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Abstract

Effective long-term memory in conversational
AI requires synthesizing information across
multiple sessions. However, current systems
place excessive reasoning burden on response
generation, making performance significantly
dependent on model sizes. We introduce PRE-
Mem (Pre-storage Reasoning for Episodic
Memory), a novel approach that shifts com-
plex reasoning processes from inference to
memory construction. PREMem extracts fine-
grained memory fragments categorized into
factual, experiential, and subjective informa-
tion; it then establishes explicit relationships
between memory items across sessions, cap-
turing evolution patterns like extensions, trans-
formations, and implications. By performing
this reasoning during pre-storage rather than
when generating a response, PREMem creates
enriched representations while reducing com-
putational demands during interactions. Ex-
periments show significant performance im-
provements across all model sizes, with smaller
models achieving results comparable to much
larger baselines while maintaining effective-
ness even with constrained token budgets. Code
and dataset are available at https://github.
com/sangyeop-kim/PREMem.

1 Introduction

Human cognition seamlessly synthesizes past expe-
riences into coherent episodic memories that sup-
port personalized interactions (Piaget et al., 1952;
Carey, 1985; Laird, 2012). When engaging with
familiar people, individuals effortlessly perform rel-
evant interactions, track evolving preferences, and
maintain consistent mental models without explic-
itly reviewing conversation histories. This natural
memory process enables meaningful relationships
through contextualized understanding.

*These authors contributed equally.
†Corresponding author.

In conversational AI, well-designed memory
structures are essential for maintaining personal-
ized interactions across multiple sessions (Mar-
tins et al., 2022; Bae et al., 2022; Gutiérrez et al.,
2024). Effective memory mechanisms allow AI
assistants to track user preferences, recall shared
experiences, and sustain consistent understanding
over time—capabilities that form the foundation
of truly personalized dialogue systems (Wu et al.,
2025b; Fountas et al., 2025).

Current memory approaches in conversational
AI systems rely on three core mechanisms (Wang
et al., 2024b; Du et al., 2025): indexing and stor-
ing, retrieval, and memory-based generation. Re-
cent advances have explored various structural
granularities—from turn-level and session-level
segmentation to compressed summaries (Pan et al.,
2025) and knowledge graphs (Edge et al., 2025;
Zhu et al., 2025). These approaches primarily in-
vestigate how different memory structures affect
retrieval efficiency and accuracy, yet struggle with
cross-session challenges that require understanding
continuity, causality, and state changes.

Recent works (Xu et al., 2025; Gutiérrez et al.,
2025) have attempted to address multi-session rea-
soning through metadata annotations and concept-
linking knowledge graphs. However, these meth-
ods typically define cross-session relationships as
simple clusters without modeling the nature of re-
lationships or temporal evolution.

Beyond these limitations of retrieval-focused
approaches, a more critical challenge emerges
even when retrieval succeeds. Even with opti-
mal retrieval systems that can provide relevant
context, models frequently struggle with com-
plex reasoning tasks that require synthesis and in-
ference—particularly temporal relationships and
cross-session information integration (Mao et al.,
2022; Yuan et al., 2025). Unlike simple information
retrieval, these tasks demand sophisticated cogni-
tive processes including pattern recognition, causal
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reasoning, and contextual synthesis. This compu-
tational burden during response generation creates
significant inefficiency and amplifies performance
disparities between large and small models.

To address these challenges, we present
PREMem (Pre-storage Reasoning for Episodic
Memory), a cognitive science-grounded approach
that shifts complex reasoning processes from re-
sponse generation to memory construction. Our ap-
proach draws inspiration from human cognitive pro-
cesses: rather than exhaustively reviewing conver-
sation histories during interactions, humans rely on
pre-consolidated memories that have undergone so-
phisticated synthesis during offline periods (Squire,
1987; Schacter and Addis, 2007). Based on schema
theory (Rumelhart et al., 1976; Bartlett, 1995), hu-
man memory actively transforms information dur-
ing storage through assimilation and accommoda-
tion processes, enabling efficient retrieval and co-
herent understanding across temporal contexts.

PREMem implements this cognitive princi-
ple by extracting memory fragments into three
theoretically-grounded categories—factual, expe-
riential, and subjective information—and estab-
lishing explicit cross-session relationships through
five evolution patterns derived from schema mod-
ification mechanisms, as shown in Figure 1. By
performing complex reasoning during pre-storage
rather than at response time, our approach cre-
ates enriched memory representations while re-
ducing computational demands during interac-
tions—offering both performance gains and practi-
cal deployment advantages.

Experimental results on LongMemEval (Wu
et al., 2025a) and LoCoMo (Maharana et al., 2024)
benchmarks demonstrate significant improvements
across all model sizes. PREMem shows particu-
larly strong results on cross-session reasoning tasks,
with even small language models (≤4B) achieving
competitive performance compared to much larger
baseline models. Additional experiments confirm
its practical applicability in resource-constrained
environments through efficient token utilization.

Our contributions include: (1) A cognitive
science-grounded memory framework based on es-
tablished schema theory that extracts structured
episodic fragments and models information evolu-
tion through five theoretically-validated patterns;
(2) A pre-storage reasoning method that shifts com-
plex cross-session synthesis from response time to
memory construction, mirroring human cognitive
consolidation processes; (3) Comprehensive experi-

mental validation across two benchmarks, multiple
model families and question types, demonstrating
robust generalization; (4) Practical advantages for
resource-constrained applications through reduced
inference-time computational requirements.

2 Related Works

2.1 Memory in Conversational AI Systems

Long-term memory in conversational AI sys-
tems requires integrating and updating experiences
across multi-turn dialogues (Wang et al., 2024b;
Du et al., 2025). Existing approaches employ un-
structured formats such as summarization (Zhong
et al., 2024; Wang et al., 2025) or compression (Pan
et al., 2025; Chen et al., 2025), but struggle with
temporal modeling and content overlap, leading to
information loss and fragmented representations.

Knowledge graph-based methods (Edge et al.,
2025; Guo et al., 2025; Zhu et al., 2025) enhance
semantic connectivity through structured represen-
tations, but their partial graph construction prevents
establishing relationships between temporally dis-
tant nodes across conversation sessions.

Recent efforts such as Li et al. (2025) and Ong
et al. (2025) introduce modular memory architec-
tures and timeline-based linking to better reflect di-
alogue dynamics. However, these approaches still
perform memory relationship reasoning during re-
sponse generation, making them heavily dependent
on the capabilities of the underlying model.

Recent systems (Lee et al., 2024; Xu et al., 2025;
Yuan et al., 2025) support dynamic memory evolu-
tion and attempt to establish connections between
memories. However, they rely on implicit, unstruc-
tured associations rather than explicit schemas for
modeling information evolution across sessions.
This approach can lead to arbitrary links and incon-
sistent interpretations that are difficult to analyze.

We address these limitations with PREMem, a
novel structured memory approach. Our method
provides clear temporal relationships, well-defined
semantic connections between related information,
and systematically organized memory representa-
tions that enhance consistency, interpretability, and
reasoning efficiency.

2.2 Cognitive Perspectives on Memory

Memory in AI-based conversational systems shares
structural and functional characteristics with hu-
man memory, prompting researchers to incorporate
cognitive science principles into memory system
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Figure 1: PREMem architecture divided into Memory Construction phase (comprising Step 1: Episodic Memory
Extraction and Step 2: Pre-Storage Memory Reasoning) and Inference phase.

design (Wang et al., 2024a; Shan et al., 2025). This
enables systems to maintain consistent user repre-
sentations across multiple conversations.

Inspired by these cognitive principles, re-
searchers have developed various methods for trans-
forming conversation data into structured episodic
memories (Hou et al., 2024; Fountas et al., 2025;
Ge et al., 2025). Hou et al. (2024) models human
memory consolidation by weighting information
based on contextual relevance and recall frequency,
while Fountas et al. (2025) applies event cognition
principles to segment conversations using predic-
tion errors and graph-theoretical clustering.

However, these approaches face limitations in
cross-session reasoning, as they focus more on stor-
age organization than on modeling information evo-
lution across conversations (Qiu et al., 2024; Chu
et al., 2024). Although systems like Xu et al. (2025)
and Gutiérrez et al. (2025) attempt to address this
through linked structures, they still struggle with
tracking changing preferences and resolving con-
tradictions (Huet et al., 2025; Wu et al., 2025a).

To overcome these limitations, we examine how
humans reason about and synthesize memories.
Cognitive science offers guidance through schema
theory—detailed in Appendix B. This theory views
memory as a structured interpretive system (Pi-
aget et al., 1952; Rumelhart et al., 1976; Bartlett,
1995; Rumelhart, 2017). In this framework, new

information actively integrates with existing knowl-
edge through generalization and exception han-
dling (Fauconnier and Turner, 2008; Chi, 2009).

Based on these insights, our study not only struc-
tures conversations into temporal episodic units
but also models the semantic relationships between
them. This approach captures continuity, causality,
and change patterns across conversations, enabling
more consistent and personalized responses even
as user preferences evolve over time.

3 Methodology

We present PREMem, a novel approach that shifts
complex memory synthesis and analysis from re-
sponse generation to the memory construction
phase. By performing pre-storage reasoning across
conversations, our approach reduces the computa-
tional burden during dialogue while creating more
cognitive-inspired memory representations. Figure
1 illustrates the overall architecture of our approach,
which consists of a Memory Construction phase
(with two steps detailed in the following sections)
and an Inference phase. This method improves
personalized conversation performance across all
model sizes, with smaller models (≤4B) achieving
results comparable to baselines using much larger
models. All prompts and pseudo code can be found
in Appendix A and F, respectively.
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3.1 Step 1: Episodic Memory Extraction
We extract episodic memory from conversation his-
tory, classifying it into three categories that reflect
human memory components (Squire, 1987; Schac-
ter and Tulving, 1994):

• Factual Information: Objective facts about per-
sonal states, attributes, possessions, and rela-
tionships (“what I am/have/know”)

• Experiential Information: Events, actions, and
interactions experienced over time (“what I
did/experienced”)

• Subjective Information: Internal states includ-
ing preferences, opinions, beliefs, goals, and
plans (“what I like/think/want”)

Beyond comprehensive categorization, effective
memory structure needs to solve the challenge of
temporal reasoning—determining accurate time
relationships. Previous research (Xu et al., 2025)
shows language models struggle with relative time
expressions such as “yesterday” and “last week”.
We address this through a structured temporal rep-
resentation with four patterns: (1) ongoing facts
use message dates directly; (2) specific past events
convert relative expressions to absolute dates; (3)
unclear past events use “Before [message-date]”;
and (4) future plans use “After [message-date].”

We formalize memory extraction through
LLMextract which operates on conversation ses-
sions S1, S2, · · · , SN :

LLMextract(Si)→ {m1
i ,m

2
i , ...,m

ni
i },

where ni is the number of memory fragments
in session Si. Each memory fragment mj

i includes
source identification, key phrase, memory content,
and temporal context:

mj
i = (idji , keyji , contentji , timeji ).

3.2 Step 2: Pre-Storage Memory Reasoning
From memory fragments, we analyze relationships
between information across conversation sessions
using cognitive schema theory (Rumelhart et al.,
1976; Anderson, 2013; Meylani, 2024). This ap-
proach shifts complex cognitive tasks—including
pattern recognition, information synthesis, and con-
textual reasoning—to the storage phase, reducing
computational demands during dialogue while cre-
ating enriched memory representations with in-
ferred relationships and implications.

3.2.1 Clustering and Temporal Linking
We organize memory fragments into semantic clus-
ters using embeddings generated from combined
key phrases and memory content. For each session
Si, we embed the memory fragments {mj

i}ni
j=1 into

vectors {eji}ni
j=1 using an embedding model femb,

that is, eji = femb(m
j
i ). Using silhouette scores

to determine optimal groupings, we form clusters
Ci = {c1i , c2i , ..., ckii } with each cluster containing
embedding of semantically related memory items.
This clustering step serves two critical purposes: it
reduces redundancy in memory representations to
minimize noise during reasoning (Pan et al., 2025),
and it prevents combinatorial explosion by limiting
the number of cross-session comparisons required
during relationship analysis.

For a cluster c, the centroid is calculated as c =
1
|c|

∑
e∈c e and the collection of memory fragments

corresponding to the cluster c is denoted as Mc.
We maintain a persistent memory pool Pi of

clusters that have not yet found a semantic match
with a cluster that comes after themselves up to
the i-th session, initialized as P0 = {}. For each
new session Si, we measure the similarity between
existing persistent cluster p ∈ Pi−1 and new cluster
c ∈ Ci using the cosine similarity of centroids:

sim(p, c) =
p · c

||p|| · ||c|| .

We define a pair (p, c) as connected if
sim(p, c) > θ. We define a set CPi that contains
connected pairs (p, c), that is,

CPi := {(p, c) : sim(p, c) > θ}

where p ∈ Pi−1, c ∈ Ci

The set CPi consists of semantically related clus-
ter pairs across sessions.

3.2.2 Cross-Session Reasoning Patterns
For each identified connection, we perform cross-
session reasoning based on five information evo-
lution patterns derived from schema modification
mechanisms (Rumelhart et al., 1976; Anderson,
2013). These patterns synthesize findings from ex-
tensive cognitive science literature (Bransford and
Johnson, 1972; Chi et al., 1981; Murphy, 2004;
Chi, 2009) to capture fundamental ways humans
integrate new information with existing knowledge
structures. The detailed theoretical foundations are
provided in Appendix B.

22099



• Extension/Generalization: Expanding scope
of existing information (e.g., inferring broader
food preferences from restaurant choices)

• Accumulation: Reinforcing knowledge
through repeated similar information (e.g.,
recognizing consistent exercise habits)

• Specification/Refinement: Developing more
detailed understanding (e.g., clarifying music
preferences from general to specific)

• Transformation: Capturing changes in states or
preferences (e.g., identifying shifts in product
satisfaction)

• Connection/Implication: Discovering relation-
ships between separate information (e.g., link-
ing language study with travel plans)

The model LLMreason generates reasoning
memory fragments by analyzing memory frag-
ments in Mp and Mc for (p, c) ∈ CPi individually,
extracting insights about the evolution patterns:

LLMreason(Mp,Mc)→ {rjp,c}
dp,c
j=1,

where rjp,c is the reasoning memory fragment that
follows the same structure as memory fragments.
We define a reasoning memory pool Ri as the union
of reasoning memory fragments {rjp,c}dp,cj=1 over all
connected pairs (p, c) ∈ CPi and denote embed-
ding of Ri using embedding model femb as E′

i.
After reasoning on the pair (p, c) ∈ CPi, we

remove p from the persistent memory pool since it
finds a semantic match with later-coming cluster c.
On the other hand, we put all latest clusters c ∈ Ci

into the pool, then we get the updated persistent
memory pool Pi, which is formally defined as:

Pi = Pi−1 \ {p : ∃c s.t. (p, c) ∈ CPi} ∪ Ci.

This process serves two important purposes: first,
it prevents computational explosion as sessions in-
crease by eliminating already-processed informa-
tion; second, it enables efficient long-term topic
tracking across temporally distant conversations.

After this whole process is performed on the
last conversation session SN , we prepare memory
storageM and reasoning memory storageR used
in inference as M := ∪Ni=1{mj

i}ni
j=1 and R :=

∪Ni=1Ri; and denote their embeddings using femb

as E and E′, respectively.

3.3 Inference Phase
For a user query (q), we retrieve the most relevant
items from our total memory storeM∪R and se-
lect the top-k items based on the similarity between
embedded vectors e ∈ (E∪E′) and femb(q). These
retrieved memory items denoted by m1

∗, · · · ,mk
∗

are arranged chronologically and composed to form
the context, with each item including its complete
information (key, content, time). We then generate
a response using this organized context:

LLMresponse(context, q)→ response.

4 Experiments

4.1 Experimental Setup

Dataset Category # Questions

LoCoMo

single-hop 1,123 (56.5%)
multi-hop 321 (16.1%)
temporal-reasoning 96 (4.8%)
adversarial 446 (22.4%)

LongMemEval

single-hop 150 (30.0%)
multi-hop 121 (24.2%)
temporal-reasoning 127 (25.4%)
adversarial 30 (6.0%)
knowledge-update 72 (14.4%)

Table 1: Statistics of dataset category.

Datasets We utilize two long-term memory QA
datasets: LoCoMo (Maharana et al., 2024) and
LongMemEval (Wu et al., 2025a). LoCoMo con-
tains 1,986 QA instances from conversation history
sets, averaging 27.2 dialogues per set with 21.6
turns per dialogue. LongMemEval has 500 QA
pairs. We adopt the LongMemEvalS subset, which
reflects more realistic constraints. LongMemEvalS
averages 115K tokens per question.

We unify the question types across both datasets
into five categories: single-hop, multi-hop, tempo-
ral reasoning, adversarial, and knowledge update
(only in LongMemEval). Detailed dataset statistics
for each category are provided in Table 1, and com-
prehensive information about the datasets, includ-
ing unification criteria, is described in Appendix C.

To ensure a fair comparison across models and
settings, we standardize the answer generation
prompt for all experiments. The specific prompts
used for each dataset are shown in Appendix A.

Evaluation Metrics We evaluate using BLEU-
1, ROUGE-1, ROUGE-L, METEOR, BERTScore,
and LLM-as-a-judge score. BLEU-1 measures
n-gram precision while ROUGE metrics assess
lexical overlap through n-grams. METEOR and
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Model Method
LongMemEval LoCoMo

Total Single-hop Multi-hop Temporal Knowledge Adv Total Single-hop Multi-hop Temporal Adv

LLM R1 LLM R1 LLM R1 LLM R1 LLM R1 Acc LLM R1 LLM R1 LLM R1 LLM R1 Acc

Q
w

en
2.

5

14B

Turn 39.7 25.3 59.4 42.6 28.3 9.0 19.5 23.5 42.5 23.5 73.3 61.6 28.9 74.6 42.7 49.5 15.9 47.9 14.3 46.9
Session 29.0 19.3 53.1 37.2 16.7 5.7 13.2 17.1 15.8 9.5 66.7 54.5 25.7 57.7 36.5 38.4 12.9 42.3 12.8 67.0
SeCom 37.6 24.5 60.1 42.9 26.0 9.8 19.0 23.5 35.3 17.3 73.3 60.4 31.0 72.9 45.8 36.4 15.1 50.2 16.3 57.4

HippoRAG-2 44.7 29.2 68.9 48.9 26.1 9.6 20.8 25.5 59.3 31.5 75.9 61.7 30.4 69.8 44.3 45.6 15.6 54.7 14.0 64.4
A-Mem 50.3 33.0 72.4 53.0 34.0 14.0 30.0 26.5 63.9 38.2 66.7 43.6 30.2 52.4 34.5 44.8 29.2 38.2 14.9 23.7

PREMem 64.7 40.4 59.5 43.3 75.7 35.0 48.6 38.8 88.3 56.9 70.0 68.0 29.4 69.2 38.0 74.1 30.1 55.5 18.0 69.1

72B

Turn 40.6 26.2 60.8 43.4 30.2 13.8 20.6 22.8 46.5 21.8 60.0 63.7 26.3 77.4 38.0 51.4 15.3 60.2 17.7 47.3
Session 30.9 20.8 54.8 38.4 20.0 10.8 13.0 17.1 17.7 9.1 73.3 54.2 23.9 60.4 33.6 40.3 12.4 54.4 15.8 53.4
SeCom 39.4 25.3 56.2 40.9 31.4 14.9 22.4 21.4 43.9 22.2 56.7 58.5 28.0 72.7 41.4 34.0 12.6 54.4 17.7 47.7

HippoRAG-2 45.9 29.8 70.6 49.9 29.6 11.8 21.8 24.6 57.1 32.7 69.0 61.6 30.4 72.1 44.4 44.6 16.0 62.3 16.6 57.0
A-Mem 53.6 36.2 73.0 55.4 38.1 16.5 39.1 31.6 66.2 41.2 60.0 45.6 31.7 54.6 36.2 49.8 32.7 42.6 16.2 21.5

PREMem 67.5 45.4 66.6 47.1 79.6 45.1 51.6 43.1 85.9 58.8 56.7 71.0 27.0 73.0 33.7 76.7 30.0 61.8 17.1 68.8

ge
m

m
a-

3

12B

Turn 36.6 22.4 55.6 40.2 24.2 9.1 22.2 17.4 46.4 22.3 40.0 45.5 27.0 65.3 42.0 40.1 13.6 28.8 6.7 3.8
Session 28.8 16.9 51.0 34.8 16.7 7.0 15.8 11.1 15.1 8.4 70.0 38.0 24.2 51.6 37.1 33.1 12.6 22.0 6.9 11.7
SeCom 37.4 23.5 55.6 39.8 26.3 10.2 23.1 19.5 43.6 24.9 50.0 44.8 30.1 65.4 47.5 35.7 13.0 28.1 8.0 4.0

HippoRAG-2 43.9 27.1 66.2 48.2 30.0 8.3 24.1 21.2 58.1 31.0 48.3 44.3 29.7 61.8 45.9 38.9 15.6 29.1 6.4 8.9
A-Mem 39.0 28.1 65.5 51.1 22.2 10.2 22.8 24.3 49.0 23.8 33.3 43.9 31.2 47.2 31.4 40.7 20.2 22.4 6.3 43.8

PREMem 57.7 34.4 54.3 38.4 63.3 27.1 47.3 31.9 86.3 52.2 46.7 50.0 30.1 61.7 43.1 63.9 27.4 36.6 11.2 15.5

27B

Turn 38.0 23.6 56.4 41.5 25.1 8.9 21.8 20.0 44.3 22.7 66.7 49.7 27.5 67.7 42.6 39.5 14.1 30.6 7.7 17.3
Session 27.6 16.8 50.6 36.2 14.3 5.1 13.5 10.0 12.5 8.3 73.3 43.3 24.6 53.1 37.0 32.0 11.2 22.6 8.3 32.7
SeCom 38.9 23.2 55.4 39.2 30.1 10.4 24.0 19.6 40.8 22.8 63.3 49.1 30.2 67.5 48.0 33.2 10.9 30.0 10.6 19.7

HippoRAG-2 43.1 27.3 65.0 47.4 28.4 12.4 22.8 21.0 56.5 28.6 63.3 49.5 30.6 64.7 46.8 37.7 16.4 28.8 7.1 26.2
A-Mem 45.3 31.9 66.2 54.5 30.5 10.6 28.9 26.1 61.7 39.2 43.3 44.5 32.8 48.7 32.9 43.2 28.7 24.2 7.2 40.0

PREMem 61.9 39.2 52.7 39.8 69.6 33.4 51.2 38.5 91.3 60.1 66.7 54.6 30.6 62.5 40.3 57.0 25.2 34.8 8.8 38.3

gp
t-

4.
1

mini

Turn 39.5 25.4 62.8 43.8 27.6 11.8 20.4 21.3 45.5 23.7 46.7 54.7 30.3 74.3 45.8 50.3 17.7 49.8 17.5 10.5
Session 29.7 18.0 54.4 37.3 18.4 6.2 13.2 12.8 17.6 9.0 66.7 48.1 27.5 58.5 41.3 41.4 15.4 38.2 16.9 30.3
SeCom 42.3 26.8 64.3 45.2 33.5 13.6 24.8 24.2 41.6 21.2 60.0 53.4 33.2 74.2 51.6 40.1 17.0 42.0 11.7 14.1

HippoRAG-2 44.8 29.1 69.5 48.3 30.4 12.2 19.5 23.2 56.3 33.1 72.0 54.6 34.1 70.0 50.2 52.9 25.0 42.6 17.0 23.3
A-Mem 53.9 35.5 75.1 57.4 41.6 16.5 34.1 27.9 67.4 39.0 66.7 52.7 37.0 56.1 36.8 61.1 38.0 38.5 11.0 42.5

PREMem 67.6 43.2 56.4 40.5 76.5 41.7 62.4 44.3 88.6 60.4 63.3 64.9 34.5 69.4 46.7 77.9 36.9 50.3 18.2 48.9

base

Turn 40.7 25.2 61.8 43.6 25.8 9.6 24.1 22.5 47.5 23.9 56.7 57.1 31.3 76.3 45.9 54.7 21.7 53.4 20.5 12.8
Session 30.3 18.3 54.9 37.6 20.6 9.0 10.3 11.0 14.8 9.2 76.7 50.1 27.9 59.6 40.6 42.2 17.0 49.1 20.7 34.1
SeCom 42.0 26.2 63.3 44.2 32.9 13.2 20.3 21.4 49.0 24.2 60.0 56.7 35.0 76.2 52.9 42.5 19.0 50.6 19.7 20.9

HippoRAG-2 45.2 29.2 70.3 50.5 28.2 11.3 19.1 21.6 58.3 34.6 76.7 57.3 34.0 71.6 49.8 49.4 22.4 54.9 22.6 30.9
A-Mem 55.9 37.5 78.0 61.3 41.4 17.0 37.8 30.9 64.7 39.2 66.7 49.5 34.7 55.6 36.6 58.6 39.8 39.6 11.5 30.9

PREMem 71.4 44.6 58.5 40.9 83.5 44.0 64.4 44.8 93.7 64.8 73.3 67.7 35.9 71.5 48.5 76.0 36.4 50.2 19.4 57.4

Table 2: Performance comparison across different model sizes and memory frameworks. Results show LLM-
judge scores (LLM), ROUGE-1 (R1), and adversarial accuracy (Acc). Highest scores in bold and second highest
underlined. Additional metrics (BLEU-1, ROUGE-L, METEOR, BERTScore) available in Appendix D.

BERTScore capture semantic similarity beyond ex-
act matches. LLM-as-a-judge score assesses overall
response quality including coherence and informa-
tiveness, critical for LongMemEval and LoCoMo
tasks that require recalling information from past in-
teractions. For adversarial QA categories, we report
accuracy based on the proportion of safe responses
that identify unanswerable queries.

Baselines We compare our approach against
baselines with varying memory granularity and
state-of-the-art models. For granularity, we imple-
ment turn-level and session-level memory struc-
tures. For advanced approaches, we evaluate
SeCom (Pan et al., 2025), which partitions dia-
logue into topic-based segments with compression-
based denoising; HippoRAG-2 (Gutiérrez et al.,
2025), which encodes memory as an open knowl-
edge graph with concept-context structures; and
A-Mem (Xu et al., 2025), which organizes inter-
connected, evolving notes with semantic metadata.

Implementation Details In PREMem, we use
identical LLMs for extraction and reasoning,

using the largest variant per family: Qwen2.5-
72B, Gemma3-27B, or gpt-4.1-base (“base” distin-
guishes from smaller variants). For LLMresponse,
we evaluate across three LLM families—gpt-4.1
(OpenAI, 2025) (nano, mini, base), Qwen2.5 (Yang
et al., 2024) (3B, 14B, 72B), and Gemma3 (Team
et al., 2025) (4B, 12B, 27B)—to assess general-
izability across different model capacities. Dur-
ing response generation, all models operate with a
temperature of 0.7. LLM-as-a-judge score uses a
deterministic decoding (temperature 0.0). We use
Stella_en_400M_v5 (Zhang et al., 2025) as the
embedding model to encode memory items and
queries during retrieval. Additional implementa-
tion details are provided in Appendix E.

4.2 Main Results

Table 2 shows comprehensive results across
LongMemEval and LoCoMo benchmarks using
LLM-as-a-judge scores and ROUGE-1. PREMem
achieves superior performance across most cate-
gories and model sizes, especially in complex rea-
soning tasks. For overall performance, PREMem
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consistently outperforms all baselines by substan-
tial margins across both benchmarks.

Results highlight two key findings. First, PRE-
Mem demonstrates exceptionally strong perfor-
mance on challenging cross-session reasoning
tasks—multi-hop questions, temporal reasoning,
and knowledge update categories. Second, while
some baselines excel in specific subcategories (e.g.,
A-Mem on single-hop questions), PREMem de-
livers more consistent performance enhancement
across all question types, maintaining robust results
regardless of question complexity.

4.3 Small Language Models

Method Model LongMemEval LoCoMo

Turn

Qwen2.5 72B

40.6 63.7
Session 30.9 54.2
SeCom 39.4 58.5

HippoRAG-2 45.9 61.6
A-Mem 53.6 45.6

PREMem Qwen2.5 3B 50.8 53.8

Turn

gemma-3 27B

38.0 49.7
Session 27.6 33.3
SeCom 38.9 49.1

HippoRAG-2 43.1 49.5
A-Mem 45.3 44.5

PREMem gemma-3 4B 53.4 50.1

Turn

gpt-4.1

40.7 57.1
Session 30.3 50.1
SeCom 42.0 56.7

HippoRAG-2 45.2 57.3
A-Mem 55.9 49.5

PREMem gpt-4.1 nano 58.7 58.8

Table 3: Small models with PREMem vs. larger models
with baselines (LLM-as-a-judge scores).

Table 3 shows LLM-as-a-judge scores compar-
ing PREMem with small models against baseline
methods using larger models. The results demon-

strate that PREMem enables competitive perfor-
mance even under limited model capacity.

In Gemma and gpt families, PREMem with
smaller models outperforms baselines using larger
counterparts across both benchmarks. For the
Qwen family, all memory methods using Qwen2.5-
3B achieve scores below 50 on both benchmarks,
except for PREMem which reaches 50.8 on Long-
MemEval. With Qwen2.5-14B (Table 2), PREMem
performance surpasses all baseline methods that
use the much larger 72B model on both bench-
marks. By offloading complex reasoning to the stor-
age phase, PREMem enhances lightweight mod-
els with rich memory representations, reducing re-
liance on large-scale inference models.

4.4 Ablation Study

Table 4 shows ablation studies of PREMem. Step
1 (memory extraction) is vital, as its removal
drops scores by 32.7-69.0%; similarly, Step 2 (pre-
storage reasoning) proves valuable through cross-
session pattern analysis. Our episodic memory cat-
egorization and temporal reasoning also contribute
meaningfully, with their removal decreasing scores
by up to 8.9% and 16.4% respectively.

These results confirm two key insights. First, our
structured approach for memory extraction effec-
tively organizes user information into meaningful
categories. Second, performing cross-session rea-
soning before retrieval time significantly enhances
performance across all model sizes. By shifting
complex cognitive processes to the memory con-
struction phase, models can focus on response gen-
eration during inference, leading to more effec-
tive handling of temporal relationships and multi-
session information synthesis.

Method
LLM R1

Qwen2.5 gemma-3 gpt-4.1 Qwen2.5 gemma-3 gpt-4.1

14B 72B 12B 27B mini base 14B 72B 12B 27B mini base
LongMemEval

PREMem 64.7 67.5 57.7 61.9 67.6 71.4 40.4 45.4 34.4 39.2 43.2 44.6

w/o Step 2 65.0
(+0.5%)

69.8
(+3.5%)

57.4
(-0.6%)

59.9
(-3.2%)

67.9
(+0.4%)

69.8
(-2.2%)

39.6
(-2.1%)

45.2
(-0.3%)

32.5
(-5.5%)

38.1
(-2.7%)

43.3
(+0.3%)

43.4
(-2.7%)

w/o Step 1 31.2
(-51.8%)

35.9
(-46.8%)

23.5
(-59.3%)

24.1
(-61.0%)

31.9
(-52.8%)

34.2
(-52.1%)

17.2
(-57.4%)

18.4
(-59.5%)

11.1
(-67.8%)

12.2
(-69.0%)

15.8
(-63.5%)

17.2
(-61.5%)

w/o Step 1 Categories 64.3
(-0.7%)

68.9
(+2.0%)

56.3
(-2.4%)

59.9
(-3.2%)

66.7
(-1.3%)

69.6
(-2.4%)

40.3
(-0.3%)

45.7
(+0.8%)

33.0
(-4.1%)

38.1
(-2.7%)

41.9
(-2.9%)

42.9
(-3.7%)

w/o Temporal Reasoning 63.7
(-1.6%)

68.4
(+1.3%)

56.0
(-3.0%)

58.5
(-5.4%)

66.2
(-2.1%)

69.0
(-3.4%)

39.1
(-3.2%)

44.8
(-1.2%)

30.8
(-10.6%)

36.5
(-6.8%)

42.9
(-0.6%)

43.9
(-1.6%)

LoCoMo
PREMem 68.0 71.0 50.0 54.6 64.9 67.7 29.4 27.0 30.1 30.6 34.5 35.9

w/o Step 2 64.4
(-5.3%)

68.2
(-3.8%)

47.3
(-5.4%)

52.8
(-3.2%)

61.4
(-5.4%)

64.7
(-4.5%)

29.6
(+0.6%)

28.6
(+5.6%)

28.3
(-6.0%)

28.5
(-7.0%)

33.2
(-3.6%)

34.2
(-4.8%)

w/o Step 1 44.5
(-34.6%)

47.8
(-32.7%)

32.3
(-35.4%)

33.9
(-37.8%)

41.9
(-35.4%)

44.1
(-34.9%)

14.7
(-49.9%)

14.6
(-45.9%)

13.1
(-56.4%)

13.2
(-56.7%)

16.5
(-52.1%)

17.9
(-50.1%)

w/o Step 1 Categories 65.7
(-3.4%)

68.1
(-4.1%)

49.1
(-1.8%)

52.4
(-4.0%)

60.8
(-6.2%)

63.5
(-6.3%)

27.9
(-5.3%)

26.3
(-2.9%)

27.5
(-8.7%)

27.9
(-8.9%)

32.0
(-7.2%)

33.9
(-5.6%)

w/o Temporal Reasoning 64.2
(-5.7%)

65.8
(-7.3%)

47.8
(-4.3%)

52.8
(-3.2%)

60.9
(-6.1%)

62.6
(-7.6%)

27.4
(-6.9%)

26.4
(-2.5%)

25.1
(-16.4%)

26.8
(-12.6%)

31.1
(-9.9%)

32.7
(-9.1%)

Table 4: Ablation study of PREMem Components. Bold: >10% drop, underlined: 5-10% drop from PREMem.
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5 Practical Applications

Memory systems are foundational for personalized
conversational agents, with resource efficiency crit-
ical for real-world deployment. To demonstrate
the value of PREMem under resource constraints,
we evaluate three key dimensions: (1) storage effi-
ciency through alternative retrieval methods (Sec-
tion 5.1), (2) computational cost reduction using
smaller reasoning models (Section 5.2), and (3)
token budget for context efficiency (Section 5.3).

5.1 BM25 as Embedding Alternative

Figure 2: Performance comparison (LLM-as-a-judge
score) across retrieval mechanisms (left: BM25 vs. em-
bedding) and memory reasoning models (right: low-
spec vs. high-spec).

Vector embeddings for semantic search demand
substantial storage for personalized assistants that
must maintain separate indexes for each user.
While keyword-based retrieval methods like BM25
typically underperform semantic search methods
(Thakur et al., 2021), experimental results shown in
Figure 2 (left) demonstrate BM25 remain surpris-
ingly competitive with PREMem. This provides
an efficient option for resource-constrained deploy-
ments with minimal performance tradeoffs.

5.2 Low-Spec Reasoning Models

Memory construction typically requires powerful
LLMs. To explore more efficient alternatives, we
investigate whether smaller models can effectively
perform our pre-storage reasoning. We introduce
PREMemS, which uses smaller variants from each
model family (Qwen2.5-14B, Gemma3-12B, or
gpt-4.1-nano) for memory construction.

Figure 2 (right) shows that reasoning-focused
prompts in LLMextract and LLMreason help
smaller models create high-quality memory rep-
resentations. This approach effectively provides an

alternative for real-world applications by reducing
computational costs during memory construction.

5.3 Token Budget Efficiency

Allocating thousands of tokens from limited con-
text windows solely for memory retrieval rep-
resents a substantial opportunity cost for multi-
purpose assistants. We evaluate PREMem perfor-
mance across varying token budgets.

Method Token
budget

Model
Qwen2.5 gemma-3 gpt-4.1

14B 72B 12B 27B mini base
LongMemEval

SeCom
1024 35.8 37.2 33.4 33.0 37.0 35.5
2048 37.6 39.4 37.4 38.9 42.3 42.0
4096 42.8 44.4 38.8 40.4 44.3 44.4

A-Mem
1024 44.4 48.6 36.4 41.0 49.2 49.4
2048 50.3 53.6 39.0 45.3 53.9 55.9
4096 54.8 58.5 44.9 50.6 61.3 62.0

HippoRAG-2
1024 41.5 41.5 38.5 38.3 40.8 40.2
2048 44.7 45.9 43.9 43.1 44.8 45.2
4096 57.5 57.4 51.3 53.5 61.0 61.7

PREMem
1024 66.4 67.6 58.9 63.0 68.7 70.2
2048 64.7 67.5 57.7 61.9 67.6 71.4
4096 62.2 66.9 55.7 60.5 67.2 71.8

LoCoMo

SeCom
1024 57.0 60.5 42.3 47.9 51.5 54.2
2048 60.4 58.5 44.8 49.1 53.4 56.7
4096 63.4 63.9 46.0 50.1 54.6 57.3

A-Mem
1024 42.9 45.9 43.8 44.5 52.9 51.5
2048 43.6 45.6 43.9 44.5 52.7 49.5
4096 43.5 45.1 43.8 44.3 53.3 50.2

HippoRAG-2
1024 56.0 55.7 40.8 46.5 49.7 53.1
2048 61.7 61.6 44.3 49.5 54.6 57.3
4096 64.1 65.3 47.0 51.0 56.2 59.5

PREMem
1024 63.7 65.6 48.1 52.7 64.6 67.3
2048 68.0 71.0 50.0 54.6 64.9 67.7
4096 67.0 68.7 47.2 53.3 64.8 67.1

Table 5: Performance across token budgets. Bold indi-
cates the highest score in each range.

While other methods degrade significantly with
reduced context lengths, PREMem maintains ro-
bust performance even with minimal token, as
shown in Table 5. This stability stems from mem-
ory fragments that capture pre-reasoned cognitive
relationships rather than simply storing raw conver-
sation turns or graph connections. The efficiency
allows developers to allocate smaller portions of
context windows to memory while preserving per-
sonalization quality in real-world applications.

6 Conclusion

We present PREMem, a novel episodic memory
system that shifts complex reasoning processes
from response generation to the memory construc-
tion phase. This method transforms conversations
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into structured memories with categorized informa-
tion types and cross-session reasoning patterns. Our
approach significantly improves performance on
LongMemEval and LoCoMo benchmarks, with par-
ticularly strong results for temporal reasoning and
multi-session tasks. Notably, even modest-sized
models using PREMem achieve competitive re-
sults compared to larger state-of-the-art systems.
Additionally, our focus on token budget, retrieval
efficiency, and streamlined memory construction
makes PREMem effective for real-world conversa-
tional AI systems that require long-term personal-
ization under resource constraints.

Limitations

Our work has several limitations that present op-
portunities for future research:

Reduced efficiency in single-hop reasoning
Our pre-reasoning structure shows lower perfor-
mance for single-hop questions compared to direct
retrieval methods. This could be due to additional
processing that may not benefit straightforward
queries. To address this, future work could consider
utilizing original messages directly for single-hop
reasoning tasks.

Lack of original conversation context Our im-
plementation focuses on extracted and synthe-
sized memory items rather than original conver-
sation messages to reduce storage requirements.
This approach sacrifices access to certain linguis-
tic nuances, including users’ conversational styles
and terminology preferences. A potential solution
might involve query-dependent hybrid retrieval that
combines structured memories with original con-
versation segments based on the nature of the user’s
question.

Absence of memory decay mechanisms Our
approach does not incorporate forgetting mecha-
nisms found in human memory. While our simi-
larity threshold helps filter retrieved items, man-
aging truly long-term conversations would require
additional constraints. For extended conversation
histories, implementing explicit memory size limi-
tations or importance-based decay functions would
help control the persistent memory pool.

Limited theoretical contribution Our approach
demonstrates practical improvements by applying
cognitive science concepts to conversational sys-
tems. However, it remains primarily an empirical

contribution rather than advancing new theoretical
insights about memory or cognition. Future work
could explore deeper theoretical implications for
human-AI interaction.

Ethical Considerations

Research on episodic memory systems for conver-
sational AI merits thoughtful consideration of pri-
vacy aspects, as these systems retain and process
user information across multiple sessions. PRE-
Mem’s structured approach to memory representa-
tion offers opportunities for enhanced transparency,
potentially enabling clearer user controls over what
information is stored. In real-world applications,
implementing appropriate data management op-
tions would allow users to understand and guide
their personalized experience.

The cross-session reasoning capabilities in our
approach warrant attention to potential biases and
inference accuracy. Our categorization helps dis-
tinguish between what users explicitly stated and
what the system infers, but misinterpretations can
still occur. Future research should develop confi-
dence indicators for memory-based responses and
create mechanisms for users to correct the system
when it makes inappropriate connections between
separate conversations, helping prevent potential
misunderstandings from persisting across interac-
tions.
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A LLM Prompt

We include all prompts required to run and evaluate
PREMem. In these figures, placeholders (denoted
by {{$variable}}) indicate positions where specific
content is dynamically inserted during execution.
For Step 1, refer to Figure 3, for Step 2, refer to Fig-
ure 4. The response generation prompts for Long-
MemEval and LoCoMo are provided in Figure 6
and Figure 5, respectively. The LLM-as-a-judge
evaluation prompt is shown in Figure 7.

B Cognitive Scientific Foundation for
Memory Evolution Patterns

In cognitive science, schema is a framework (struc-
ture) that organizes an individual’s experiences,
knowledge, and information, as well as the way
they are stored in his memory. The schema stores
one’s experiences, knowledge and information as
its memory, and it is developed by assimilating
and accommodating the information (Piaget et al.,
1952). When new information aligns with an exist-
ing schema, the schema assimilation occurs. Con-
versely, misaligned information requires schema
updates to incorporate new data.

A seminal work in schema theory (Rumelhart
et al., 1976) introduced three modes of learning: ac-
cretion, tuning, and restructuring. This work has be-
come the foundation of understanding how existing
knowledge structures—known as schemata—are
transformed whenever new information is encoun-
tered. In particular, accretion means adding new
information to an existing schema without altering
its structure. Tuning refines the existing schema,
making it more efficient or accurate. Restructuring,

on the other hand, involves a more fundamental
change in the schema’s structure. Thus, this work
has become the foundation for further investiga-
tions on how schemata are modified and reorga-
nized in response to new informaion.

Referring to further schema theory literature
(Chi et al., 1981; Bartlett, 1995; Mandler, 2014;
Rumelhart, 2017), we identify six major mech-
anisms of how a schema modified: (1) Schema
expansion refers to adding a new attribute or fea-
ture to an existing schema; (2) Schema integra-
tion occurs when separate, related schemata be-
come connected to form a more cohesive struc-
ture; (3) Schema refinement points to the pro-
cess of a schema being refined or made more spe-
cific based on accumulated details; (4) Schema
reinforcement happens when similar information
is repeatedly acquired, strengthening the existing
schema; (5) Schema restructuring completely reor-
ganizes schema structure; and (6) Schema creation
occurs when existing schema structure does not
align with a new information, leading to the cre-
ation of an entirely new schema.

During a conversation, the individual acquires
additional information, and integrates new infor-
mation into established memory. When integrat-
ing, it is crucial to consider how the new infor-
mation is related to prior memory. Referring to
cognitive science (Anderson, 2013; Bransford and
Johnson, 1972), which studies how people perceive
and learn from information, and conceptual devel-
opment (Carey, 1985; Murphy, 2004; Chi, 2009),
which studies how infants learn concepts, we iden-
tify five information types– extension, accumula-
tion, specification, transformation, and connection–
each of which causes a different type of modifica-
tion in the underlying schema.

Extension (Elaboration) A new information
broadens the scope of existing knowledge. (An-
derson, 2013; Carey, 1985) describe that exposure
to information and experience extend the exist-
ing knowledge structure, paralleling the process
of schema expansion.

Accumulation The similar type of information
accumulates. Repeated exposure to similar infor-
mation solidifies an existing framework. (Chi et al.,
1981; Schank and Abelson, 2013) demonstrate that
repeated encounters with similar information and
experience solidify a schema.
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GOAL
Analyze the entire provided ⟨Conversation⟩ to identify all statements revealing personal information about the user. Categorize each piece of information
as Factual, Experiential, or Subjective, and output the results as a single structured JSON object according to the ⟨Final Output JSON Format⟩.

INFORMATION CATEGORY DEFINITIONS
1. Factual Information: Objective, verifiable facts about the user’s state, attributes, possessions, knowledge, skills, and relationships with others (family,
friends, pets, etc.). (’What I am / What I have / Who I know’)
* Keywords: is, am, have, own, live in, work as, know (skill/fact/person), my name/age/job/sister/friend is, etc.
* Examples: "My name is Alex.", "I live in New York.", "I have a Bachelor’s degree in CS.", "I own two bikes.", "Emily is my sister.", "Luna is my cat.",
"I know Python."

2. Experiential Information: Specific events, actions, activities, or interactions experienced by the user over time, often situated in a con-
text. (’What I did / What happened to me’)
* Keywords: went, did, saw, met, visited, learned (an experience), attended, bought (as an event), have been, have visited, have tried, have experienced, last
year, yesterday, when I was..., etc.
* Examples: "I travelled to LA last weekend.", "I’ve assembled the IKEA bookshelf.", "I’ve been to Japan twice.", "I have met with the CEO.", "I attended
the Imagine Dragons concert."

3. Subjective Information: The user’s internal states, including preferences, habits, opinions, beliefs, goals, plans, feelings, etc. (’What I
like / think / want / feel / usually do’)
* Keywords: like, love, hate, prefer, think, believe, feel, want, plan to, hope to, usually, often, my goal is, etc.
* Examples: "I love spicy food.", "I usually wake up at 7 AM.", "I thought that movie was great.", "My goal is to learn Spanish.", "I want to visit Europe
next year."

INSTRUCTIONS
1. Carefully read and analyze the entire ⟨Conversation⟩. ⟨Conversation⟩ consists of messages, each containing a [message_id] followed by its content.
2. Identify all specific pieces of information about the user that fall into the Factual, Experiential, or Subjective categories based on the definitions above.
3. Format each value as a phrase that starts with a verb in present tense, regardless of the original tense in the conversation.
4. For the "date" field:
* For ongoing facts or current states, use the date of the message
* For past events with a specific timeframe mentioned (e.g., "yesterday", "three days ago"), calculate and use the actual date based on the message date
* For past events mentioned in the conversation, mark as "Before [message-date]"
* For future plans or intentions, mark as "After [message-date]"
5. Format the output as a single JSON object with three categories: "Factual_Information", "Experiential_Information", and "Subjective_Information".
Use empty lists ([]) for categories with no information.
6. Use the exact same [message_id] as in the original message. Do not include pronouns in the value.

Example
⟨Conversation⟩

[msg-301] (2024-05-17 Friday) I’m living in Rome now with my girlfriend, Hana. We moved here last summer because she started grad school at Stanford.
[msg-302] (2024-05-17 Friday) I quit my job at Coupang in March. I just didn’t see myself growing there anymore.
[msg-303] (2024-05-17 Friday) I’m thinking about switching into UX design. I’ve always liked the idea of making tech more human-friendly.
[msg-304] (2024-05-17 Friday) My brother Junho lives in Seattle. He’s an engineer and always sends me photos of the mountains.
[msg-305] (2024-05-17 Friday) I ate chicken with my friends yesterday.
Answer:

{
"Factual\_Information": [
{

"key": "current residence",
"value": "Lives in Rome with girlfriend Hana",
"message_id": "msg-301",
"date": "2024-05-17"

},...
],
"Experiential\_Information": [
{

"key": "job resignation",
"value": "Quit job at Coupang in March",
"message_id": "msg-302",
"date": "Before 2024-05-17"

},...
],
"Subjective_Information": [

{
"key": "career dissatisfaction",
"value": "Be Felt no growth potential at Coupang",
"message\_id": "msg-302",
"date": "Before 2024-05-17"

},...
]

}

⟨Conversation⟩
{{$conversation}}

Figure 3: Step 1: Personal information extraction and categorization prompt.
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You are an AI assistant analyzing memory fragments to generate insights. Your task is to identify patterns and connections from the data provided.

Analyze these fragments and generate insights based on five inference types:
- Extension/Generalization: The process of expanding information from specific cases or situations to broader categories, domains, or patterns. This type
of inference derives more general characteristics or tendencies from concrete information.
- Accumulation: The process of identifying behaviors, experiences, or patterns that repeat or persist over time. This type of inference focuses on frequency,
consistency, and persistence to infer habitual patterns or significant trends.
- Specification/Refinement: The process of breaking down general information into more detailed and specific aspects. This type of inference decomposes
broad concepts or experiences into concrete elements or details.
- Transformation: The process of identifying changes in states, perspectives, emotions, behaviors, etc. over time. This type of inference discerns transitions
or developments between previous and current/new states.
- Connection/Implication: The process of identifying relationships, causality, or meaning between seemingly disparate pieces of information. This type of
inference discerns connections or conclusions not explicitly mentioned.

Your output should be formatted as a JSON object with an "extended_insight" key containing an array of inference objects. Each inference
object should have the following structure:

{
"inference_type": "one of the five inference types",
"key": "brief description of the insight",
"date": "relevant date or date range",
"value": "detailed description of the insight (12 words or less)"

}

Important instructions:
- You do NOT need to use all five inference types. Select only the inference types that clearly apply to the data.
- Include multiple different inference types when appropriate, but don’t force all five types.
- You may use the same inference type multiple times for different insights if appropriate.
- Focus on quality over quantity - provide meaningful insights based on the data.
- Avoid trivial or insignificant insights - focus only on substantive patterns and connections.

⟨example⟩
Example:
Below are the memory fragments to analyze:
[tech purchase, 2023-03-05]: Jordan buy new drawing tablet
[software usage, 2023-03-07]: Jordan spend three hours learning Procreate app
[online activity, 2023-03-15]: Jordan create account on digital art community DeviantArt
[social media, 2023-03-22]: Jordan share first digital artwork on Instagram
Output:

{
"extended_insight": [
{

"inference_type": "extension/generalization",
"key": "skill development approach",
"date": "2023-03-05 to 2023-03-22",
"value": "Jordan follows a methodical learning approach with appropriate tools"

},
{

"inference_type": "accumulation",
"key": "digital art activities",
"date": "2023-03-05 to 2023-03-22",
"value": "Jordan engaged in 4 digital art activities within 17 days"

},
{

"inference_type": "specification/refinement",
"key": "artistic medium",
"date": "2023-03-22",
"value": "Jordan uses tablet-based digital illustration with Procreate"

},
{

"inference_type": "transformation",
"key": "identity shift",
"date": "Before 2023-03-05 to 2023-03-22",
"value": "Jordan evolved from art appreciator to digital artist"

},
{

"inference_type": "connection/implication",
"key": "artistic background",
"date": "Before 2023-03-05",
"value": "Jordan likely has previous art experience"

}
]

}

⟨/example⟩

Below are the memory fragments to analyze:
{{$memory_fragments}}

Figure 4: Step 2: Memory pattern analysis and inference prompt.
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Based on the context, write an answer in the form of
a short phrase for the following question. Answer
with exact words from the context whenever possible.

Context:
{{$context}}

Question: {{$question}}

Short Answer:

Figure 5: LoCoMo answer generation prompt.

Specification The existing information becomes
more detailed and developed more precisely. New
information refines existing knowledge by adding
more detailed or precise features, causing schema
refinement. (Murphy, 2004; Keil, 1979) both claim
that knowledge is refined and differentiated as pre-
cise and specific information is encountered.

Transformation The previous information is re-
placed by new information or fundamentally modi-
fied. New information drives schema restructuring.
According to (Chi, 2009; Rumelhart et al., 1976),
schema is reconstructed when the new information
does not fit to the existing knowledge significantly.

Connection The relationship between the infor-
mation and the causality are revealed. The con-
nected information promotes existing schemata to
be integrated. (Bransford and Johnson, 1972; Fau-
connier and Turner, 2008) show that connection
between information develops individual’s reason-
ing and understanding.

These five types of new information—extension,
accumulation, specification, transformation, and
connection—are consistent with the schema modi-
fication mechanisms: schema expansion, reinforce-
ment, refinement, restructuring, and integration.

C Dataset Description and Category
Unification

For consistency, we unify the question types
into five categories: single-hop, multi-hop, tem-
poral reasoning, adversarial, and knowledge
update (LongMemEval only). For LoCoMo,
we treat all questions originally labeled as
open-domain-knowledge as single-hop. The
other labels—multi-hop, temporal reasoning,
and adversarial—are retained as-is. For Long-
MemEval, we apply these mappings: Any type con-
taining the word single is mapped to single-hop.

You are an intelligent assistant designed to provide
concise, accurate answers based on given context.
Your task is to analyze the provided information and
respond to a specific question with a few words or a
short phrase.

Here is the context you should use to inform
your answer:

{{$context}}

Now, please consider the following question:

{{$question}}

Instructions:
1. Carefully read and analyze the provided context.
2. Consider the question in relation to the context.
3. Formulate a concise answer based solely on the
information given in the context.
4. Respond with a short phrase only. Do not use a
full sentence.
5. Do not include any explanations, reasoning, or
greetings in your response.
6. Ensure your answer is directly relevant to the
question asked.

Your response should provide only the essen-
tial information in a brief phrase.

Answer:

Figure 6: LongMemEval answer generation prompt.

All other types are converted by replacing session
with hop, aligning them with the multi-hop or
temporal reasoning categories. If the question
ID ends with _abs, it is classified as adversarial
based on its original designation as an abstention
question. Questions related to knowledge revision
are assigned to the knowledge update category.

This unified labeling scheme supports direct
comparison across datasets and is used for all
category-level evaluations in this work. Datasets
are available under CC-BY-NC-4.0 (LoCoMo) and
MIT License (LongMemEval).
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D Complementary Results

We present the complete scores including metrics that were omitted from the main paper in Table 6.

Inference
LLM Model

LongMemEval LoCoMo

LLM ROUGE-1 ROUGE-L BLEU-1 METEOR BERTScore token length LLM ROUGE-1 ROUGE-L BLEU-1 METEOR BERTScore token length

Q
w

en
2.

5

3B

Zero 15.93 7.77 7.20 5.16 4.30 85.44 0.00 22.24 7.12 6.10 6.12 4.85 83.99 0.00
Full 32.55 19.25 18.97 16.83 11.60 89.34 18710.50 42.56 20.33 19.50 15.87 16.37 86.21 19643.80
Turn 38.43 23.71 23.23 20.24 13.80 89.58 1854.30 44.90 22.06 21.17 16.31 16.57 86.49 2009.30

Session 31.02 19.38 18.88 16.10 10.76 88.42 1919.80 41.40 20.77 19.96 15.75 15.44 86.15 1989.30
Segment 36.59 21.86 21.32 19.53 12.90 89.35 1770.79 46.28 25.29 24.22 18.94 19.44 86.43 1881.45
SeCom 34.52 23.15 22.70 19.97 13.51 89.06 1775.10 42.93 23.85 22.85 17.75 17.60 86.23 1884.30

HippoRAG-2 40.45 27.31 26.72 24.26 16.27 89.46 3811.61 46.74 26.82 25.93 21.68 19.99 87.26 3811.61
A-Mem 44.42 31.15 30.27 27.64 20.31 90.06 6199.24 42.07 29.02 28.44 23.70 21.85 88.31 6199.24

PREMem 50.80 33.81 33.45 30.49 21.76 90.84 2032.40 53.79 24.64 23.16 15.86 16.46 86.07 2033.90
with bm25 48.25 33.26 32.82 29.78 22.00 90.64 2032.20 51.20 22.69 21.18 14.13 14.71 85.85 2034.50

PREMem_small 46.13 29.14 28.51 25.92 18.83 90.20 2032.30 51.26 23.15 21.55 14.49 15.01 85.96 2034.00

14B

Zero 16.08 10.10 9.90 7.49 5.55 85.05 0.00 25.19 7.12 5.45 6.10 6.22 82.84 0.00
Full 37.43 25.37 24.73 19.92 15.84 88.13 18710.50 60.57 24.08 22.81 18.16 21.85 86.62 19643.80
Turn 39.70 25.27 24.51 20.48 15.68 87.88 1854.30 61.63 28.90 27.49 22.87 22.34 87.77 2009.30

Session 29.04 19.27 18.79 14.82 11.41 86.71 1919.80 54.46 25.68 24.34 20.27 20.49 86.48 1989.30
Segment 39.02 24.62 24.02 20.15 14.92 87.80 1770.79 63.54 33.22 31.90 26.16 26.12 87.66 1881.45
SeCom 37.63 24.51 23.90 19.33 14.56 87.87 1775.10 60.42 31.04 29.64 24.59 23.95 87.32 1884.30

HippoRAG-2 44.69 29.24 28.44 22.73 19.51 87.84 3811.61 61.67 30.41 29.02 24.75 24.19 87.38 3811.61
A-Mem 50.32 32.99 31.92 27.17 23.41 88.54 6199.24 43.62 30.24 29.66 25.38 22.51 88.27 6199.24

PREMem 64.73 40.41 39.86 32.16 28.75 89.54 2032.40 68.03 29.42 27.14 21.50 21.59 86.87 2033.90
with bm25 59.37 38.66 38.19 30.20 26.88 89.22 2032.20 63.97 26.67 24.43 18.89 19.58 86.41 2035.00

PREMem_small 51.86 31.06 30.64 24.60 21.33 88.42 2032.30 64.52 27.21 25.03 19.54 19.12 86.57 2034.00

72B

Zero 20.61 12.59 12.27 10.32 6.83 86.29 0.00 25.15 8.43 6.72 6.94 8.01 83.07 0.00
Full 36.95 24.53 23.94 20.20 14.93 88.12 18710.50 63.97 20.83 19.50 14.92 20.77 85.94 19643.80
Turn 40.63 26.22 25.57 20.98 15.30 88.33 1854.30 63.71 26.28 24.85 20.26 21.20 87.27 2009.30

Session 30.89 20.76 20.31 16.54 11.90 87.38 1919.80 54.21 23.85 22.64 18.75 19.47 86.27 1989.30
Segment 38.61 25.60 25.13 21.11 15.09 88.48 1770.79 61.91 29.72 28.30 23.40 23.58 87.20 1881.45
SeCom 39.40 25.25 24.82 20.78 14.59 88.24 1775.10 58.51 28.02 26.54 22.06 22.22 86.90 1884.30

HippoRAG-2 45.95 29.79 29.27 23.35 18.84 88.04 3811.61 61.62 30.40 29.07 24.43 24.12 87.43 3811.61
A-Mem 53.58 36.25 35.42 29.46 25.43 89.34 6199.24 45.59 31.68 30.94 26.35 23.08 88.56 6199.24

PREMem 67.50 45.36 44.89 36.12 30.90 90.19 2032.40 70.96 27.05 24.71 19.05 20.48 86.47 2033.90
with bm25 62.03 42.10 41.67 34.21 28.76 89.98 2032.20 66.96 25.05 22.85 17.56 18.52 86.23 2034.50

PREMem_small 56.89 35.44 34.97 27.95 24.07 89.13 2032.30 66.68 25.59 23.39 17.87 18.73 86.39 2034.00

ge
m

m
a-

3

4B

Zero 18.32 11.35 10.99 10.20 5.50 86.25 1.00 20.91 11.33 10.89 7.54 4.29 86.43 1.00
Full 32.45 20.81 20.48 17.15 11.93 88.14 18669.20 42.49 26.32 25.26 19.46 15.77 87.58 19591.00
Turn 34.96 22.19 21.80 17.37 13.01 88.42 1838.90 46.53 26.78 25.96 19.05 14.94 87.92 1984.00

Session 28.31 18.28 17.94 14.37 9.59 87.90 1929.00 38.22 23.54 22.95 16.90 13.53 87.09 1967.40
Segment 36.49 21.00 20.65 16.90 12.74 88.23 1843.93 47.79 31.16 30.28 21.55 17.67 87.79 1969.70
SeCom 35.24 21.16 20.86 16.86 12.78 88.06 1844.72 45.15 29.68 28.91 21.66 16.58 87.72 1971.58

HippoRAG-2 41.00 24.47 24.04 19.22 15.68 88.71 4000.39 47.48 31.14 30.21 23.81 18.86 88.27 4000.39
A-Mem 42.30 28.86 28.49 22.23 19.85 88.42 6250.81 45.70 33.11 32.66 28.11 25.70 88.84 6250.81

PREMem 53.39 31.63 31.37 25.00 23.84 89.03 1962.70 50.14 29.00 27.29 19.60 17.01 86.98 1957.80
with bm25 49.71 30.81 30.68 25.13 22.76 89.09 1964.60 48.40 26.41 24.78 17.32 14.65 86.86 1961.50

PREMem_small 48.50 30.08 29.65 24.94 21.70 89.36 1963.70 47.83 27.24 25.60 18.10 16.11 86.78 1956.30

12B

Zero 27.72 18.05 17.91 14.22 7.38 88.57 1.00 21.28 11.19 10.84 7.36 4.26 85.66 1.00
Full 34.80 21.40 21.25 17.25 12.50 88.23 18669.20 43.68 27.62 27.13 21.06 18.73 88.00 19591.00
Turn 36.60 22.45 22.21 17.50 13.15 88.09 1838.90 45.46 27.05 26.54 20.59 18.89 87.91 1984.00

Session 28.76 16.93 16.68 13.23 9.64 87.74 1929.00 37.95 24.19 23.80 17.85 16.16 86.96 1967.40
Segment 34.15 21.09 20.81 17.35 12.38 87.92 1843.93 46.72 31.31 30.79 23.73 22.12 87.92 1969.70
SeCom 37.35 23.52 23.37 19.44 13.83 88.31 1844.72 44.80 30.09 29.67 22.82 20.17 87.61 1971.58

HippoRAG-2 43.90 27.14 26.77 21.35 17.74 88.71 4000.39 44.28 29.66 29.17 22.51 20.07 87.79 4000.39
A-Mem 38.98 28.06 27.63 22.45 19.73 87.88 6250.81 43.94 31.18 30.81 25.95 23.63 88.47 6250.81

PREMem 57.70 34.44 33.93 27.73 25.58 89.20 1962.70 49.99 30.07 28.85 21.83 19.21 87.54 1957.80
with bm25 53.70 32.08 31.76 26.47 24.60 88.97 1964.60 48.16 26.67 25.62 19.12 16.98 87.17 1961.50

PREMem_small 55.01 31.56 31.14 25.46 22.72 88.74 1963.70 47.56 27.90 26.79 19.62 17.83 87.24 1956.30

27B

Zero 30.15 17.58 17.43 12.88 5.95 88.62 1.00 22.16 10.19 9.85 6.68 5.20 85.63 1.00
Full 35.90 22.55 22.18 18.51 12.11 88.72 18669.20 47.37 29.36 28.71 22.17 18.38 88.16 19591.00
Turn 37.98 23.62 23.25 18.69 13.02 88.69 1838.90 49.72 27.53 26.76 21.01 17.87 87.99 1984.00

Session 27.58 16.76 16.50 13.07 7.77 88.31 1929.00 43.32 24.57 23.87 18.32 15.95 86.97 1967.40
Segment 36.83 21.54 21.11 16.92 10.17 88.64 1843.93 50.49 31.47 30.74 23.97 20.94 87.96 1969.70
SeCom 38.93 23.16 22.91 18.22 11.28 88.65 1844.72 49.11 30.21 29.51 22.95 18.68 87.77 1971.58

HippoRAG-2 43.15 27.34 27.00 20.42 14.02 89.46 4000.39 49.49 30.59 29.79 23.25 19.35 87.89 4000.39
A-Mem 45.32 31.90 31.33 26.27 21.79 88.60 6250.81 44.47 32.76 32.23 27.08 23.75 88.73 6250.81

PREMem 61.86 39.20 38.81 30.85 25.50 89.88 1962.70 54.55 30.61 28.97 22.16 19.89 87.42 1957.80
with bm25 56.01 36.70 36.46 29.54 24.42 89.85 1964.60 52.89 27.74 26.11 19.54 17.38 87.18 1961.50

PREMem_small 57.15 36.11 35.44 28.73 23.08 89.77 1963.70 53.13 29.24 27.57 21.01 19.03 87.22 1956.30

gp
t-

4.
1

nano

Zero 11.36 6.82 6.68 5.24 3.52 84.51 0.00 24.06 10.89 10.51 7.61 6.30 85.39 0.00
Full 38.27 24.60 24.13 21.20 15.47 89.19 18691.50 47.50 29.40 28.49 24.02 22.15 88.11 19651.60
Turn 37.12 24.45 24.11 20.04 14.68 89.61 1858.00 50.33 30.37 29.59 24.23 21.96 88.47 2013.10

Session 27.28 17.24 16.95 13.65 10.08 88.54 1912.30 44.93 27.57 26.99 22.06 19.92 87.40 2000.20
Segment 37.43 23.90 23.42 19.97 14.59 89.63 1644.89 52.15 34.67 33.75 27.61 25.22 88.43 1701.81
SeCom 37.44 24.98 24.63 20.64 15.45 89.53 1647.14 48.10 31.06 30.39 24.93 21.96 87.91 1708.30

HippoRAG-2 43.05 29.02 28.71 24.45 18.68 89.67 3667.23 50.40 32.82 32.13 26.80 24.26 88.09 3667.23
A-Mem 51.83 34.73 33.68 28.69 23.04 89.14 5902.39 50.45 35.91 35.13 30.14 26.16 89.13 5902.39

PREMem 58.75 39.66 39.11 32.77 25.17 90.87 2033.70 58.75 32.93 31.41 24.04 20.97 87.59 2035.80
with bm25 57.34 39.51 39.31 33.28 26.04 90.73 2033.80 56.76 30.96 29.61 22.32 19.42 87.31 2028.80

PREMem_small 55.64 38.41 38.03 32.26 25.61 91.00 2034.10 54.81 32.06 30.78 23.00 20.40 87.51 2035.90

mini

Zero 9.88 5.40 5.18 3.45 2.88 84.01 0.00 23.56 10.99 10.40 8.22 6.54 84.71 0.00
Full 44.13 27.48 27.12 22.69 17.88 88.53 18691.50 56.41 33.68 32.72 27.16 26.54 88.30 19651.60
Turn 39.51 25.38 24.87 20.13 16.16 88.07 1858.00 54.71 30.33 29.47 23.97 23.44 88.18 2013.10

Session 29.71 18.01 17.88 13.63 10.77 87.21 1912.30 48.14 27.53 26.87 21.99 20.48 87.27 2000.20
Segment 41.24 25.86 25.35 20.29 16.85 88.21 1644.89 53.29 33.17 32.28 26.15 24.27 87.76 1701.81
SeCom 42.32 26.77 26.37 21.69 17.02 88.54 1647.14 53.35 33.17 32.28 26.15 24.27 87.76 1708.30

HippoRAG-2 44.78 29.08 28.67 22.61 19.51 88.17 3667.23 54.63 34.11 33.16 28.17 26.15 88.27 3667.23
A-Mem 53.94 35.48 34.43 28.61 24.77 88.88 5902.39 52.73 37.05 36.18 31.60 28.83 89.32 5902.39

PREMem 67.61 43.19 42.43 33.88 30.55 89.64 2033.70 64.88 34.50 32.57 25.41 22.98 87.59 2035.80
with bm25 65.63 41.23 40.70 32.34 29.47 89.32 2033.80 62.40 31.94 30.10 23.14 20.40 87.26 2036.50

PREMem_small 66.80 42.44 41.89 33.86 30.33 89.75 2034.10 58.98 32.50 30.81 23.66 22.11 87.45 2035.90

base

Zero 9.01 4.20 4.11 2.27 2.37 83.24 0.00 22.76 10.62 9.74 8.59 6.26 84.73 0.00
Full 39.57 24.09 23.73 18.73 14.23 87.77 18691.50 58.98 33.95 32.64 27.40 26.97 88.36 19651.60
Turn 40.69 25.22 24.87 20.87 16.18 87.93 1858.00 57.09 31.34 30.11 25.22 24.14 88.40 2013.10

Session 30.26 18.29 18.03 14.32 10.48 86.69 1912.30 50.12 27.91 27.07 22.53 21.09 87.26 2000.20
Segment 41.18 24.92 24.42 19.66 15.28 87.99 1644.89 58.67 35.83 34.75 29.15 27.79 88.29 1701.81
SeCom 41.98 26.20 25.81 21.14 16.34 88.05 1647.14 56.67 34.96 33.79 28.53 26.19 88.13 1708.30

HippoRAG-2 45.19 29.19 28.79 22.44 19.20 87.96 3667.23 57.31 34.04 32.91 28.47 26.59 88.26 3667.23
A-Mem 55.91 37.50 36.41 30.94 26.07 89.48 5902.39 49.52 34.73 33.87 29.21 25.88 88.96 5902.39

PREMem 71.38 44.57 44.07 35.67 32.01 89.74 2033.70 67.73 35.92 33.76 27.35 24.31 87.88 2035.80
with bm25 67.44 42.43 42.06 34.23 31.06 89.39 2033.80 64.99 32.93 30.75 24.60 21.61 87.52 2036.50

PREMem_small 68.08 43.24 42.64 34.10 30.47 89.80 2034.10 60.74 32.84 31.06 24.85 22.48 87.68 2035.90

Table 6: Complete experimental results.
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E Implementation Details

For our implementation, we set the threshold pa-
rameter θ to 0.6 for memory fragment selection.
In Steps 1 and 2 of our methodology, we utilized
few-shot examples to enhance performance, with
the complete prompt templates available in Ap-
pendix A. To ensure consistent evaluation across
experiments, we conducted preference testing to
determine which answers were more favorable. Our
analysis revealed no statistically significant differ-
ence between using GPT-4o and GPT-4.1-mini as
judges, leading us to select GPT-4.1-mini as our
LLM-as-a-judge for all evaluations.

For embedding generation, we employed
NovaSearch/stella_en_400M_v5 (MIT license)
from Huggingface. Our experiments were
conducted across two model families with
varying parameter sizes: Qwen/Qwen2.5-3B-
Instruct, Qwen/Qwen2.5-14B-Instruct, and
Qwen/Qwen2.5-72B-Instruct from the Qwen
family, and google/gemma-3-4b-it, google/gemma-
3-12b-it, and google/gemma-3-27b-it from the
Gemma family.

In compliance with licensing requirements, we
adhered to both the Qwen and Gemma license
agreements. Qwen requires attribution by display-
ing "Built with Qwen" or "Improved using Qwen"
when distributing AI models and special authoriza-
tion for services with over 100 million monthly
active users. Gemma requires adherence to their
use restrictions policy and proper attribution with
copies of their license agreement to recipients. Our
academic research complies with these require-
ments, including appropriate model attribution and
usage within permitted applications.

Our hardware configuration consisted of an
Intel(R) Xeon(R) Gold 6448Y CPU and four
NVIDIA H100 80GB HBM3 GPUs for accelerated
model inference and training.

You are an AI evaluator tasked with assessing the
accuracy of predicted answers to questions. Your
goal is to determine how well the predicted answer
aligns with the expected (gold) answer and provide a
numerical score.

You will be given the following information:

<question>
{{$question}}
</question>

<gold_answer>
{{$gold_answer}}
</gold_answer>

<predicted_answer>
{{$predicted_answer}}
</predicted_answer>

Instructions:
1. Carefully read the question, gold answer, and
predicted answer.
2. Analyze the relationship between the gold answer
and the predicted answer.
3. Consider the following criteria:
- Does the predicted answer address the same topic
as the gold answer?
- For time-related questions, does the predicted
answer refer to the same time period, even if the
format differs?
- Is the core information in the predicted answer
consistent with the gold answer, even if expressed
differently?
4. Assign a score from 0 to 100, where:
- 0 means the predicted answer is completely
unrelated or incorrect
- 100 means the predicted answer perfectly matches
the gold answer
- Scores in between reflect partial correctness or
relevance
5. Output your result as a single integer only. Do not
use JSON or any other format.

Important:
- Do not include any examples in your analysis or
output.
- Provide only the integer score as your output, with
no explanation or formatting.

Score:

Figure 7: LLM-as-a-judge prompt used to evaluate re-
sponse quality.
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F Pseudo Code

Algorithm 1 Memory-Enhanced Conversational Learning with Dynamic Clustering and Reasoning

1: Input: LLMextract, LLMreason, LLMresponse, femb

2: Initialization: P0 = {},M = {},R = {}
3: for i = 1, · · ·N do
4: Step 1: Episodic Memory Extraction
5: Observe conversation session Si

6: Extract memory fragments from Si:

{m1
i , · · ·mni

i } ← LLMextract(Si)

7: Embed memory fragments: {eji}ni
j=1 where eji = femb(m

j
i )

8: Cluster fragments into Ci = {c1, . . . , cki} ▷ using silhouette scores
9: Construct a set CPi: ▷ using cosine similarity

CPi = {(p, c) : sim(p, c) > θ, p ∈ Pi−1, c ∈ Ci}

10: Step 2: Pre-Storage Memory Reasoning
11: for (p, c) ∈ CPi do
12: Mp ← memory fragments in cluster p
13: Mc ← memory fragments in cluster c.
14: Generate reasoning

{rjp,c}
dp,c
j=1 ← LLMreason(Mp,Mc)

15: Store reasoning memory fragments:R ← R∪ {r1p,c, · · · , r
dp,c
p,c }

16: Update Pi:
Pi = Pi−1 \ {p : ∃c s.t. (p, c) ∈ CPi} ∪ Ci

17: end for
18: Store raw memory fragments:M←M∪ {m1

i , . . . ,m
ni
i }

19: end for
20: Inference Phase
21: Get user query q, compute eq ← femb(q)
22: Retrieve top-k by similarity overM∪R:

context← TopKk

(
M∪R; sim(femb(·), eq)

)

23: Generate answer: response← LLMresponse(context, q)
24: Output: response
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