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Abstract

This empirical study analyzes how the choice
of pre-training corpus affects the quality of
learned transformer representations. We fo-
cus specifically on the representation quality
achieved through pre-training alone. Our ex-
periments demonstrate that pre-training on a
small, specialized corpus can produce effec-
tive representations, and that the effectiveness
of combining a generic and a specialized cor-
pora depends on the distributional similarity
between the target task and the specialized cor-
pus.

1 Introduction

Since 2018, pre-training (PT) has become a stan-
dard step in model development, demonstrating
effective transfer learning for diverse natural lan-
guage understanding tasks (Peters et al., 2018; De-
vlin et al., 2019; Radford et al., 2018). This ap-
proach leverages textual corpora to induce useful
representations by minimizing a self-supervised
language modeling loss function. These represen-
tations are typically leveraged via transfer learning
for downstream tasks using supervised data.

When selecting a PT corpus, we generally have
three options: 1) use a large, generic corpus G,
similar to training a foundational model; 2) use a
smaller, specialized corpus S, which is expected
to be more relevant to the target task; 3) combine
both G+S, as in domain-adaptive PT (Gururangan
et al., 2020), where a model initially pre-trained on
G is further refined using S.

For example, when developing a toxicity filter
for a new forum with only a few labeled comments,
one option is to use a pre-trained representation
computed on a generic corpus G (such as BERT).
Alternatively, we could construct a specialized cor-
pus S by collecting posts from the forum itself
or from other related sources. We can then pre-
train using either G alone or a combination of both

Low-Annotation Probing (ALC%)

IMDb S140 WTx CvC TREC AgN Ohsu BERT IMDb S140 WTx CvC TREC AgN Ohsu
Pre-training Corpus

IMDb

S140

WTx

WTx5

CvC

CvC6

TREC

AgN

Ohsu

Ev
al

ua
tio

n 
Ta

sk

+2.0 10.0 11.2 8.3 19.2 14.4 19.4 81.4 +6.6 5.4 0.9 1.3 2.5 3.6 1.8

8.7 +0.7 10.8 6.5 17.6 11.5 17.3 71.8 +1.2 +5.6 0.3 0.9 5.9 3.3 2.2

8.2 1.4 +1.7 1.6 28.7 17.5 25.2 50.1 +0.3 +2.1 +6.6 +2.6 8.9 2.9 1.3

5.1 3.4 1.7 2.0 8.7 6.5 6.3 53.2 1.4 0.4 +1.3 0.1 4.3 2.3 0.8

2.2 4.6 1.7 +1.4 13.4 9.2 12.2 23.6 +0.0 1.7 +1.2 +3.1 6.2 2.1 2.5

1.3 4.9 0.9 +2.0 7.7 4.0 6.9 27.0 +0.4 0.3 +1.3 +3.4 1.7 0.0 0.3

9.8 7.7 9.7 6.1 13.5 17.3 26.4 78.5 0.2 +2.2 +0.9 0.2 +4.5 2.1 1.1

13.3 14.9 10.0 5.9 35.4 1.4 35.3 85.4 0.7 1.8 1.0 0.9 1.4 +1.2 0.7

7.2 7.4 6.4 5.7 8.3 5.9 0.0 15.6 1.3 3.6 0.7 2.1 1.7 1.8 +2.2

In-domain Gen.D. Domain-Adaptive

Task Alignment (THAS%)

IMDb S140 WTx CvC TREC AgN Ohsu BERT IMDb S140 WTx CvC TREC AgN Ohsu
Pre-training Corpus

IMDb

S140

WTx

WTx5

CvC

CvC6

TREC

AgN

Ohsu

Ev
al

ua
tio

n 
Ta

sk

+2.2 5.3 2.6 5.0 5.6 4.1 6.1 95.4 +2.4 2.2 +0.1 0.1 0.5 1.3 0.6

1.0 +0.9 1.1 1.1 3.1 1.7 2.3 92.4 +0.5 +1.7 +0.5 +0.3 0.5 0.3 0.4

1.3 2.7 +0.2 2.6 8.6 5.6 7.6 91.1 0.4 +0.4 +1.5 +1.1 2.4 1.4 0.7

+0.3 1.9 +0.8 +1.4 2.6 1.1 3.2 78.7 +1.7 +0.8 +3.2 +1.9 +0.6 +1.1 +1.0

+0.7 2.0 +0.0 +1.6 3.0 1.8 2.7 74.0 0.4 0.1 +0.7 +2.0 1.3 0.8 0.6

2.1 4.3 0.3 +0.6 6.1 2.8 4.1 76.7 +1.0 0.0 +2.1 +1.9 0.1 +1.1 +0.9

2.8 1.6 +0.8 +0.5 +0.3 2.8 1.6 91.4 0.2 0.2 +1.6 +0.5 +2.5 0.6 0.6

3.0 3.2 1.2 0.7 11.9 0.1 8.6 98.7 0.1 0.3 0.1 0.1 0.2 +0.1 0.1

1.9 2.4 1.4 2.5 2.1 1.6 +2.8 67.0 0.3 1.5 0.0 1.2 0.4 0.5 +1.2

In-domain Gen.D. Domain-Adaptive

Data-Dependent Complexity (DDC%)

IMDb S140 WTx CvC BERT IMDb S140 WTx CvC
Pre-training Corpus

IMDb

S140

WTx

CvCEv
al

ua
tio

n 
Ta

sk

4.7 +11.6 +14.2 +8.8 64.3 19.8 +8.0 1.3 1.1

+9.5 +1.7 +9.7 +7.8 77.7 1.0 7.1 0.6 +0.8

+6.4 +3.7 2.8 0.6 58.7 1.4 2.6 8.6 4.8

+2.2 +5.8 +0.2 2.3 79.8 2.8 0.0 5.1 5.6

In-domain Gen.D. Domain-Adaptive

Figure 1: Cross-domain pre-trained representation per-
formance. We report absolute performance for GD em-
beddings (center column), and relative improvement for
ID (left matrix) and DA (right matrix).

G+S. We refer to the textual distribution from
which a PT corpus is sampled as its domain.

The goal of this paper is to understand how
pre-training corpus choice affects the quality of
the learned representation. We focus on measur-
ing representation quality after self-supervised pre-
training, without subsequent supervised training
(as in fine-tuning). Following prior work, we use
three representation quality metrics: a standard

22033



probing technique (Ettinger et al., 2016; Adi et al.,
2017), and two label-representation alignment met-
rics, one based on hierarchical clustering structures
(Gonzalez-Gutierrez et al., 2023) and the other
based on data-dependent complexity (Yauney and
Mimno, 2021).

We conduct an empirical analysis using a wide
range of data sources and tasks, evaluating repre-
sentation quality under different PT scenarios. We
derive the following conclusions: 1) If the special-
ized corpus S is close to the target task distribution,
and it is not too small, pre-training on S can be as
effective as pre-training on G. 2) Pre-training on
both G and S (i.e. domain-adaptive pre-training)
can sometimes improve performance compared to
using G alone, but it can also lead to decreased per-
formance. 3) The success of the domain-adaptive
strategy depends on the similarity between the tar-
get task distribution and that of S. We validate this
claim by showing a consistent correlation between
distributional similarity and domain-adaptive per-
formance improvement, using two different domain
similarity measures.

2 Pre-training Effect on Transformer
Embeddings

We begin this section with a description of the ex-
perimental setting followed by a discussion of the
main results.

2.1 Experimental Setting

Pre-training scenarios:
• In-domain (ID): Pre-training a model from

scratch on a domain-specific corpus S.

• General domain (GD): The common PLM train-
ing approach of using a large generic corpus G.

• Domain-adaptive (DA): Starting with a PLM
trained on G, continuing pre-training on S.

Corpora. To simulate domain-specific corpora
(Sdomain) for pre-training, we used the unlabeled
text in the following classification datasets: IMDb
(Maas et al., 2011), Sentiment 140 (Go et al., 2009),
Wiki Toxic (Wulczyn et al., 2017), Civil Comments
(Borkan et al., 2019), TREC (Li and Roth, 2002;
Hovy et al., 2001), AG-News (Zhang et al., 2015),
and Ohsumed (Hersh et al., 1994). Test partitions
are excluded as held-out sets and are only used to
compute the representation’s quality metrics.

As general corpora G, we employ the models
pre-trained on their generic corpora: BookCorpus

Corpus Text #words

IMDb movie reviews 18M
Sentiment 140 tweets 21M
Wiki Toxic user discussions 11M
Civil Comments user comments 100M
TREC short questions 56k
AG-News news 4.5M
Ohsumed medical abstracts 1.8M

BookCorpus books 800M
Wikipedia (EN) encyclopedia 2.5B
WebText miscellaneous 9.1B

Table 1: Pre-training corpora.

Dataset Task |Y| prior len. # train / test

IMDb sentiment 2 0.5 233 25k / 25k
Sentiment 140 sentiment 2 0.5 14 1.6M / 498
Wiki Toxic toxicity 2 0.096 68 160k / 64k
Wiki Toxic 5 toxicity 5 imb. 52 9.8k / 3.4k
Civ. Com. toxicity 2 0.08 53 1.9M / 97k
Civ. Com. 6 toxicity 6 imb. 49 145k / 7.4k
TREC topic 6 imb. 10 5.5k / 500
AG-News topic 4 1/|Y| 38 120k / 7.6k
Ohsumed topic 23 imb. 175 10k / 13k

Table 2: Evaluation dataset summary with number of
classes, label prior, average length and partition size.

plus English Wikipedia for BERT, and WebText for
GPT-2. Table 1 shows a summary of PT corpora
with their text type and size.

Models. For pre-training, our main experiments
use the BERT masked language model (MLM) ar-
chitecture (Devlin et al., 2019). In A.3, we present
a parallel study using GPT-2 autoregressive models.
These are two well-studied transformer architec-
tures (Ethayarajh, 2019; Rogers et al., 2020) and
have a size suitable for running multiple PT experi-
ments. Following Liu et al. (2019b), we omit the
next sentence prediction (NSP) objective in BERT
and focus solely on MLM.

Embeddings. To obtain sentence embeddings,
we extract mean token embeddings from the last
layer. A.6 presents a study using alternative rep-
resentation functions, showing that different layer
and token selection strategies yield similar trends,
albeit with varying absolute performance scores.
We adopt this commonly used method (Reimers
and Gurevych, 2019) as our representative extrac-
tion strategy, though similar conclusions can be
drawn using other representation functions.

Evaluation Metrics. To quantify the changes un-
derwent by representations during PT, we employ
three evaluation metrics targeted at the model’s em-
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bedding space quality w.r.t. a task: probing and
two label-representation alignment scores. In A.4,
we explore an intrinsic clustering quality metric
that does not depend on task labels.

Probing (Ettinger et al., 2016; Adi et al., 2017)
uses weak classifiers to evaluate the task perfor-
mance attributable to the representation. We use
low-annotation probes to test the representation’s
ability to uncover structures that enable learn-
ing from few samples. In particular, the probes
are MaxEnt classifiers on top of the embeddings
trained with sample sizes ranging from 100 to 1000,
increasing in steps of 100. We report the area under
this learning curve (ALC), using accuracy for the
binary balanced and multi-class datasets, and F1
of the target class for binary imbalanced datasets
(Civil Comments and Wiki Toxic).

Task Hierarchical Alignment Score (THAS;
Gonzalez-Gutierrez et al., 2023) quantifies the
alignment between hierarchical clustering struc-
tures in the representation space and task labels.
This metric measures the degree of cluster purity
at different hierarchical levels. A representation ca-
pable of perfectly separating n classes into n pure
clusters will obtain the maximum score. More pre-
cisely, we used agglomerative clustering on the em-
beddings and, for each partition, measured the area
under the precision-recall curve using in-cluster
class prevalence as label predictions for each data
point. Fig.9 (A.5) shows the curves from which
ALC and THAS aggregate metrics where com-
puted.

Data-Dependent Complexity (DDC; Yauney and
Mimno, 2021) quantifies the compatibility between
a representation and a binary classification task. It
captures patterns through the eigen decomposition
of a kernel matrix that measures sample similar-
ity in the representation space. Label alignment is
evaluated based on the extent to which the label
vectors can be reconstructed from their projections
onto the top eigenvectors of the kernel matrix. Fol-
lowing Yauney and Mimno (2021), DDC score is
computed as the ratio of the real annotation’s DDC
to the average DDC over random annotations.

Evaluation Tasks. The three metrics described
above are computed on the test partitions of the
evaluation tasks listed in Table 2. These evaluation
tasks correspond to the original annotations of the
text corpora used to pre-train our models (Table 1).
In addition, we constructed two new multi-class
tasks from the two toxicity benchmarks, which

involve predicting the specific subtype of toxicity in
each comment: Wiki Toxic5 and Civil Comments6.
Further details on the construction of these datasets
are provided in A.1.

We repeat each experiment five times with dif-
ferent random seeds and report the average perfor-
mance. Additional experimental details are pro-
vided in A.1.

2.2 Main Results

We study how the choice of pre-training corpus
affects representation quality. More specifically,
our goal is to understand the necessary conditions
for cross-domain generalization. To this end, we
first pre-train models on each of the seven cor-
pora Sdomain described in Table 1. This is done
under two settings: in-domain (training solely on
Sdomain), and domain-adaptive (training with both
G+Sdomain). We then evaluate each resulting repre-
sentation across all nine target tasks using three rep-
resentation quality metrics: low-annotation prob-
ing, task alignment, and DDC. Additionally, we
compute the representation quality for the general-
domain representation (BERT) as a baseline.

For each metric, we compute a column of abso-
lute scores for the GD baseline, shown in the center
of Fig.1. We then generate two relative improve-
ment matrices, MID and MDA, corresponding to the
in-domain and domain-adaptive settings, respec-
tively (left and right matrices in Fig.1). Each ma-
trix entry M(i, j) represents the performance dif-
ference between the evaluated representation and
the GD baseline. For example, MDA(WTx,CvC)
denotes the difference in performance evaluated
on the WTx task when using domain-adaptive pre-
training on the SCvC corpus, compared to using the
GD representation. Higher scores indicate improve-
ment for low-annotation probing and task align-
ment, while lower values indicate DDC improve-
ment (lower DDC scores are better).

Focusing on the domain-relevant scenario
(i.e., matrix entries where the pre-training cor-
pus matches the evaluation task domain), and par-
ticularly within the in-domain setting (left matri-
ces), we find that, in most cases, pre-training on a
smaller, specialized dataset yields representations
comparable in quality to those produced by a GD
model trained on a much larger corpus. However,
the size of the corpus Sdomain can be a limiting fac-
tor. Representations learned from the smallest cor-
pora (STREC, SOhsu) fail to match or improve upon
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the performance of the GD representation. Simi-
larly, the limited size of the Wiki Toxic5 dataset
makes it a challenging task for probing.

Still focusing on the domain-matched cases, we
observe that the domain-adaptive strategy (right
matrices) yields the most substantial improvements
in representation quality (Gururangan et al., 2020).
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Figure 2: Probe performance (ALC%) as a function of
PT steps. A text domain (TD) and sparse bag-of-words
(BoW) baselines are shown for comparison.

Fig.2 complements the domain-matched results
showing low-annotation probing performance as
a function of the number of PT steps. Analogous
graphs for task alignment are shown in Fig.5 (see
A.2.1). We observe that ID pre-training can achieve
performance comparable to GD, given a sufficient
number of PT iterations.

We additionally included text domain (TD) base-
lines, i.e., models pre-trained on domains closely
related to the text type of each task: reviews for
IMDb, banned community comments for the tox-
icity datasets, tweets for Sentiment140, news arti-
cles for AG-News, medical texts for Ohsumed, and
question-answer pairs for TREC. These models are
described in more detail in A.1.

For the Ohsumed dataset, the TD baseline in-
dicates that G is not well suited to the medical
domain, where a text-specific model yields signif-
icantly better representations. At the same time,
it also shows that SOhsu is not large enough to
produce high-quality representations on its own,
suggesting that corpus size is a limiting constraint.

Turning to cross-domain performance, where
the pre-training corpus domain Sdomain differs from

Binary Tasks All Tasks
Metric ncvg E[accL1] ncvg E[accL1]

∆Probe 75.85 80.30 73.91 57.18
∆THAS 66.67 64.89 55.39 56.26
∆DDC 71.71 96.00

Table 3: Spearman correlation (%) between similarity
of pre-training and target task distributions and repre-
sentation quality improvement gains.
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Figure 3: Correlation between similarity of pre-training
corpus and target task distributions and representation
quality differences using all datasets.

the task domain Stask, the outcomes are mixed. In
some cases, domain-specific pre-training improves
representation quality; in others, it degrades perfor-
mance.

Notably, when the two domains are highly re-
lated (such as SWTx and SCvC), the resulting rep-
resentations generally support better performance
on relevant probes (Wiki Toxic, Wiki Toxic5, Civil
Comments, and Civil Comments6). In contrast, do-
mains like SOhsu and SAgN, which are unrelated to
most tasks, perform poorly in cross-domain probes.
Similarly, the smallest corpus from a dissimilar do-
main (STREC), yields the weakest representations.

A natural explanation for these observations
is that the effectiveness of domain-specific pre-
training depends on the distributional similarity
between the pre-training domain and the target task
domain (Grangier and Iter, 2022).

To test this hypothesis, we computed two distri-
butional similarity metrics. The first, n-gram cov-
erage (ncvg), measures the proportion of n-grams
observed in the target task distribution that also
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appear in the pre-training distribution:

ncvg =
|Nt ∩Nc|

|Nt|
,

where Nt is the set of unique n-grams (up to size
n) observed in the target distribution St, and Nc is
the analogous set in the pre-training corpus Sc.

A classical metric for measuring distribution dis-
tance is the Kullback and Leibler’s (1951) diver-
gence between the n-gram distributions Pt and Pc:

KL =
∑

n∈Nt

Pt(n) log
Pt(n)

Pc(n)

However, this metric is problematic in our case due
to sparsity: for many n-grams, Pc(n) is zero. To
address this, we propose a more robust metric, suit-
able for sparse distributions. This metric estimates
the expected L1-accuracy when using Pc(n) as a
proxy for Pt(n):

E[accL1] = 1−
∑

n∈Nt

Pt(n) · |Pt(n)− Pc(n)|

Notice that both metrics are asymmetric.
To validate our hypothesis, we computed the cor-

relation between representation quality improve-
ments under the domain-adaptive scenario and
these two similarity metrics. As shown in Table 3,
there is a strong correlation between distributional
similarity and gains in representation quality. Fig.3
shows the scatter plots of these metrics computed
across all evaluation tasks. Additional correlation
graphs for the binary tasks are provided in A.2.2.

3 Related Work

In theoretical studies, Ge et al. (2024); Deng et al.
(2024) attributed the advantage of PT to the induc-
tion of useful representations and to learning com-
plexity reduction. Tripuraneni et al. (2020) showed
that shared representations enable transfer learning,
improving generalization across tasks, even when
annotation coverage is sparse (Du et al., 2021). Do-
main adaptation depends on the diversity of those
tasks and the relative sample sizes (Grangier and
Iter, 2022). In this work, we empirically investigate
the adaptability of transformer representations and
their ability to generalize across diverse tasks in a
controlled experimental setting.

Domain-specific data has been used to train dif-
ferent PLMs from scratch (Beltagy et al., 2019;
Lee et al., 2019, inter alia) or via domain adapta-
tion (Gururangan et al., 2020; Han and Eisenstein,

2019). Aharoni and Goldberg (2020) studied the
implicit notion of domain in PLMs, Krishna et al.
(2023) studied task-domain PT, and Chronopoulou
et al. (2022) leveraged the cross-domain overlap
using adapters. In contrast, we investigate the rep-
resentation changes that enable domain adaptation
in different PT scenarios.

Representation properties have been studied us-
ing probing tasks (Ettinger et al., 2016; Adi et al.,
2017; Conneau et al., 2018; Hewitt and Man-
ning, 2019) or analyzing their relation to anno-
tations (Gonzalez-Gutierrez et al., 2023; Yauney
and Mimno, 2021; Zhou and Srikumar, 2021).
Representation learning dynamics has been ex-
plored across various syntactic (Chiang et al., 2020;
Saphra and Lopez, 2019), semantic (Templeton
et al., 2024; Liu et al., 2021, 2019a), or multilin-
gual model capabilities (Wang et al., 2024; Blevins
et al., 2022). The role of representations in general-
ization has been studied for linguistic phenomena
(Choshen et al., 2022; Warstadt et al., 2020) or fac-
tual knowledge (Zhang et al., 2021). These works
have not explored dynamics in varying PT scenar-
ios, with a focus on cross-domain generalization.

4 Conclusion

This paper compared pre-trained representations
obtained under different pre-training scenarios. We
used three representation quality metrics to eval-
uate how effectively transformer-based represen-
tations, learned from diverse pre-training corpora,
can be leveraged for a target task. We draw two
main conclusions:

1. The success of cross-domain representation
transfer can be predicted by the degree of similar-
ity between the n-gram distributions of the pre-
training and target domains. While this conclu-
sion may seem intuitive, to the best of our knowl-
edge, this is the first empirical study to provide
a thorough analysis of cross-domain adaptation
of transformer representations to substantiate it.

2. Pre-trained representations learned from rela-
tively small, domain-specific corpora can be
highly competitive. This suggests that the rel-
evance of the PT data may be more important
than its size. High-quality models can thus be
developed using only domain-specific data, with-
out requiring extensive GD corpora and with a
fraction of the computational resources.
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Limitations

This empirical study explored the properties of
transformer-based representations using MLM
(BERT) and autoregressive (GPT-2) pre-trained
models. While our focus is on any transformer-
based representation, we have not compared our
results with other transformer architectures. We be-
lieve the findings are representative, but a broader
experimental setup would allow for more robust
conclusions.

Although current state-of-the-art LMs present in-
teresting properties that deserve our attention, the
methods presented in this work do not scale. In
other words, pre-training very large LMs is not fea-
sible with medium-size computational resources.

Fine-tuning is a widely used approach for adapt-
ing pre-trained representations for downstream
tasks. However, this work focuses solely on the
changes induced by pre-training, without any su-
pervised learning. Our aim is to understand how
self-supervised pre-training alone shapes represen-
tations to support cross-domain transferability. The
impact of fine-tuning on representation quality is
an important research direction in its own right,
which we leave for future work.

We adopted an empirical framework that allows
us to assess representation performance not only
through probing tasks, but also by measuring prop-
erties of the representation space in relation to the
target task (such as task alignment) to better ac-
count for structural changes in representations that
may explain performance differences due to pre-
training. While a more diverse set of tasks (as
in Conneau et al. 2018 and similar works) could
provide a more comprehensive evaluation of the
capabilities of representations, appropriate parallel
metrics that capture changes at the representation
level are currently lacking. As a result, our ex-
perimental design is limited to classification tasks.
Expanding to a broader task set could could sup-
port a more general and robust evaluation, but at
the cost of reduced interpretability.

In particular, the DDC metric we use to evalu-
ate embedding performance is restricted to binary
classification tasks. Although this metric is consis-
tent with the other representation quality measures
employed, this constraint may limit the generaliz-
ability of our findings.

Potential Risks

We do not foresee any potential societal risks de-
rived from the use of the methods presented in this
work.

Acknowledgements

This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 853459. The
authors gratefully acknowledge the computer re-
sources at ARTEMISA, funded by the European
Union ERDF and Comunitat Valenciana as well
as the technical support provided by the Instituto
de Física Corpuscular, IFIC (CSIC-UV). This re-
search is supported by a recognition 2021SGR-
Cat (01266 LQMC) from AGAUR (Generalitat de
Catalunya).

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi,

and Yoav Goldberg. 2017. Fine-grained analysis of
sentence embeddings using auxiliary prediction tasks.
Preprint, arXiv:1608.04207.

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747–
7763, Online. Association for Computational Lin-
guistics.

Jason Ansel, Edward Yang, Horace He, Natalia
Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski,
Geeta Chauhan, Anjali Chourdia, Will Constable,
Alban Desmaison, Zachary DeVito, Elias Ellison,
Will Feng, Jiong Gong, Michael Gschwind, Brian
Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Lau-
rent Kirsch, Michael Lazos, Mario Lezcano, Yanbo
Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Ma-
her, Yunjie Pan, Christian Puhrsch, Matthias Reso,
Mark Saroufim, Marcos Yukio Siraichi, Helen Suk,
Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao,
Eikan Wang, Keren Zhou, Richard Zou, Xiaodong
Wang, Ajit Mathews, William Wen, Gregory Chanan,
Peng Wu, and Soumith Chintala. 2024. Pytorch 2:
Faster machine learning through dynamic python
bytecode transformation and graph compilation. In
Proceedings of the 29th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, ASPLOS
’24, page 929–947, New York, NY, USA. Association
for Computing Machinery.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.

22038

https://arxiv.org/abs/1608.04207
https://arxiv.org/abs/1608.04207
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371


In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Terra Blevins, Hila Gonen, and Luke Zettlemoyer. 2022.
Analyzing the mono- and cross-lingual pretraining
dynamics of multilingual language models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3575–
3590, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. 2019. Nuanced met-
rics for measuring unintended bias with real data for
text classification. In Companion Proceedings of
The 2019 World Wide Web Conference, WWW ’19,
page 491–500, New York, NY, USA. Association for
Computing Machinery.

Tommaso Caselli, Valerio Basile, Jelena Mitrović, and
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A Appendix

A.1 Experimental Details

Text Corpora Domain-specific corpora were
constructed concatenating the text fields within a
dataset, if they contained multiple. We used all the
partitions present in the dataset except the test set.
This includes training, development (if available),
and unsupervised (IMDb only) partitions.

Toxicity datasets (Wiki Toxic and Civil Com-
ments) were pre-processed to remove any markup
and non-alphanumeric characters except relevant
punctuation.

Multi-class Dataset Variants As part of our eval-
uation tasks defined in §2, we constructed two
new multi-label datasets: Wiki Toxic5 and Civil
Comments6. These datasets are available on the
HuggingFace Hub:

• Wiki Toxic5: A cglez/wiki_toxic_multi

• Civil Comments6: A cglez/civil_comments_multi

These datasets are based on Wiki Toxic and Civil
Comments toxicity datasets respectively, which
contain a general toxicity annotation with addi-
tional subtype annotations: insult, threat, obscene,
attack on identity groups, or sexually explicit. We
excluded the severe toxicity label for its rarity and
not being well distinguished with other classes.
The subscript in the dataset denotes the total num-
ber of label classes.

To construct these datasets, we first found those
samples that contain a single subtype annotation,
i.e. without overlapping with other subtypes. Such
unambiguous toxicity subtype samples are assigned
their corresponding subtype label. Samples flagged
with the general toxicity label, but that were not
annotated with any specific subtype, constitute an-
other class called ‘other’. Table 4 contains a class
statistics summary.

Dataset Label prior% #train #test

Wiki Toxic 5 identity attack 2.1 193 81
insult 16.2 1530 603
obscene 24.0 2233 931
threat 1.5 146 55
other 56.2 5707 1710

Civ. Com. 6 identity attack 6.4 9298 455
insult 70.4 101787 5234
obscene 2.6 3788 208
sexual explicit 1.9 2720 140
threat 2.5 3676 184
other 16.2 23459 1175

Table 4: Multi-label toxicity dataset statistics.

According to these statistics, although a subset
of texts are common to the original datasets, these
new tasks differ substantially from the originals in
terms of number of classes, prior distribution and
difficulty.

Pre-training Table 5 presents the parameters
used in model pre-training.

Parameter Value

architecture BERTBASE
hidden size 768
max. tokens 512
vocabulary size 30,522
activation gelu
dropout 0.1
batch size GPU 32
grad. accumulation 3
optimizer AdamW
learning rate 5e-5
weight decay linear
precision fp16

architecture GPT-2
hidden size 768
max. tokens 1024
vocabulary size 50,257
activation gelu_new
dropout 0.1
batch size GPU 8
grad. accumulation 12
optimizer AdamW
learning rate 5e-5
weight decay linear
precision fp16

Table 5: Model pre-training parameters.

We pre-trained models for different total number
of updates depending on the size of the dataset (see
Fig.4). Devlin et al. (2019) pre-trained BERT for
1M update steps, approximately 40 epochs over
the 3.3B word corpus. In comparison, the training
length and computation resources needed for our
models is orders of magnitude smaller.

Probes MaxEnt probes were implemented using
Scikit-learn toolbox (Pedregosa et al., 2011) and
NumPy (Harris et al., 2020).

Models Table 6 summarizes the models pre-
trained for our experimental study. These models,
along with their intermediate pre-training weights,
are available for download and use through the
HuggingFace Hub platform. More details on how
to use these models and their variants can be found
in their respective model cards on HuggingFace.

Our experiments employed the BERT implemen-
tation from the HuggingFace Transformers library
(Wolf et al., 2020) with PyTorch (Ansel et al., 2024)
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Model PT Corpus Model Card

BERTBASE ID AG-News cglez/bert-ag_news-uncased
Civil Comments cglez/bert-civil_comments-uncased
IMDb cglez/bert-imdb-uncased
Ohsumed cglez/bert-ohsumed-uncased
Sentiment 140 cglez/bert-s140-uncased
TREC cglez/bert-trec-uncased
Wiki Toxic cglez/bert-wiki_toxic-uncased

DA AG-News cglez/bert-dapt-ag_news
Civil Comments cglez/bert-dapt-civil_comments-uncased
IMDb cglez/bert-dapt-imdb-uncased
Ohsumed cglez/bert-dapt-ohsumed-uncased
Sentiment 140 cglez/bert-dapt-s140-uncased
TREC cglez/bert-dapt-trec-uncased
Wiki Toxic cglez/bert-dapt-wiki_toxic-uncased

GPT-2 ID AG-News cglez/gpt2-ag_news
IMDb cglez/gpt2-imdb
Ohsumed cglez/gpt2-ohsumed
TREC cglez/gpt2-trec
Wiki Toxic cglez/gpt2-wiki_toxic

DA AG-News cglez/gpt2-dapt-ag_news
IMDb cglez/gpt2-dapt-imdb
Ohsumed cglez/gpt2-dapt-ohsumed
TREC cglez/gpt2-dapt-trec
Wiki Toxic cglez/gpt2-dapt-wiki_toxic

Table 6: Pre-trained models generated in this empirical study, made available in the HuggingFace Hub. More details
on how to use these models are provided in the corresponding model cards.

backend. The models were trained using a single
NVIDIA Tesla Volta V100 32GiB PCIe GPU. Sim-
ilarly, GPT-2 experiments used the HuggingFace
implementation and were computed using a single
NVIDIA A100 40GiB PCIe GPU.

Text Domain Models The models used as spe-
cialized domain (TD) baselines in Fig.2 are the
following:
• BERT Review (Xu et al., 2019): Domain-

adapted BERT to e-commerce reviews for sen-
timent analysis and option evaluation. Used as
TD for IMDb dataset.
A activebus/BERT_Review

• BERTweet (Nguyen et al., 2020): A pre-trained
BERT for English Tweets. This specialized
model is used as baseline for Sentiment 140.
A vinai/bertweet-base

• HateBERT (Caselli et al., 2021): A domain-
adapted BERT for abusive language detection
in English using Reddit comments from banned
communities. TD model for Wiki Toxic, Wiki
Toxic5, Civil Comments, and Civil Comments6.
A GroNLP/hateBERT

• Sentence-BERT (Reimers and Gurevych, 2019):
Different models pre-trained for semantic sim-
ilarity, using various datasets containing 215M
question-answer pairs. This model is based on

MPNet (with similar size to BERT) and used as
TD for TREC.
A sentence-transformers/multi-qa-mpnet-base-dot-v1

• NewsBERT (Wu et al., 2024): A BERT-base
pre-trained on RealNews corpus, used as TD for
AG-News dataset.
A uclanlp/newsbert

• BiomedBERT (Gu et al., 2021): a pre-trained
BERT using abstracts and full articles from the
PubMed medicine library. This model is used as
TD for Ohsumed dataset.
A microsoft/BiomedNLP-BiomedBERT-base-uncased-

abstract-fulltext
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A.2 Supplementary Results
A.2.1 Task Alignment Dynamics
Complementing the learning dynamics study in
§2.2, Fig.4 presents additional results showing task
alignment as a function of pre-training steps, which
were omitted from the main text.
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Figure 4: Task alignment (THAS%) performance as a
function of PT updates in the three PT scenarios. Text
domain (TD) and BoW baselines are shown for compar-
ison.

A.2.2 Performance Differences Correlation
To complement the correlation study presented in
§2.2, this section presents the scatter plot generated
between the distribution distance measurements
and representation quality improvements. Fig.5
presents the correlation plot for the binary tasks,
therefore it includes the DDC metric that is only
defined for this type of tasks. As in the previous
analysis, this comparison only considers the repre-
sentations obtained in the domain-adaptive setting.

A.3 GPT-2 Domain Representations
In this section, we present a parallel study to that
described in §2 using the GPT-2 model architec-
ture for our pre-training experiments. As before,
we pre-train GPT-2 models in three pre-training
(PT) scenarios: general domain (GD), in-domain
(ID), and domain-adaptive (DA). For the GD sce-
nario, we use the standard GPT-2 model pre-trained
on its original WebText corpus. For the domain-
specific scenarios, we use the following text cor-
pora: SIMDb, SWTx, STREC, SAgN, and SOhsu (see
§2.1 and Table 1 for further details).
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Figure 5: Correlation between distribution similarity
and representation quality improvements for binary
datasets and BERT-based domain-adapted representa-
tions.

Pre-training is performed using the causal lan-
guage modeling objective on each corpus. Domain-
specific models are pre-trained for an increasing
number of epochs, with intermediate checkpoints
saved to analyze learning dynamics.

To evaluate the learned representations, we use
both low-annotation probing and task alignment,
applying them to the following tasks: IMDb,
Wiki Toxic, Wiki Toxic5, TREC, AG-News, and
Ohsumed.

Fig.6 shows the performance of GPT-2 represen-
tations in the cross-domain setting. The results are
qualitatively similar to those obtained with BERT
representations (see Fig.1). The best performance
for each task is typically achieved when the rep-
resentations are learned from the relevant domain
corpus, while more dissimilar corpora tend to yield
lower performance. Looking at the representations
of the smallest corpora, corpus length also appears
to influence the effectiveness of the learned GPT-2
representations. Once again, the domain-adaptive
strategy produces the most effective representa-
tions.

Fig.7 illustrates how representation performance
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Figure 6: Performance of cross-domain GPT-2 pre-
trained representations.
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Figure 7: GPT-2 representation performance as a func-
tion of PT steps.

evolves with continued pre-training. The learning
dynamics for GPT-2 mirror those observed with
BERT. However, ID representations generally re-
main below the performance of GD representations.
This may be due to the extensive pre-training of the
standard GPT-2 model on WebText, which estab-
lishes a high-performance baseline that is difficult
to surpass.

Metric ncvg E[accL1]

∆Probe 68.84 48.78
∆THAS 27.26 49.43
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Figure 8: Correlation between distribution similarity
and representation quality improvements for GPT-2
domain-adapted representations. We report Spearman’s
coefficients in the table above and the corresponding
scatter plots bellow.

Finally, Fig.8 presents the correlation between
domain similarity metrics and representation gains
achieved through GPT-2 pre-training. As in the
BERT case, we observe a correlation between
these factors, although the coefficients are gener-
ally lower (particularly for n-gram coverage). The
scatter plots also reveal a greater number of outliers
in the GPT-2 results.

Overall, these findings suggest that the observed
phenomena are consistent across transformer-based
models, reinforcing the generality of our conclu-
sions.

A.4 Clustering Quality
To analyze the changes in the embedding struc-
tures produced by pre-training from the clustering
quality perspective, we computed DBI scores at
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various granularity levels. We evaluated the hierar-
chical clustering partitions employed to compute
task alignment. Due to the computational cost of
DBI, we only computed scores every 25 partitions.

In Fig.9 (right), we report DBI curves as a func-
tion of the number of clusters in the partitions for
the same representations considered in the task
alignment curves. Lower DBI scores indicate better
clustering partitions. Table 9 shows the ADBI ag-
gregate scores, i.e. the area under the DBI curves,
corresponding to the eight feature extraction strate-
gies presented in A.6.

Domain-adaptive PT has a limited impact on
clustering quality. Interestingly, for coarse parti-
tions with fewer clusters (early points in the curves),
clustering quality often declines relative to the GD
baseline. In contrast, in-domain PT alters the clus-
ter structures leading to larger differences in DBI
scores compared to the baseline. This is expected,
as the clustering structures, starting from a random
spatial distribution, evolve as PT progresses.

In general, PT decreases the quality of clus-
ters. For a given representation, whether using
in-domain PT or domain-adaptive PT, DBI scores
tend to worsen as the number of training epochs
increases. This illustrates how the spatial encod-
ing that embeddings undergo during PT does not
translate into compactness and separability of the
induced structures. Instead, the induced structures
do not lend themselves to straightforward assump-
tions about the global structure of the embedding
space.

The behavior of this embedding space property
is uncorrelated with task alignment and probing,
as the relative ranking of representations is not
preserved. This observation is consistent with the
findings in Gonzalez-Gutierrez et al. (2023).

A.5 Curves for Aggregate Evaluation Metrics
Fig.9 illustrates the curves used to calculate the
aggregate metrics presented in §2 and A.4. The
left of the figure shows the first 500 points of the
task alignment curve used to compute THAS. The
center of the figure presents the low-annotation
probing learning curves used to compute ALC. To
the right, DBI curves as a function of cluster granu-
larity define the clustering quality aggregate metric.

For these examples, we used pre-trained text
representations using a single feature extraction
strategy (the last layer with token average pool-
ing) of our four binary classification tasks. We de-
note BERT pre-trained with the standard corpus as

BERTBASE. Models pre-trained in-domain are de-
noted by the dataset as a subscript (e.g., BERTIMDb
for a model pre-trained solely on IMDb). Domain-
adapted models indicate both corpora in subscripts,
as in BERTBASE+S140, which represents BERTBASE
continued with Sentiment140. Epoch counts are
included in the model notation (e.g., BERTIMDb-80
for the 80-epoch IMDb model).

A.6 Comparison of Feature Extraction
Strategies

To better understand the role of model’s layers and
tokens during PT, Tables 7, 8 and 9 present aggre-
gate metrics for the same datasets and models as
in §2, evaluated using different feature extraction
strategies.

We consider four layer extraction methods: last
layer (1), second-to-last (2), concatenating the last
four (cat1:4) and averaging all twelve (µ1:12); in com-
bination to two token pooling strategies: average
of all tokens (µ), and taking the [CLS] token alone
(CLS).

Interestingly, the conclusions in §2 remain con-
sistent across the various representation functions,
indicating that embedding improvement during PT
affects all the layer and token representations in the
model.

Analyzing BERT’s token representations re-
veals that the general domain BERT achieves its
strongest performance when extracting embed-
dings from all the tokens, outperforming the repre-
sentations derived from the [CLS] token, regardless
of the layer. This pattern remains consistent for ID
representations, with the exception of models pre-
trained on Wiki Toxic. This outcome is expected,
as the NSP objective, which primarily leverages the
[CLS] token, was not computed during PT. Interest-
ingly, DA models generate relatively strong [CLS]
token representations. This result aligns with the
findings of Liu et al. (2019b), who suggests that
MLM is sufficient for effective PT.

Regarding layer selection, feature extraction typ-
ically favors upper layers (Devlin et al., 2019;
Reimers and Gurevych, 2019), as they are more
specialized than lower layers (Ethayarajh, 2019).
From the perspective of our metrics, this holds true
in these PT scenarios, although the differences be-
tween layers are not very pronounced. Strategies
that incorporate lower layers, such as averaging all
12, often produce strong representations and even
outperform upper-layer strategies for datasets like
Civil Comments or Wiki Toxic.
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Task Alignment Low-annotation Probing Clustering Quality
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Figure 9: Representation performance curves for different datasets using BERT embeddings generated from the last
layer with token average pooling. Representations are produced under three PT scenarios: general domain (dashed
blue), in-domain (green), and domain-adaptive (red). Multiple pre-training stages are shown with the number of
epochs indicated in the representation name.
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Task Alignment %

Dataset PT Ep. µ
1

CLS
1

µ
2

CLS
2

µ
cat1:4

CLS
cat1:4

µ
µ1:12

CLS
µ1:12

IMDb ID 20 88.86 87.72 88.82 87.34 88.86 87.45 88.71 87.49
40 88.93 87.38 88.72 86.99 88.83 87.06 88.78 87.21
80 97.51 95.74 97.50 95.20 97.10 94.94 97.04 94.84

GD 95.36 94.56 95.31 93.45 95.25 93.43 94.58 92.49

DA 20 97.72 98.70 97.78 98.95 97.71 98.89 96.37 98.51
40 97.80 99.04 97.90 99.20 97.79 99.15 96.55 98.87

Sentiment140 ID 10 93.05 92.79 93.01 92.54 92.87 92.73 92.63 92.60
20 93.20 92.66 93.23 92.72 93.12 92.71 92.83 92.52

GD 92.43 92.36 92.40 92.10 92.68 91.86 92.20 91.34

DA 10 94.02 94.87 94.04 94.92 94.18 94.80 93.40 94.18
20 94.10 94.84 94.13 95.00 94.32 94.93 93.45 94.25

Wiki Toxic ID 20 90.11 90.60 90.12 90.69 90.50 90.59 90.76 89.59
40 90.96 91.86 90.99 92.11 91.00 92.01 91.07 91.19

GD 91.06 86.54 90.49 86.64 90.75 86.72 91.07 87.26

DA 20 91.91 91.09 91.90 92.33 91.96 91.80 91.85 91.93
40 92.08 91.12 91.91 92.63 92.18 91.62 92.02 91.75

Civil Comments ID 10 74.27 74.25 74.33 72.25 73.89 74.55 74.29 73.68
20 73.96 74.20 73.77 72.68 74.22 74.23 74.31 74.05

GD 73.98 71.33 73.23 71.46 73.69 71.28 74.21 71.87

DA 10 76.00 76.69 75.93 75.63 75.61 76.75 75.43 74.92
20 75.93 76.86 75.85 75.26 75.49 77.21 75.51 75.32

Table 7: Task alignment of pre-trained BERT embeddings across different datasets and feature extraction strategies.

ALC %

Dataset PT Ep. µ
1

CLS
1

µ
2

CLS
2

µ
cat1:4

CLS
cat1:4

µ
µ1:12

CLS
µ1:12

IMDb
(acc)

ID 20 61.60 55.34 61.89 54.27 62.17 55.41 63.15 56.01
40 61.70 55.11 61.63 54.12 62.62 55.10 62.99 55.91
80 84.11 81.33 83.98 80.55 83.86 80.99 83.04 80.53

GD 81.39 78.52 81.23 77.09 82.14 78.69 80.15 76.61

DA 20 86.72 88.03 86.67 88.51 87.04 89.03 84.92 87.87
40 87.12 89.40 87.35 89.30 87.57 89.73 85.42 89.10

Sentiment140
(acc)

ID 10 70.19 68.73 69.74 68.59 70.90 70.25 69.63 68.49
20 71.92 70.41 71.50 70.04 72.35 71.97 71.44 71.05

GD 71.84 70.97 72.52 69.38 73.58 71.86 71.00 69.18

DA 10 76.71 77.09 76.80 75.89 78.47 78.31 76.29 77.24
20 77.48 77.16 77.60 76.53 78.86 79.06 77.30 77.52

Wiki Toxic
(F1+)

ID 20 49.96 52.96 49.54 53.21 49.63 53.11 49.17 52.81
40 50.54 55.75 50.70 56.42 50.97 56.13 50.37 56.31

GD 50.09 48.18 50.10 46.58 51.41 48.11 52.60 48.49

DA 20 54.55 54.00 55.01 54.98 54.81 55.72 55.43 54.50
40 54.68 53.75 54.51 54.76 55.05 55.51 55.39 54.34

Civil Comments
(F1+)

ID 10 18.78 20.44 17.44 20.29 19.01 20.26 19.84 20.67
20 18.38 20.23 17.90 20.40 19.22 19.76 19.79 20.40

GD 23.63 19.63 23.08 17.52 23.92 17.88 24.61 19.43

DA 10 25.98 26.32 25.56 26.04 26.99 26.30 26.96 27.36
20 25.94 26.16 25.64 26.18 26.88 26.15 26.12 27.69

Table 8: Area under the learning curve (ALC) of low-annotation probes for different feature extraction strategies.
We report accuracy for balanced datasets and F1 of the target class for imbalanced datasets.
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ADBI

Dataset PT Ep. µ
1

CLS
1

µ
2

CLS
2

µ
cat1:4

CLS
cat1:4

µ
µ1:12

CLS
µ1:12

IMDb ID 20 1.18 1.07 1.18 0.97 1.16 0.99 1.12 1.01
40 1.21 0.90 1.21 0.83 1.20 0.84 1.15 0.87
80 1.39 0.92 1.38 0.88 1.30 0.89 1.25 0.93

GD 1.35 1.36 1.32 1.32 1.31 1.35 1.29 1.33

DA 20 1.34 1.33 1.34 1.33 1.32 1.37 1.29 1.35
40 1.34 1.33 1.34 1.32 1.32 1.36 1.28 1.35

Sentiment 140 ID 10 1.39 1.26 1.41 1.28 1.38 1.28 1.37 1.33
20 1.41 1.27 1.43 1.29 1.40 1.29 1.39 1.33

GD 1.36 1.27 1.35 1.23 1.36 1.26 1.36 1.25

DA 10 1.36 1.24 1.36 1.25 1.36 1.24 1.35 1.19
20 1.37 1.24 1.36 1.26 1.37 1.25 1.35 1.20

Wiki Toxic ID 20 1.36 1.27 1.38 1.27 1.18 1.28 1.14 1.23
40 1.40 1.29 1.40 1.28 1.20 1.30 1.15 1.23

GD 1.20 1.24 1.23 1.26 1.21 1.29 1.16 1.25

DA 20 1.26 1.23 1.24 1.26 1.23 1.26 1.16 1.24
40 1.27 1.25 1.25 1.26 1.23 1.27 1.16 1.25

Civil Comments ID 10 1.46 1.36 1.49 1.32 1.42 1.36 1.44 1.40
20 1.48 1.39 1.50 1.34 1.44 1.39 1.45 1.40

GD 1.28 1.32 1.31 1.32 1.30 1.36 1.24 1.31

DA 10 1.32 1.33 1.26 1.36 1.32 1.35 1.25 1.33
20 1.32 1.35 1.26 1.37 1.32 1.37 1.25 1.34

Table 9: Clustering quality measured by the area under the DBI scores for pre-trained embeddings using diverse
feature extraction strategies. Lower scores mean better clustering.
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