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Abstract

Text embedding serves not only as a core com-
ponent of modern NLP models but also plays
a pivotal role in multimodal systems such as
text-to-image (T2I) models, significantly facili-
tating user-friendly image generation through
natural language instructions. However, while
offering convenience, it also introduces addi-
tional risks. Misalignment issues in T2I models,
whether caused by unintentional user inputs or
targeted attacks, can negatively impact the reli-
ability and ethics of these models. In this paper,
we introduce TEOI, which fully considers the
continuity and distribution characteristics of
text embeddings. The framework directly op-
timizes the embeddings using gradient-based
methods and then inverts them to obtain mis-
aligned prompts of discrete tokens. The TEOI
framework supports both text-modal and multi-
modal misalignment attacks, revealing the vul-
nerabilities of multimodal models that rely on
text embeddings. Our work highlights the po-
tential risks associated with embedding-based
text representations in prevailing T2I models
and provides a foundation for further research
into robust and secure text-to-image generation
systems.

1 Introduction

With the development of text embeddings (Le and
Mikolov, 2014; Kiros et al., 2015), as well as
GANSs (Goodfellow et al., 2014) and diffusion mod-
els (Ho et al., 2020), T2I models (Patashnik et al.,
2021; Ramesh et al., 2021; Yu et al., 2022; Ding
et al., 2021, 2022; Wu et al., 2022; Saharia et al.,
2022; Betker et al., 2023) have demonstrated re-
markable capabilities in producing realistic and di-
verse images guided by natural language prompts.
These models encode textual prompts into contin-
uous text embeddings and are trained to generate
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images that align with these prompts during infer-
ence. However, misalignment between text and im-
ages can not only degrade the performance of these
models but also lead to safety concerns. While ex-
isting methods (Arar et al., 2024; Agarwal et al.,
2024; Mrini et al., 2024; Liu et al., 2024d) focus
on improving alignment in T2I models, there is a
notable lack of research on vulnerabilities, attacks,
and defenses related to misalignment.

The misalignment attack demonstrates remark-
able efficacy in circumventing prompt filtering
mechanisms, a critical security safeguard in T2I
generation systems because the effectiveness of
such attacks stems from the discrepancy between
the textual prompt and the generated image. On
the other hand, the content of a single modality—
—either the input or the output of the T2I model—
may appear benign on its own, but the combination
of both modalities may cause negative overall ef-
fects. Our work highlights this critical vulnerability
and underscores the need for robust defense mech-
anisms targeting text encoders.

This paper highlights the critical role of text em-
bedding properties in text-image alignment and in-
troduces TEOI (Text Embedding Optimization and
Inversion), a novel framework designed to test and
challenge the alignment robustness of T2I models.
For a given target image, misalignment attack via
TEOI leverages gradient-based optimization (Shi
et al., 2024) to directly manipulate text embedding,
unlike traditional adversarial attacks that make sub-
tle modifications to discrete text prompts. This
approach empowers TEOI to effectively identify
text embeddings that, while exhibiting substantial
semantic deviation from the target image, still suc-
cessfully guide the T2I model to generate visually
similar outputs. The optimized embedding is then
inverted into a natural language attack prompt us-
ing our text embedding inversion method.

Furthermore, we extend TEOI to multimodal
attack scenarios. Unlike previous multimodal at-
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tacks (Yang et al., 2024b; Zhang et al., 2024b),
where adversarial perturbations are applied sep-
arately or alternately across modalities, our ap-
proach simultaneously optimizes both image pix-
els and text embeddings through gradient descent.
Fig. 1 shows several examples of misaligned text-
image pairs manipulated by TEOL

She i survoundedr @ Pass

(b) Image editing

(a) Image generation

Figure 1: Examples of misalignment attack on T2I mod-
els via TEOIL Top row: model inputs; Bottom row:
targeted generated images. Adversaries bypass prompt
filters to generate either NSFW content or intentionally
misaligned text-image pairs.

In summary, our contributions are as follows:

* First, we prospectively delve into the text en-
coders adopted by T2I models and propose a
novel and systematic attack method TEOI to
challenge the alignment robustness of these mod-
els, revealing potential security risks introduced
by text embeddings. TEOI leverages gradient-
based optimization directly on text embeddings
to achieve task-specific objectives. The opti-
mized embeddings are then inverted into natu-
ral language text by a well-designed inversion
method.

¢ Second, for multi-modal attacks, we introduce a
novel paradigm that simultaneously trains text
embeddings and image pixels, achieving joint
adversarial training across modalities for the first
time and enabling a more efficient search method
for multimodal feasible solutions.

* Third, we propose a targeted adversarial training
method that could efficiently circumvent prompt
filters or jailbreak predefined prompt templates
that constrain user input.

2 Related Work

Text embedding. Text embedding technolo-
gies (Le and Mikolov, 2014; Kiros et al,
2015) form the foundation of most contemporary
NLP (Devlin et al., 2019; Radford et al., 2021) and
T2I models. These embeddings can be further cat-
egorized into word embeddings, which represent
individual words, and sentence embeddings, which
capture the semantic meaning of entire sentences.

Typical T2I models adopt sentence embeddings
of two forms: either the last hidden state which
refers to the final-layer hidden representations of
each input token in a transformer model such as
BERT (Devlin et al., 2019), or the pooled output
which is typically derived from the [CLS] token’s
representation passed through a dense layer with a
tanh activation.

Some studies (Lai et al., 2020; Bhalla et al.,

2024) investigated the distribution characteristics
of pooler output, shedding light on their statisti-
cal properties and behavior in high-dimensional
spaces. Meanwhile, text embedding inversion mod-
els (Song and Raghunathan, 2020; Morris et al.,
2023; Li et al., 2023a; Huang et al., 2024) explored
methods to recover original text from pooler out-
put.
Text inversion of T2I. In T2 models, there are two
primary types of text inversion methods. The first
type (Ruiz et al., 2023; Gal et al., 2023; Voynov
et al., 2023) aims to invert images into the text
embedding space, representing them using new
tokens outside of the predefined vocabulary. The
second type (Wen et al., 2024; Zhang et al., 2024a;
Mabhajan et al., 2024) focuses on inverting visual
concepts into natural language prompts. Both types
of inversion techniques are generally designed to
enhance image synthesis capabilities.

In this work, we propose a universal targeted
inversion attack applicable to diverse text embed-
ding types used in T2I models, demonstrating the
potential risks posed by such inversion techniques.
Text-to-image alignment. Extensive re-
search (Radford et al., 2021; Chen et al., 2020;
Kim et al., 2021; Tie et al., 2025; Fang et al.,
2025c¢, 2023¢, 2022, 2023b, 2025a, 2024c, 2025e,
2024b, 2025d, 2024d, 2023a, 2021b, 2025b, 2020,
2021a, 2024a; Fang and Hu, 2020) has focused on
achieving alignment between different modalities
within multimodal systems. In the context of text-
to-image alignment, some researchers focus on
enhancing the model’s ability to generate images
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that faithfully adhere to the given prompts (Arar
et al., 2024; Agarwal et al., 2024; Mrini et al.,
2024), while others deploy safety alignment (Liu
et al., 2024d), prompt filters, or image content
checkers to prevent the generation of harmful
content. In contrast, our work on misalignment
attacks aims to identify adversarial prompts
that can bypass prompt filters while remaining
semantically mismatched with target images, yet
still enabling the model to generate the target
image.
Multi-modal adversarial attack. Multimodal ad-
versarial attacks (Goodfellow et al., 2015; Dong
et al., 2025a,b, 2024c,d,b, 2023a, 2022, 2023b,
2024a; Zhu et al., 2023; Liu et al., 2024b,c; Liu
and Hu, 2025a; Liu et al., 2024a, 2023a; Liu and
Hu, 2022, 2025b, 2024; Liu et al., 2023b, 2021,
2020; Cai et al., 2025b, 2024, 2025a; Yang et al.,
2024a; Tao et al., 2023; Hu et al., 2022; Zhou
et al., 2025; Yuan et al., 2025) introduce subtle
perturbations in each modality to manipulate the
model output. Such attacks (Zhang et al., 2022; Lu
et al., 2023; Yin et al., 2023; Yu et al., 2023) first
emerged in the context of vision-language models
(VLMs) (Vinyals et al., 2015; Liu et al., 2024b).
Yang et al. (2024b) and Zhang et al. (2024b) were
among the first to explore multimodal adversarial
attacks on T2I models. These methods achieve
more effective results by combining attacks across
modalities. However, their optimization processes
still alternate between modalities to some extent.
In contrast, our TEOI-based multimodal attack
differs in two key aspects. First, in the text modal-
ity, it addresses the challenge of optimization on
discrete text by enabling direct adversarial train-
ing on text embeddings. Second, our approach
attempts simultaneous training across both modali-
ties, enabling a more unified and efficient optimiza-
tion process.

3 Method

3.1 Threat Model

This work comprehensively investigates the align-
ment robustness of T2I models under the following
two representative white-box attack scenarios, ex-
posing the vulnerabilities in the alignment mecha-
nisms and potential risks of malicious exploitation.
We consider adversaries with full knowledge of the
target model architecture including text/image en-
coders in models like StyleCLIP (Patashnik et al.,
2021) or Stable Diffusion (Rombach et al., 2022)

and complete access to model parameters, but with-
out any modification privileges. Given a specific
target image, the attacker’s objective is to leverage
this model information and text embedding inver-
sion method to optimize adversarial text prompts
that: (1) bypass prompt filters and (2) exhibit signif-
icant semantic misalignment or even contradiction
with the target image, while (3) successfully induce
the T2I model to generate outputs visually similar
to the target.

3.2 Approach Overview

Our method capitalizes on the continuous nature
of text embeddings and gradient-based optimiza-
tion to conduct targeted T2I misalignment attacks
against T2I models, deliberately creating signif-
icant semantic discrepancies between generated
images and their corresponding text prompts while
maintaining visual fidelity to target images, as il-
lustrated in Fig. 2.

target image

odal Leat :
Frozen 2
................................. 'l

T2l Model

et { Loss
2| gradient-based optimization Function
i

\ synthesized
| T < image

)

ng

faange 2 o BIBINE] s
finto- o
frasm—

initial prompt

; Prom
N

Text embgdd.

image enjbedding

input image

adversarial image perturbation

Figure 2: The architecture of TEOI framework. We op-
timize on continuous text embeddings and invert them
back into corresponding prompts using embedding in-
version method in order to bypass prompt filter and
manipulate the image generation. For multimodal at-
tack, we conduct gradient-based training simultaneously
on input images as well as the text embeddings.

To comprehensively demonstrate the versatility
and effectiveness of TEOI framework, we system-
atically evaluate it across three critical dimensions:
(1) considering both single-modal (text-only) and
multi-modal (text-image) attack scenarios, (2) ex-
amining both image generation tasks (where mod-
els synthesize images solely from textual prompts)
and text-guided image editing tasks, and (3) testing
on both GAN-based and diffusion-based T2I model
architectures. This multi-faceted experimental de-
sign ensures rigorous validation of our framework’s
generalizability across different attack settings, task
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formulations, and model implementations.

Therefore, we construct two representative at-
tack scenarios. In the first scenario, we perform
a text-modal TEOI attack against diffusion-based
T2I models. Here, we employ projected gradient
descent to optimize the token embeddings, which
are subsequently inverted back into discrete text to-
kens in the filtered vocabulary through a projection
operation. At this point, TEOI can alternatively be
interpreted as an acronym for Token Embedding
Optimization and Inversion.

The second scenario involves multimodal TEOI
attacks targeting GAN-based image editing models.
In this setting, we jointly optimize both the image-
space pixel values and text embeddings in the form
of pooler outputs. The optimized text embeddings
are then inverted into discrete text prompts using a
pretrained text embedding inversion model.

3.3 Text-Modal Attack on Diffusion Models
via Token Embedding Inversion

T2I models typically rely on a pretrained text en-
coder, 7y(-), to transform the text prompt p into a
text embedding, e = 7(p) € RY, where d is the
dimension of the text embedding. We can rewrite
p in its tokenized form p = [py,po, ..., pr] € N,
where p; € {0,1,...,|V| — 1} is the i™ token’s in-
dex, V is the vanilla vocabulary codebook, |V] is
the vocabulary size, and L is the prompt length in
the form of tokens. Each token is first mapped to its
corresponding token embedding vector p through a
fixed-size token-to-embedding lookup table. These
embedding vectors, rewritten as p in their token em-
bedding form, are then combined with positional
embeddings to form the input to the transformer
layers, which subsequently produce the final en-
coded sentence representation.

The final text representation typically exists in
two forms: (1) The pooler output, with shape
(batch_size, hidden_size), serves as an aggregated
sentence-level representation; and (2) The last hid-
den state, with shape (batch_size, sequence_length,
hidden_size), comprises the contextualized repre-
sentations of all input tokens from the model’s final
layer.

Our TEOI framework operates in two distinct
modes: the first mode performs optimization and
inversion based on the token embedding vectors
(discussed in this section), while the second mode
operates on the pooler output (to be presented in
the following section Sec. 3.4).

In image generation task, a T2I model equipped

with text encoder 7(+) takes text prompt p as in-
puts and generates a synthesized image Xy, =
T2I(7(p)). Given a target image x4, the goal of
the text-modal attack on T2I generation is to find
a text prompt pgr Within the filtered vocabulary
Vr, which contains no bad words in the prompt
filter F', that would command the T2I model to
generate an image similar to x;4; but misaligned
with pgur. To achieve this, we would conduct a
two-stage training: first, optimize token embedding
€token, then invert it to text prompt pgi through
projected gradient descent.

3.3.1 Text Embedding Optimization

As the text embedding e is of continuous nature
and responsible for determining the synthesized
image Xy, We, inspired by the previous related
works, will try to optimize the text embedding as
a trainable variable e, by utilizing its gradient
information for an effective misalignment attack.

This section investigates against diffusion-based
T2I models. Since diffusion models typically con-
dition on the last hidden state of text inputs, which
are challenging to invert directly back to discrete
tokens, we instead optimize the token embeddings.
Due to the stochastic nature of the generation pro-
cess in diffusion models, Gao et al. (2023) pro-
poses the adoption of a distribution-based loss func-
tion, which is expressed as follows:

£ = max D(py(z|c’) [po(z]c)). (1)

For T2I diffusion models, the time-conditioned
U-Net (Ronneberger et al., 2015) is trained to pre-
dict noise during the diffusion process. As demon-
strated in (Rombach et al., 2022), the conditional
distribution in the text-to-image process can be im-
plemented by a denoising autoencoder €y (¢, t, ¢).
So we derive the TEOI training objective by mod-
ifying the conditional diffusion model’s original
optimization target to

L :Etxtgtﬁwe_ 69(X§gt7t77<e))ug]ﬂ (2)

where ¢ denotes a timestep in the diffusion pro-
cess, € represents the actual noise, €y corresponds
to the time-conditioned U-Net’s noise prediction,
and migt denotes the noised representation of the
target image x4 at timestep £.

Empirical results reveal that directly optimiz-
ing and projecting the initial prompt’s token em-
beddings e without constraints yields a prompt
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Ptk that suffers from poor interpretability, con-
sequently undermining the effectiveness of mis-
alignment attacks. To address this, we propose a
hybrid optimization strategy: for initial prompts
of fixed length L, we freeze a subset of token em-
beddings ef,. while treating the remaining por-
tion as trainable parameters e,,;. This approach
simultaneously preserves the attacker’s ability to
incorporate predefined semantic cues from the ini-
tial prompts while ensuring the final text maintains
human-readable quality. So we get the final objec-
tive

L= Et,xtgtﬁwe - 69(X1€gt7t7 T<e0pt7ef7"z))H%]'

3

3.3.2 Text Embedding Inversion

The second stage is to invert e, to text prompt
Popt Which would form pg4y together with py,...
For diffusion models, inspired by PH2P (Mahajan
etal., 2024) and PEZ (Wen et al., 2024), we employ
delayed projected gradient descent (PGD) to map
the token embeddings e, to their respective near-
est neighbor tokens within V. The discretized e
are then either fed into the next optimization itera-
tion or, upon meeting termination criteria, inverted
into corresponding tokens to form p,;, which is
subsequently concatenated with p ;. to yield the
final adversarial prompt.

This inversion process is based on the key ex-
perimental finding that projecting continuous token
embeddings to their nearest discrete neighbors in
the vocabulary space induces minimal perturbation
to both the resulting text representations in the form
of last hidden state and the final generated image.

The total algorithm is shown in Algorithm 1.

Algorithm 1 Text-Modal Attack using TEOI

Require: T2I model, text encoder 7(-), fixed prompt parts
Pfr- and its token embedding ey,, target image X;g4¢,
step size «

1: initialize eop;

2: fori=1,2,--- ;ndo

3: compute loss £ with random t// Eq. (3)
4

5

gradient descent: €,pt < €opt — - Ve,,, L
project to filtered neighbor: eqpt < Proj(eopt)
6: end for
7: invert to text patk = E2T (€opt) + Pfr=

Ensure: misaligned prompt pa+¢k

3.4 Multimodal Attack on GAN via Pooler
Output Inversion

In image editing tasks, T2I models equipped with
both text and image encoders take as input a textual
editing command and a source image to produce
the edited output, as shown in Fig. 2. Given a
specific source image and a target image, our mul-
timodal misalignment attack aims to discover (1)
an editing command that bypasses the prompt fil-
ter and (2) a perturbed source image such that the
generated output exhibits significant semantic mis-
alignment with the original input while maintaining
visual fidelity to the target.

Our approach concurrently attacks both the tex-
tual prompt and input image through coordinated
optimization of both modalities, as shown in Fig. 2.
For the image domain, we apply ¢, norm con-
strained perturbations within a predefined budget,
optimizing the adversarial noise through iterative
gradient updates. Since our analysis in this subsec-
tion focuses on GAN-based image editing models
that typically employ pooler outputs as their text
representation, we directly optimize pooler outputs
of these sentence embeddings in the text modal-
ity. The optimized embeddings are subsequently
decoded into discrete textual commands using a
pretrained text embedding inversion model.

The multimodal attack is also executed using a
two-stage approach. We optimize the text embed-
ding and the input image to find a filtered prompt
and adversarially perturb the input image within
the defined budget to further amplify the misalign-
ment. This dual optimization strategy allows for
a more comprehensive attack, leveraging both tex-
tual and visual modalities to disrupt the alignment
mechanisms of the T2I model.

3.4.1 Joint Optimization of Text Embedding
and Image

Since both textual prompts and input images de-
terministically govern the output generation when
model parameters are fixed, and considering that
text embeddings and image pixels share continu-
ous properties, we formulate a joint optimization
framework across both modalities. When perform-
ing this coordinated optimization, several critical
factors must be systematically incorporated to con-
struct an effective unified objective function:

Cross-modal misalignment loss. First of all, we
should consider the goal of the misalignment attack.
In our case, the T2I model uses directly the text
encoder 7(+) and image encoder +(-) of CLIP (Rad-
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ford et al., 2021) for its multi-modal semantic un-
derstanding capability. Although the input image
is now treated as a variable, the perturbation ap-
plied under the norm constraint is imperceptible to
human observers, resulting in virtually no visible
changes. Therefore, the primary objective of the
cross-modal misalignment loss remains focused on
maximizing the semantic discrepancy between the
textual prompt and the target image. So, by comput-
ing the cosine similarity between text embedding
e and image embedding ey = ¢(X¢4¢), We get the
cross-modal misalignment loss

eopt : etgt (4)

['mis =1- ’
leopt | [[€tgell

Image similarity loss. On the other hand, to ensure
Xsyn R Xigt, We calculate the MSE between X,
and x4 and get the image similarity loss

Lsim = MSE(T21(ept, t(Xin)), Xtgt).  (5)

When the input image belongs to a specific cate-
gory, such as human faces, we can enhance the
training process by incorporating face similarity
metrics (Deng et al., 2019) in addition to MSE loss.
This ensures better training outcomes by leveraging
domain-specific knowledge to guide the optimiza-
tion.

Embedding distribution constraint loss. Com-
pared with typical text adversarial attacks that aim
to modify the text input on the character level, word
level, or sentence level, the gradient-based text em-
bedding optimization gives much more freedom in
searching for the feasible text prompt. However,
text embedding optimization without appropriate
constraints would lead to failure in inverting the
optimized e, to the text prompt p,¢tx, because
the embedding space is just a small subset of the
optimization space.

As previously discussed, optimizing the token
embeddings requires projection onto the vocabu-
lary embedding space to ensure proper inversion
into discrete tokens. We now examine the neces-
sary constraints for optimized pooler outputs to
maintain invertibility to coherent discrete text.

Compared with one-hot or other sparse encod-
ings, CLIP text embeddings in the form of pooler
output are dense vectors, being £» normalized so co-
sine similarity could be used to measure their sim-
ilarity, thus all the text embeddings lie on the sur-
face of a unit hypersphere. Wang and Isola (Wang
and Isola, 2020) prove that the contrastive loss of

CLIP drives the text embeddings to follow a uni-
form distribution on the unit hypersphere. How-
ever, through experiments we found a curious phe-
nomenon that real text embeddings encoded from
prompt texts tend to be more ’sparse’ than a ran-
domly sampled vector on the hypersphere, which
means most values in the vector still tend to be
near zero compared with a random sample. We
partially attribute this finding to the linear represen-
tation hypothesis (Mikolov et al., 2013; Park et al.,
2023; Arora et al., 2018, 2016; Faruqui et al., 2015;
Merullo et al., 2022; Seth et al., 2023; Bhalla et al.,
2024) which suggests that many semantic concepts
are approximately linear functions of sparse repre-
sentations for both language modeling and multi-
modal models. As the CLIP text encoder 7(+) has
an input text length limit and the text prompts we
use are usually short sentences, all that makes the
real text embeddings tend to be sparse.

As e, are {5 normalized, the ¢1 norm ||eqp||1
of e,y could reflect its sparsity. So, in order to
narrow the search space and to drive e, toward
feasible solutions, we introduce text embedding
distribution constraint loss

N
1
Liist = ||€opt]1 — N ; leilli], (6)

where e; is the text embedding for one of our total
N sampled text prompts from the corpus, which
helps to constrain the sparsity of e;.

At last, the final overall objective is to minimize:

ﬁall = ﬁmis + ['sim + ﬁdist (7)

to get optimized e,,; and adversarial x4, which
could generate X, that is similar to x;4. Eq. (7)
is a mathematical formulation of a multi-objective
nonconvex optimization problem and Zhou et al.
(2024) discuss the convergence of Adaptive Gradi-
ent Methods, such as RMSProp (Hinton, 2012), in
the context of nonconvex optimization.

3.4.2 Text Embedding Inversion

The second stage is to invert e, in the form of
pooler output to text prompt

Pattk = E2T(eopt)- (8)

We use the off-the-shelf Vec2Text (Morris et al.,
2023) architecture to train on CLIP (Radford et al.,
2021) text encoder on large corpus datasets to get
the text embedding inversion model E27. Once
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Algorithm 2 multi-modal attack using TEOI

Require: T2I model, text encoder 7(-), image encoder ¢(-),
input image X;,, target image Xq¢, inversion model
E2T, filter words F', similarity threshold T, perturbation
budget ¢, step size a,

initialize €opt < 7("), Xadv  Xin
fori=1,2,--- ,mdo
fort:=1,2,--- ;'ndo

compute total loss Liotq: {see Eq. (7)}
optimize: €,pt — €opt — & Ve, Ltotal
update: Xqdy ¢ Xado — @ - 5ign(Vx, 4, Ltotal)
normalize: Xqdv < clamp(Xqdv, Xin —€, Xin +€)
end for
invert, substitute bad words pattr = E27 (€opt)
10:  generate image Xsyn < 1T2I(7(Pattk), t(Xin))
11:  if cos(t(Xsyn, t(Xtgt))) > T then

WeRINhw 2

12: break
13: end if
14: end for

Ensure: misaligned prompt pas:k, perturbed input image

Xadv

pretrained ahead, E27" could be used for inference
afterward without any further fine-tuning.

Then we replace any bad words in pg with
semantically similar good’ words to circumvent
the prompt filter. Furthermore, although the per-
formance of Vec2Text is impressive, there is still a
similarity gap between e, and 7(E2T (eqpt)), as
well as the distributional difference between e,
and the real embeddings of texts, which leads to
the occasional failure to reconstruct x;¢; as dis-
cussed in Appendix A.7. To increase the attack
success rate, we would use TEOI in a retrying loop
with finite times. The total algorithm is shown in
Algorithm 2.

4 Experiments

4.1 Experimental Settings

T2I model with prompt filter. For our experi-
mental validation, we select separate representative
T2I models corresponding to each attack scenario
described above. To evaluate text-modal misalign-
ment attacks, we employ Stable Diffusion v1.5,
v2.1 and XL (Rombach et al., 2022) which utilize
the last hidden state of text embeddings as condi-
tional input. For multimodal misalignment attacks,
we choose StyleCLIP (Patashnik et al., 2021) as
our representative GAN-based T2I model, notable
for its use of pooler output as conditional input.

We implement prompt filtering at the token
level by employing four offensive word lists: LD-

NOOBW!, LDNOOBWV2?, CMU Bad Words®
and Google Profanity List*, with each model in-
stance being equipped with one such filter. All
textual content involved in this work is in English.
Datasets. For experimental evaluation, we employ
distinct datasets tailored to each model’s charac-
teristics: we utilize the COCO (Lin et al., 2014)
and Not-Safe-For-Work (NSFW) images in MMA
(Yang et al., 2024b) for diffusion models across
diverse scenes and objects, while adopting the
FFHQ (Karras et al., 2019) dataset for StyleCLIP
on image editing. From each dataset, we systemati-
cally select representative images to construct our
test set, ensuring comprehensive evaluation cover-
age while maintaining experimental efficiency.
For the COCO dataset, we employ crafted
prompt templates that exhibit intentional seman-
tic conflicts with target images along specific at-
tributes, whereas for StyleCLIP, we utilize benign
editing commands to generate target images.
Text embedding inversion. We train the
Vec2Text (Morris et al., 2023) model to invert
the text encoder of StyleCLIP. At first, we gen-
erate pooler outputs on the large-scale corpus
MS MARCO (Nguyen et al., 2016), then train a
zero-step model on these text embeddings for 100
epochs, followed by training a corrector model for
another 100 epochs based on the previously trained
model. This results in the final inverter. The entire
process is computationally expensive, requiring ap-
proximately two weeks on an NVIDIA Tesla A800
80GB GPU. We discuss the time-consuming issue
in detail in Appendix A.6.
Baselines. To the best of our knowledge, there is
currently no specific method for conducting mis-
alignment attacks on T2I models. Therefore, we
adopted MMA-Diffusion(Yang et al., 2024b), a
new and highly performing approach to multimodal
adversarial attacks, as the baseline for our exper-
iments. To ensure consistency in objectives, we
made two modifications: (1) In the text-modal at-
tack, BLIP-2 (Li et al., 2023b) is employed to gen-
erate descriptive captions for each target image
in TEOI, which subsequently serve as the target
prompts for MMA. (2) In the image-modal attack,
the objective function becomes the negative of the

"https://github.com/LDNOOBW/
Zhttps://github.com/LDNOOBWY2/
3https://www.cs.cmu.edu/~biglou/resources/
bad-words. txt
4https://github.com/coffee—and—fun/
google-profanity-words
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Dataset CoCco NSFW

Model Filter Metric Metric Metric Metric Metric Metric Metric Metric
Method | ASR-4 ASR-1 | ASR-4 ASR-1 | ASR-4 ASR-1 | ASR-4 ASR-1 | ASR-4 ASR-1 | ASR-4 ASR-1 | ASR-4 ASR-1 | ASR-4 ASR-1

SD VL5 MMA | 68% 48% 59% 38% 69% 49% 66% 46% 59% 36% 45% 25% 58% 35% 57% 33%
TEOI | 87% 67% 72% 54% 85% 65% 81% 61% 76% 56% 59% 39% 76% 55% 74% 52%

SDv2.1 MMA | 62% 43% 53% 3% ] 65% 43% 61% 41% 50% 33% 2% 21% 49% 33% 47% 31%
TEOI | 81% 62% 67% 49% 79% 60% 77% 55% 70% 49% 55% 34% 69% 48% 66% 36%

SDXL MMA | 54% 43% 53% 32% ‘ 64% 44% 60% 41% 51% 31% 39% 19% 49% 30% 48% 27%
TEOI | 80% 61% 65% 48% 78% 59% 74% 53% 68% 50% 51% 33% 68% 48% 65% 49%

Table 1: Comparison of TEOI and MMA with text-modal attack on image-generation task. Bold values indicate the

best performance.

cosine similarity between the generated image and
the target image.

During the text-modal MMA, the input images

are kept constant. In multimodal attack, we first
conduct the text-modal attack to obtain the adver-
sarial prompt, then freeze this adversarial prompt
and perform the image perturbation.
Evaluation metrics. The Attack Success Rate out
of N syntheses (ASR-N) is adopted as the evalu-
ation metric. The attack is considered successful
once the adversarial text, containing no bad word in
the prompt filter, enables the T2I model to generate
at least one image, out of N, whose similarity to
the target image exceeds the predefined similarity
threshold.

4.2 Text-Modal Attack

Attack the prompt. The visualization of the
text-modal attack results can be observed in Ap-
pendix A.2. From comprehensive quantitative re-
sults in Tab. 1 we can see that our TEOI framework
reaches an average ASR-4 of 77.2% and ASR-1 of
57.9% for COCO and an average ASR-4 of 66.4%
and ASR-1 of 45.4% for NSFW-MMA on differ-
ent models and prompt filters. This reveals the in-
herent vulnerability of T2I models in maintaining
text-image alignment, particularly when subjected
to misalignment attacks, despite their training on
aligned text-image data.

We posit that the attack efficacy of TEOI stems
from the inherent limitations of text embeddings in
semantic representation, which creates a discrep-
ancy between their encoded meaning and human-
perceived semantics.

Comparison with baselines. As shown in Tab. 1,
TEOI outperforms the baseline method by a great
margin. This can be attributed to TEOI’s end-to-
end generation of misaligned image-text pairs. The
frozen components in text prompts are primarily
responsible for semantic misalignment between
text prompts and generated images, while the op-
timizable components of the prompts enable the

generated images to closely resemble the target im-
ages. In contrast, baseline methods primarily focus
on the similarity between the adversarial and target
texts, neglecting the alignment issue.

Attack goad Male face: londe havir. lack hair.

Long hair.

Target image

Inputimage

Adv input
image

Misaligned
prompt via
TEOI

Edited image

Figure 3: Visualization results of multimodal attacks
on image editing. TEOI enables target image synthesis
using misaligned adversarial text, applicable for both
concealed editing purposes and training-phase data poi-
soning.

4.3 Multimodal Attack

Attack the prompt and image. In the context of
multimodal attacks, as shown in Fig. 3 and Tab. 2,
multimodal TEOI achieves a higher average suc-
cess rate than unimodal TEOI in Tab. 1. This im-
provement is primarily attributed to the inclusion of
pixel-level perturbations that remain imperceptible
to human observers yet effectively deceive model
judgments.

Comparison with baselines. Furthermore, TEOI
framework exceeds the baseline methods in terms
of the multimodal attack success rate. We attribute
this to two key reasons. First, TEOI already out-
performs MMA in text-modal attacks, while their
image-modal attack implementations are basically
the same. More importantly, TEOI effectively lever-
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Filter LDNOOBW LDNOOBWYV2 | CMU Bad Words | Google Profanity List
Model Method | ASR-4 ASR-1 | ASR-4 ASR-1 | ASR-4 ASR-1 | ASR4 ASR-1
StyleCLIP MMA 70% 51% 60% 39% 71% 51% 68% 47%
TEOI 89% 68 % 73% 56 % 87% 66 % 83% 63 %

Table 2: Comparison of TEOI and MMA with multimodal attack on image-editing task. Bold values indicate the

best performance.

ages both text embeddings and pixel gradients for
optimization. which allows to search the multi-
modal space more efficiently.

5 Conclusion

We introduce a novel perspective on the vulnerabil-
ity of T2I models to mismatches between prompts
and generated images, and propose an effective
attack method to exploit this vulnerability. Lever-
aging the widespread use of text embeddings in
diffusion-based or GAN-based T2I models, we
present TEOI, a highly efficient method for ad-
versarial prompt exploration and discovery through
gradient-based optimization in continuous text em-
bedding spaces. TEOI could also conduct multi-
modal attack, demonstrating effective circumven-
tion of prompt filters and jailbreaking predefined
prompt templates.

Finally, we innovatively extend TEOI to the mul-
timodal domain, proposing the first gradient-based
approach to simultaneously optimize image and
text modalities. Experiments demonstrate that this
multimodal approach outperforms single-modality
attacks and its multimodal baseline with effective
circumvention of prompt filters and jailbreaking
predefined prompt templates.

Limitations

While our approach targets white-box T2I models
accepting text embeddings (covering diffusion and
GAN variants), extensions to non-embedding con-
ditioning or black-box transfer attacks are left as
future work.

Ethical Considerations

Note that T2I alignment may be more fragile than is
assumed. This study focuses on evaluating the vul-
nerability of T2I models with respect to image—text
alignment. Our goal is to encourage the devel-
opment of defense mechanisms for T2I models
against attacks such as TEOI. Here we briefly out-
lined three potential mitigation directions:

* Prompt filtering based on semantic similarity.
This method goes beyond simple keyword match-
ing by measuring the semantic similarity (e.g.,
cosine similarity) between the input prompt and
a list of sensitive phrases. Prompts that do not
explicitly contain sensitive keywords—but con-
vey inappropriate content—can be effectively
detected if they exceed a predefined similarity
threshold.

* Filtering based on syntactic or linguistic anoma-
lies. This defense leverages metrics such as
perplexity (Bengio et al., 2000; Vaswani et al.,
2017) to assess the fluency and grammaticality of
prompts, as TEOI-generated adversarial prompts
(especially those produced via discrete token op-
timization) sometimes contain syntactic irregu-
larities or low readability.

» Safety alignment for improving model robust-
ness. Interestingly, TEOI can also be used as a
defense mechanism. By using TEOI to generate
image-text pairs that are perceptually detectable
by humans, we can curate hard training exam-
ples. Aligning these adversarial texts with cor-
responding ground-truth images and fine-tuning
the model on such data can improve its robust-
ness against misalignment-based attacks. In the
supplementary experiments provided in the ap-
pendix, we first confirm the effectiveness of our
proposed method.

We argue that advanced prompt filters capable
of rejecting semantically inconsistent or grammati-
cally flawed text inputs could help mitigate TEOI-
based attacks. Complementarily, TEOI itself can
be leveraged to generate adversarial samples for
safety-aligned fine-tuning of pretrained T2I mod-
els.
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A Appendix

A.1 Implementation Details

For the text-modal attacks on diffusion models, we
utilize an L-BFGS (Shanno, 1970) optimizer with
a base learning rate of 0.8, while the multimodal at-
tack adopts an RMSprop (Hinton, 2012) optimizer
with a learning rate of 0.001. Regarding the /o,
bound of image attack, we set ¢ = 16/255. All
experiments were performed using the PyTorch
framework on an NVIDIA Tesla A800 80G GPU. -

A.2 More Visualizations

A supplementary visualization of text-modal at-
tacks on image generation is presented in Fig. 4.

A.3 Evaluation on Safety Fine-tuned T2I
Models

We conducted additional experiments on Safe SD
v1.5 (Liu et al., 2024d), which incorporates safety
fine-tuning, in comparison to vanilla SD v1.5. The
results are presented in Tab. 3. The results show
that our TEOI framework still outperforms the base-
line in terms of attack effectiveness on safety fine-
tuned T2I models. The safety-finetuned Safe SD
v1.5 model demonstrates improved robustness, ef-
fectively reducing the attack success rate, confirm-
ing the benefits of safety fine-tuning. In fact, this
fine-tuned model can serve as a mitigation mecha-
nism against TEOI, as discussed in Sec. 5.

A.4 Evaluation on Black-box Models

We have supplemented our study with a trans-
fer attack scenario using TEOI to assess the vul-
nerability of SaaS diffusion APIs (e.g., MidJour-
ney>, Leonardo.AI®). Furthermore, we note that
Leonardo.Al is a customized variant of Stable Dif-
fusion XL (SDXL). To align with this, our TEOI
framework was trained on SDXL as the surrogate
model.

For fair comparison with the baseline MMA
method, we adapted the objective function in our
black-box attack to match that of the baseline, en-
suring consistency in both the evaluation dataset
and metrics. Tab. 4 shows the summary of the
comparative experimental results.

A.5 Additional NSFW Categories

Our initial focus on a limited set of NSFW themes
(primarily adult content) was driven by practical
considerations, as existing prompt filtering systems
predominantly target adult or sexually explicit ma-
terial.

In the supplementary experiments, we have ex-
tended our evaluation to include three additional
NSFW categories: violent, hateful, and harassing.
These were constructed using a combination of re-
sources, including filtered subsets of the LAION
dataset (Christoph et al., 2024) and Unsafe Diffu-
sion dataset (Qu et al., 2023).

Tab. 5 presents the new experimental results on
these extended NSFW categories:

A.6 Inversion Pre-training

We would like to clarify and contextualize the train-
ing cost of Vec2Text from the following perspec-
tives:

* First, the reported training time in our paper is
based on a single-GPU setup without specific
optimizations. In more practical multi-GPU set-
tings, such as using an 8-GPU cluster and en-
abling lower-precision formats like bfloat16, we
have observed that training Vec2Text for a single
text encoder can be completed within one day.

 Second, our proposed TEOI framework includes
two variants: one based on text embedding inver-
sion and another on token embedding inversion.
Notably, only the text embedding variant requires
separate pre-training of the inversion model. The
token embedding version, in contrast, does not

5ht’cps: //midjourney.com/
https://leonardo.ai/
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Figure 4: Visualization results of text-modal attacks on image generation. Bad words within the image caption
are colored in red. Blue text denotes mandatory adversarial components. Black censor boxes are added by the
authors for ethical considerations. (a) Vanilla outputs prompted by caption: black images indicate rejection by
prompt filter. (b) Syntheses prompted by MMA. (c) Our syntheses can faithfully reflect the target image without

mentioning sensitive words while containing the predefined sentence. Images are plotted with SD v1.5.

require additional training. It is broadly applica-
ble across both GAN- and diffusion-based T2I
models and works effectively for both image gen-
eration and image editing tasks. Therefore, in
most practical attack scenarios, the token embed-
ding variant can be used to avoid unnecessary
training overhead.

* Lastly, for scenarios where attackers do prefer to
use the text embedding variant of TEOI, we ar-
gue that the cost is often amortized or avoidable.
First, a given text encoder (e.g., CLIP-ViT/L)
is frequently reused across multiple major T2I
models such as Stable Diffusion v1.5, v2.1, and
XL. Thus, a single trained inversion model can
be applied across a wide range of targets. Sec-
ond, the number of widely used text encoders
is relatively small. If TEOI or Vec2Text sees
broader adoption, the community could easily
share commonly used inversion models via plat-

forms like HuggingFace, making pre-trained in-
version models accessible and reducing the need
for redundant training.

A.7 Text Reconstruction Fidelity

We focus on measuring the similarity between two
embeddings in Sec. 3.4.2: the optimized text em-
bedding obtained after each inner-loop iteration,
as shown in Algorithm 2, and the text embed-
ding derived from the Vec2Text-inverted text of the
optimized embedding. We use cosine similarity
between these two embeddings as a quantitative
metric for reconstruction fidelity.

Based on our experimental results, the aver-
age cosine similarity is 0.7502. For reference,
Vec2Text achieves a cosine similarity of 0.95 for
out-of-domain reconstruction. While there is a gap
between these values, it is important to note that
Vec2Text’s embedding is derived from real text,
whereas ours is obtained through gradient-based
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Filter LDNOOBW LDNOOBWYV2 | CMU Bad Words | Google Profanity List
Model Method | ASR-4 ASR-1 | ASR-4 ASR-1 | ASR-4 ASR-1 ASR-4 ASR-1
SD VL5 MMA 59% 36% 45% 25% 58% 35% 57% 33%
TEOI 76 % 56 % 59% 39% 76 % 55% 74 % 52%
Safe SD V1.5 MMA 12% 8% 9% 6% 12% 7% 12% 7%
TEOI 16 % 12% 13% 8% 16% 11% 15% 10%

Table 3: Comparison of TEOI and MMA with text-modal attack on image-generation task under SD v1.5 and Safe
SD v1.5 models. Bold values indicate the best performance.

NSFW Theme | Adult Bloody Horror Racism Politics Notable
#adv. Prompt | 50 30 90 30 50 50
MMA Bypass rate 22 55.33 70 63.33 66 100
ASR-4 (%) 18 50 58.73 15.79 63.63 48.57
Midj. Overall ASR-4 | 3.96  27.67 41.11 10 42 48.57
TEOI Bypass rate 24 63.33 74.44 70 68 100
ASR-4 (%) 25 57.89 65.67 19.05 73.53 52
Overall ASR4 | 6 36.67 48.89 13.33 50 52
MMA Bypass rate 64 100 100 100 100 100
ASR-4 (%) 59.38 86.67 85.56 73.33 88 58
Leon. Overall ASR-4 | 38 86.67 85.56 73.33 88 58
TEOI Bypass rate 66 100 100 100 100 100
ASR-4 (%) 66.67 90 88.89 76.67 92 62
Overall ASR-4 | 44 90 88.89 76.67 92 62

Table 4: Comparison of TEOI and MMA with text-modal attack on image-generation task under Midjourney and

Leonardo.Ai.

optimization. Furthermore, our empirical results
demonstrate that the current reconstruction fidelity
is sufficient to ensure strong attack success rates, as
evidenced in Sec. 4.3. This analysis reinforces that
our method maintains effective semantic consis-
tency despite the inherent challenges in embedding

inversion.
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Filter LDNOOBW LDNOOBWYV2 | CMU Bad Words | Google Profanity List

Model Method | ASR-4 ASR-1 | ASR-4 ASR-1 | ASR-4 ASR-1 | ASR-4 ASR-1
Sexual MMA 59% 36% 45% 25% 58% 35% 57% 33%

TEOI 76 % 56 % 59% 39% 76 % 55% 74% 52%
Violent MMA 66% 44% 54% 37% 64% 42% 61% 43%

TEOI 78 % 62% 65% 47 % 79 % 61% 74 % 59%
Hateful MMA 67% 48% 56% 39% 63% 45% 62% 44%

TEOI 79 % 64 % 67 % 50% 78 % 63% 74 % 58%
Harassing MMA 64% 44% 53% 36% 61% 44% 61% 39%

TEOI 77 % 61% 64% 48 % 77 % 59% 73% 55%

Table 5: Comparison of TEOI and MMA with text-modal attack on image-generation task under SD v1.5 for 4
NSFW categories. Bold values indicate the best performance.
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