023; Madaan et al., 2024). Recent
work has demonstrated that language models often
struggle to correct errors without external feedback
(Huang et al., 2023; Kamoi et al., 2024). Similar
to self-reflection work (Madaan et al., 2024; Yang
et al., 2024d), which iteratively generates improve-
ment suggestions, our method employs an iterative
process.

Rather than training new models, we focus on
utilizing existing models more effectively. How-

ever, our Self-check method can also be applied to
trained verification models to improve their accu-
racy potentially.

More General Reasoning Methods. The
broader field of reasoning in language models
has explored various frameworks to enhance
problem-solving capabilities and solution re-
liability. Chain-of-Thought prompting (Wang
et al., 2022) and its variants like Tree-of-Thought
(Yao et al., 2024) and Buffer-of-Thought (Yang
et al., 2024c) have demonstrated that explicitly
articulating intermediate reasoning steps improves
model performance on complex reasoning tasks,
and Zhang et al. (2024) further validates the
effectiveness of reasoning in verification tasks.
Predesigned reasoning structures (Zhang et al.,
2022; Besta et al., 2024; Yang et al., 2024d) have
also shown promise in improving mathematical
capabilities by guiding LLMs to think along
predefined trajectories. Multi-agent approaches
such as debate mechanisms (Du et al., 2023;
Subramaniam et al., 2025) enable models to
critically examine solutions through structured
discussions, while majority voting methods
(Wang et al., 2022) generate multiple independent
solutions and aggregate them through majority
voting to enhance reliability. While each approach
offers unique advantages, they demonstrate the
importance of structured reasoning processes in
improving model performance.

Test Time Scaling. Recent studies have demon-
strated that leveraging multiple samples during
inference can significantly enhance model perfor-
mance (Hurst et al., 2024; Guo et al., 2025; Yang
et al., 2025). Through iterative refinement, models
incorporate feedback from previous generations to
guide subsequent outputs (Snell et al., 2024; Hou
et al., 2025; Lee et al., 2025). While early ap-
proaches focused on simple majority voting strate-
gies (Wang et al., 2022), subsequent research has
advanced towards more sophisticated techniques,
particularly in search-based methods (Khanov et al.,
2024; Wan et al., 2024; Yang et al., 2025). The field
has evolved with hybrid frameworks that seam-
lessly integrate tree-based search with sequential
approaches (Wu et al., 2024; Snell et al., 2024; Qiu
et al., 2024; Gandhi et al., 2024). Liu et al. (2025)
conducted a study on optimizing test-time com-
putation scaling across various policy models and
problem complexities. Most closely related to our
approach, Muennighoff et al. (2025) achieved sub-

22125

stantial improvements in competition math ques-
tions by implementing parallel self-reflection on
historical interactions.

B Implementation Details

We use the gpt-40-2024-08-06 API for GPT-40
and gpt-4o-mini API for GPT-40-mini. We use
Together API for Deepseek-R1 model. All experi-
ments can be performed on a single NVIDIA H100
GPU. Depending on the specific tree configura-
tions, one run could take from 1 hour to 24 hours.
We use vllm 0.6.3, torch 2.4.0, and transformers
4.47.1 for open-source LLM generation. We use
Copilot to help generate codes. We ran all experi-
ments for a single round.

In the first round of all methods, the generation
process was conducted using a temperature setting
of 0.7. The subsequent rounds vary slightly be-
tween closed-source and open-source models, with
the following specifics:

* Closed-source models: For the debate
method and our approach in later rounds, the
temperature was set to 1.

* Open-source models: We used a fixed ran-
dom seed of 42 throughout the experiments.
For the debate method and subsequent rounds
of our approach, the temperature was set to
0.7, and top-p=0.8, top-k=40.

B.1 Prompting Strategy for Initial
Verification

In the first round of all methods, we utilized the ver-
ification prompts provided in Zheng et al. (2024a).
The prompt format for the initial generation was:

The following is a math problem
and a solution (split into
paragraphs, enclosed with tags,
and indexed from 0):

[Math Problem]
{problem}
[Solution]
{tagged_response}

Your task is to review and
critique the solution paragraph
by paragraph. Once you identify
an error in a paragraph, return
the index of the paragraph
where the earliest error occurs.

return the index of
"not

Otherwise,
-1 (which typically denotes
found”).

Please put your final answer
(i.e., the index) in \boxed{}.

B.2 Debate Method Prompt Adaptation

The debate method is not designed for the verifica-
tion task. To adapt it to our context, we combined
the prompts for initial verification with those de-
scribed in the appendix of Du et al. (2023). The
adapted prompt is as follows:

These are the solutions to the
problem from other agents:

One agent solution:
{res[’reason’]}

Using the solutions from other
agents as additional information,
please analyze this solution and
end with the earliest error index
in \boxed{}, or -1 in \boxed{} if
no errors.

B.3 Prompt for Secondary Verification

For the subsequent verification rounds in our ap-
proach, we designed a custom prompt to ensure
thorough checking of the initial LLM’s results. The
prompt used is:

You are a secondary LLM for
math problem solutions. The
first verifier’s task was to
review math solutions paragraph
by paragraph and identify
the earliest error (if any),
returning -1 if no errors were
found.

The first verifier may have
made mistakes. Your job is to
carefully check their work. You
will receive:

1. The original math problem
2. The solution steps

3. The first verifier’s generated
label (paragraph index where they
found the first error, or -1)

4. The first verifier’s reasoning

IMPORTANT:

22126

1. You must check each
paragraph carefully, as if you
are re-solving the problem from
scratch.

2. If you find any error—no
matter how minor—locate the
earliest paragraph containing
that error.

3. If the solution is correct
throughout, only then do you
output -1.

4. The first verifier may be
wrong. You cannot just accept

their result. Always verify
carefully and do not hesitate to
disagree.

Your output format:

1. Begin with an overview: "Let’s
check the solution paragraph by
paragraph based on the first
agent’s verification:”

2. For each paragraph (starting
from paragraph 0), specify
whether it is correct or not based
on the first verifier’s reason.
If an error is found, explain the
res for the error. If correct,
explain why it is correct.

3. End with the earliest error
index in \boxed, or -1 in \boxed
if no errors.

B.4 Potential Risks

Our approach enhances LLM math validation but
has potential risks. The method depends on the
model’s internal verification, which may reinforce
incorrect reasoning if systematic biases exist. It
also increases computational overhead, making it
less practical in resource-limited settings. Addi-
tionally, over-reliance on self-verification in high-
stakes applications, such as education or automated
theorem proving, could lead to misinformation.
Future work should explore external verification
mechanisms or human oversight to mitigate these
risks.

22127

C Examples for Various Methods

Example for Majority Voting (3 agents)

Problem: Julia was preparing for a dinner party at her house, where she intended to serve stew.

She noticed that she was out of plastic spoons, so she bought a new package of spoons. Later, her
husband also bought a package of 5 new spoons and gave them to Julia. While Julia was making
the stew, she used three of the spoons to sample her stew. Later, when she went to set the table, she
had a total of 12 spoons. How many spoons were in the package that Julia bought?

Solution Steps:

Step 0: Let’s break down the problem step by step: First, initially, Julia had no spoons. She then
bought a new package of spoons. Her husband also bought a package of 5 new spoons and gave
them to her.

Step 1: Second, in total, she received 5 + 5 = 10 new spoons from both her purchase and her
husband’s purchase. First Error Step

Step 2: Third, while making the stew, she used 3 of the spoons to sample it, leaving her with 10 -
3 =7 spoons.

Step 3: Fourth, when she went to set the table, she had a total of 12 spoons. We need to find out
how many spoons were in the package that Julia bought initially.

Step 4: We know she received 10 more spoons after her husband gave her the additional 5 spoons.
Since she had 7 spoons left after sampling and ended up with 12 spoons in total, the number of
spoons she started with must have been 12 - 7 = 5.

Step 5: Therefore, the number of spoons in the package that Julia bought is 5.
Agent Analysis:

Agent 1:
» Paragraph <0> assumes Julia started with no spoons which isn’t stated in problem
* This is an incorrect assumption as we don’t know initial spoon count
* First error occurs in paragraph <0>

* Therefore labels error as paragraph 0

Agent 2:
» Paragraph <0> contains unstated assumption about initial spoon count
* Making assumptions not given in original problem is an error
* First error identified in step <0>

* Labels error as paragraph 0

Agent 3:
 Paragraph <0> correctly states initial conditions
» Paragraph <1> makes incorrect assumption about total spoons being 10
* First error found in calculating total spoons without knowing Julia’s package

* Labels error as paragraph 1

22128

Example for Change of Opinion After Debate (3 agents)

Problem: Amy is taking a history test. She correctly answers 80% of the multiple-choice questions,

90% of the true/false questions, and 60% of the long-answer questions. The multiple-choice and
true/false questions are worth 1 point each, and the long answer questions are worth 5 points each.
How many points does Amy score if there are 10 multiple-choice questions, 20 true/false questions,
and 5 long answer questions?

Solution Steps:

Step 0: To calculate the total points that Amy scores on her history test, we need to determine how
many points she earns from each type of question and then sum those points.

Step 1: First, for the multiple-choice questions: - There are 10 multiple-choice questions, each
worth 1 point. - Amy answers 80% of them correctly. - Points from multiple-choice questions = 10
x 0.80 = 8 points.

Step 2: Second, for the true/false questions: - There are 20 true/false questions, each worth 1 point.
- Amy answers 90% of them correctly. - Points from true/false questions = 20 x 0.90 = 18 points.
Step 3: Third, for the long-answer questions: - There are 5 long-answer questions, each worth 5
points. - Amy answers 60% of them correctly. - Points from long-answer questions = 5 x 0.60 x 5
= 15 points.

Step 4: Finally, to find the total points: - Total points = Points from multiple-choice + Points from
true/false + Points from long-answer - Total points = 8 + 18 + 15 - Total points = 41

Step 5: Therefore, Amy scores a total of 41 points on her history test.

No Error (loc = —1)

Agent Analysis:

First Round:

» Agent 1: "After reviewing each paragraph step-by-step, no computational errors or mistakes
in the logic of the solution are found. Therefore, index -1."

* Agent 2: "Upon reviewing each paragraph, no errors are found. While the calculation method
in paragraph 3 is unconventional, it yields the correct result. Therefore, index -1."

» Agent 3: "Here, there is an error. The calculation should be 5 x 5 x 0.60 = 15 points, which is
correct. However, the error is in the explanation that wrongly states the operation order as 5
x 0.60 x 5. While the final result is correct, the explanation could be misleading. The first
minor error in explanation is found in Paragraph <3>. Therefore, index 3."

Second Round (After Discussion):

* Agent 1: "Upon reviewing the solution and considering the feedback from other agents, I
maintain that there are no computational errors affecting the final result. Index -1."

» Agent 2: "After reviewing the solutions from other agents, I now see that while the calculation
gives the correct result, the explanation in paragraph 3 can be misleading. As Agent 3 pointed
out, the operation order should be more clearly stated. Therefore, I revise my assessment to
index 3."

* Agent 3: "Upon reviewing the solutions provided by other agents, I maintain my position.
The calculation in paragraph 3, while giving the correct result, has a misleading explanation
that could cause confusion. Index 3."

22129

