
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 2221–2238
November 4-9, 2025 ©2025 Association for Computational Linguistics

Hardware-Aware Parallel Prompt Decoding for
Memory-Efficient Acceleration of LLM Inference

Hao (Mark) Chen1 Wayne Luk1 Ka Fai Cedric Yiu2 Rui Li3
Konstantin Mishchenko3 Stylianos I. Venieris3 Hongxiang Fan1,3

1Imperial College London, UK
2Hong Kong Polytechnic University, Hong Kong

3Samsung AI Center, Cambridge, UK
{hc1620,w.luk}@ic.ac.uk {rui.li,s.venieris}@samsung.com

konsta.mish@gmail.com cedric.yiu@polyu.edu.hk hongxiangfan@ieee.org

Abstract

The auto-regressive decoding of Large Lan-
guage Models (LLMs) results in significant
overheads in their hardware performance.
While recent research has explored various
speculative decoding techniques for multi-
token generation, these methods introduce high
memory costs from the additional weights and
KV cache of separate draft models, limiting ef-
ficiency in edge and long-context scenarios. To
overcome these limitations in edge-scale LLMs,
we propose a novel parallel prompt decoding
that requires only 0.0004% runtime memory
overhead by employing a unified single model
for both speculation and verification. Inspired
by the human natural language generation pro-
cess, PPD approximates outputs generated at
future timesteps in parallel by using multiple
prompt tokens. Furthermore, we present a
hardware-aware two-stage tree pruning algo-
rithm that adaptively optimizes this decoding
scheme to fully leverage the computational ca-
pacities on different GPUs. Through extensive
experiments across LLMs ranging from Mo-
bileLlama to Vicuna-13B on a wide range of
benchmarks, our approach demonstrates up to
2.49× speedup. Moreover, our parallel prompt
decoding can serve as an orthogonal optimiza-
tion for synergistic integration with existing
speculative decoding, showing up to 1.22× fur-
ther speed improvement. To support future de-
velopment, we have included our code imple-
mentation with this submission.

1 Introduction

The recent advances in large language models
(LLMs) are increasingly shaping and influencing
a wide range of AI applications. However, au-
toregressive generation, the de facto approach em-
ployed in LLM inference, suffers from inadequate
hardware performance due to its inherent sequen-
tial nature (Stern et al., 2018). Speculative decod-
ing (Leviathan et al., 2023; Chen et al., 2023; Kim
et al., 2024), an emerging acceleration technique,

0.0004% memory overhead
16-hour GPU training

2.24X speedup

(a) (b)

Figure 1: Comparison of (a) memory, speedup, and
training cost on MT-Bench with Vicuna-7B, where cir-
cle diameter represents training GPU hours, and (b) the
memory overhead change with sequence length.

employs a guess-and-verify framework for LLM
inference, where a smaller draft model first predicts
multiple tokens sequentially and then the original
LLM verifies them in parallel. Despite its poten-
tial, speculative decoding is constrained by high
training costs and memory overhead, as shown in
Figure 1. Particularly, this paper reveals that the
extra runtime memory required for draft model stor-
age and the KV cache—which scales linearly with
sequence length—limits its practicality in edge de-
vices, mobile environments, and long-context sce-
narios. Therefore, given the growing need for user
privacy and personalization, this paper focuses on
accelerating edge-scale LLMs via a novel more
memory- and cost-efficient acceleration solution.

Recent efforts have explored the possibility of
generating multiple tokens in parallel without rely-
ing on a separate transformer draft model (Santilli
et al., 2023). Approaches such as inserting addi-
tional decoding heads (Cai et al., 2024) and retriev-
ing frequently used tokens (He et al., 2023) are
employed to enhance performance. However, these
methods either make strong conditional indepen-
dence assumptions for tokens generated within a
single step (Cai et al., 2024) or rely on unparameter-
ized trained tokens that do not scale effectively (Lin
et al., 2024). Therefore, they often suffer from low
acceptance rates during inference.

To alleviate the complexity and overhead associ-
ated with the use of draft models while maintaining
a high acceptance rate, we propose Parallel Prompt

2221

Decoding (PPD), a novel architecture-agnostic and
memory-efficient framework that adopts prompt
tuning for non-autoregressive LLM inference. In-
spired by the human natural language generation
process where continuous words like common ex-
pressions and phrases are produced simultaneously,
PPD introduces the use of ensemble prompt to-
kens, the meticulously trained embeddings, for
multi-token prediction. Specifically, these trained
tokens are appended to the original input sequence
in parallel, enabling the concurrent generation of
multiple output tokens in a single forward pass.
The key intuition of PPD lies in the observation
that if trained properly, prompt tokens appended
to the input can approximate tokens generated at
future timesteps, thereby partially recovering the
missing conditional dependency information for
multi-token generation. By strategically position-
ing trained prompt tokens, PPD achieves up to a
28% higher acceptance rate when predicting long-
range tokens. Moreover, to facilitate the optimized
implementation of PPD across different hardware
platforms, we propose a hardware-aware two-stage
tree pruning technique that adaptively refines the
prompt structure during runtime based on the com-
putational resources available on the specific hard-
ware. As shown in Figure 1a, PPD achieves a
comparable speedup to the state-of-the-art specula-
tive decoding approaches with negligible memory
overhead and reduced training cost.

To demonstrate the effectiveness of our ap-
proach, we evaluate PPD on MobileLLaMA (Chu
et al., 2023), Vicuna-7b and Vicuna-13b (Chi-
ang et al., 2023). Running on a single GPU us-
ing the A100-40GB and RTX 4090, our method
achieves a speedup ratio for inference from 2.12×
to 2.49× across a diverse range of popular datasets
including MT-Bench, HumanEval, and GSM8K.
Our experiments demonstrate that PPD not only
achieves comparable throughput to the state-of-the-
art speculative decoding method, but it also man-
ages this with significantly fewer trainable param-
eters—specifically, 0.0002% of trainable parame-
ters—and incurs only a minimal memory overhead
(0.0004%), showcasing that PPD is remarkably
cost- and memory-efficient. The training of prompt
tokens can be completed in 16 hours using one
A100 GPU, 8 hours using four GeForce RTX 3090
GPUs, compared to the 1-2 days on four A100
GPUs required for Eagle (Li et al., 2024b). Fur-
thermore, since PPD does not require the modifi-
cation of the original LLM or the addition of extra

networks, it is highly adaptable and orthogonal to
other decoding techniques. For instance, it can be
effectively combined with a draft model to further
reduce inference latency.

Our contributions are summarized as follows:

• A novel Parallel Prompt Decoding (PPD) that
adopts cost-effective prompt tokens for non-
autoregressive LLM inference, achieving a
high acceptance rate for long-distance token
prediction with preserved output quality.

• A hardware-aware two-stage tree pruning
technique that adaptively optimizes the
prompt structure of PPD at runtime based on
the available compute and memory resources,
facilitating its efficient deployment on various
hardware platforms.

• An open-source implementation of PPD, ac-
companied by comprehensive evaluations on
various models and benchmarks. Our exper-
iments demonstrate that PPD achieves sig-
nificant speed improvements with negligible
memory overhead and reduced training cost.

2 Background and Related Work

To enhance the inference speed of LLM, various ap-
proaches adopt an iterative guess-and-verify strat-
egy to enable multi-token generation. In the guess-
ing phase, potential future tokens are proposed at
a faster speed than in traditional autoregressive
implementations. Subsequently, a parallelized ver-
ification process assesses which guessed tokens
should be accepted. Depending on how tokens are
generated during the guess stage, these approaches
can generally be categorized as i) speculative de-
coding and ii) parallel decoding.

2.1 Speculative Decoding
The guessing phase of speculative decoding adopts
a lightweight draft model to generate multiple to-
kens at an increased speed (Kim et al., 2024). Dur-
ing the verification stage, the original LLM deter-
mines the acceptance of the guessed tokens. It is
worth noting that both draft and original models
still follow the auto-regressive inference scheme.

Building on the speculative decoding scheme,
various studies have been conducted to further opti-
mize its inference speed. To improve the accuracy
of the draft model, Eagle (Li et al., 2024b) incor-
porates the hidden features into the draft model’s
forward pass. Recently, Eagle-2 (Li et al., 2024a)

2222

Embedding
Layer

Transformer Blocks

Prompt
Tokens

Train

Frozen

LLM

Efficient Training:
0.0002% parameters

16 GPU hours

Static Tree Prunning +
Hardware-Aware Online Optimization

LLM

it is

of

① Guess Phase

S1 S2

Guess (Candidate) token
Prompt token

Accepted token

LLM

②Verify Phase (+ Next Guess)

S1 S2

S1 S2

S1 S2

of

of

of

X

Candidate 3

Candidate 2

Candidate 1

X != venues
rejected

Guess tokens
match with
generated

token accept

Training Inference Scheme Deployment

P=0.7

P=0.1

P=0.2

P=0.3

P=0.6

P=0.1

Prompt Token
Budget: 4

Prompt Token
Budget: 2

P=0.3

P=0.5

P=0.2

Prompt Token
Budget: 3

Prompt Tokens Parallel In

Predicts Parallel Out

M
er

ge

it is one of the best venues with
respect to advancements in AI.

Human

Inspire
(Parallel Generation)

(Common Expr.)

one

one

one

one

best

venuesbest

the

the

the

the

best with

Figure 2: Overview of PPD. The left section shows the location of trainable parameters and the middle section
displays the combined guess-and-verify process during inference. The “prompt token" denotes the special token
with separately trained embeddings to perform parallel prediction.

enhances their approach using a context-aware dy-
namic tree construction. However, both Eagle and
Eagle-2 utilize a separate draft model for multi-
token generation, diverging fundamentally from
our prompt decoding approach. Moreover, their
dynamic tree construction scheme is an orthogonal
technique to our two-stage tree pruning method.
SpecInfer (Miao et al., 2024) adopts a tree-based
speculative inference and verification scheme, im-
proving the diversity of speculation candidates. Se-
quoia (Chen et al., 2024) optimizes the sparse tree
structure of speculative decoding by considering
the capability of the underlying hardware platforms.
Our tree pruning algorithm differs from Sequoia
by accounting for two types of tokens in the tree:
prompt tokens and guess tokens, whereas Sequoia
only considers guess tokens.

2.2 Parallel Decoding

To overcome the inherent limitations of autoregres-
sive inference and the memory overhead associated
with using a separate draft model, several attempts
have been made to integrate both guessing and ver-
ification using one unified model. Medusa1 (Cai
et al., 2024) introduces language model (LM) heads
at the final layer of the original LLM, facilitating
the generation of multiple tokens in a single for-
ward pass. It also utilizes tree attention masks
in its verification process to increase speed even
further. To enhance token drafting with retrieval-
augmented generation (Karpukhin et al., 2020),
Rest (He et al., 2023) introduce retrieval-based de-
coding tailored for specific scenarios. Inspired by
Jacobi decoding (Santilli et al., 2023) that adopts

1We categorize Medusa as parallel decoding because it
only adopts LM heads instead of separate models.

multiple special tokens to accelerate machine trans-
lation, Lookahead Decoding (Fu et al., 2024) im-
proves upon this method by generating parallel
n-grams and employing a caching memory pool.
To capture more information while using multiple
special tokens at distinct positions, PaSS (Monea
et al., 2023) and BiTA (Lin et al., 2024) train ad-
ditional token embeddings for parallel decoding.
Compared with these parallel decoding methods,
our proposed PPD introduces two key innovations
that distinguish it: 1) PPD trains the embeddings
of parameterized ensemble prompt tokens, 2) it
utilizes a hardware-aware two-stage tree pruning
algorithm for designing a sparse tree tailored to
each hardware platform.

3 Parallel Prompt Decoding (PPD)

The primary advantage of PPD lies in training em-
beddings for prompt tokens rather than developing
a separate model. Our method integrates three sub-
steps into a single decoding step, following the
guess-and-verify strategy: (1) candidate genera-
tion, where multiple candidate continuations2 are
predicted by strategically inserting the prompt to-
kens into the input sequence. We adopt tree atten-
tion (Miao et al., 2024) to merge the processing
of multiple candidates into a single forward pass;
(2) candidate verification, where two verification
schemes, exact matching (Fu et al., 2024) and typi-
cal acceptance (Cai et al., 2024), are implemented;
(3) candidate acceptance, where validated candi-
dates are integrated into the input and KV cache is
updated accordingly. Figure 2 presents the infer-
ence scheme of combining generation and verifica-

2A candidate token, also referred to as a "guess token", is
a draft token generated from a prompt token.

2223

tion steps in a single forward pass.

3.1 Prompt Tokens
The prompt tokens are the key component of PPD
to realize multi-token generation. Initially intro-
duced by (Lester et al., 2021) to adapt LLMs
for specific tasks, prompt tokens are typically
prepended to the input, with outputs generated in
an autoregressive manner. In this work, we pro-
pose a novel approach of utilizing prompt tokens
by strategically positioning them at locations where
tokens are anticipated to be generated in parallel.

In the standard decoding process, the probabil-
ity of predicting the next token is expressed as
the conditional probability p(yi+1|x, y1:i), where
x is the input prompt, y1:i are the i tokens gen-
erated so far, and yi+1 is the next token to be
predicted. For conventional parallel decoding
techniques (Stern et al., 2018; Cai et al., 2024)
that presume complete conditional independence
among tokens decoded in a single step, the ex-
act conditional probability is approximated by
p(yi+k+1|x, y1:i+k) = pθ(yi+k+1|x, y1:i), where
k > 0 indicates the token distance.3 However,
we observe that as k increases, the gap between
the actual probability and its approximation ex-
pands due to the absence of relevant conditional
dependencies. We argue that prompt tokens can
bridge this gap by more accurately modeling the
conditional probability as p(yi+k+1|x, y1:i+k) =
pθ(yi+k+1|x, y1:i, ti+1:i+k), where ti is the prompt
token with token distance i. Through this forward
pass in the decoder layers, these causally linked
prompt tokens facilitate the flow of information
along the sequence of speculative tokens, restoring
the conditional probability. We demonstrate the
effectiveness of this approach in Section 5.2.

3.2 Ensemble Prompt Tokens
Inspired by prompt ensembling (Lester et al., 2021),
which uses multiple prompts to generate diverse
responses and aggregates these to derive a single an-
swer, we introduce the concept of ensemble prompt
token (EPT). This abstraction allows us to decou-
ple each prompt token from the fixed embedding
dimension. For every prompt token, there exist
multiple corresponding EPTs, each with its dis-
tinct embedding. We modify the attention mask
to ensure that each nth EPT only depends on the
corresponding nth EPTs from preceding prompt

3The token distance is the number of tokens between the
last accepted token and the predicted token.

tokens. This selective visibility is maintained for
both training and inference, where the guess token
for each prompt token is determined by averaging
the logits of its EPTs. The use of EPTs not only
enables direct and flexible control over the train-
able parameters, but also leads to increased predic-
tion accuracy. The probability is approximated as
1
n

∑n
j=1 pθ(yi+k+1|x, y1:i, vji+1:i+k), where vji+m

denotes the jth EPT at a token distance of m. Fur-
ther details can be found in Appendix E.

3.3 Training

During training, only the embeddings of prompt to-
kens are changed, with the parameters of the origi-
nal LLM remaining frozen. We adopt the following
two training techniques:

Random Insertion of Prompt Tokens: Ran-
domly inserting prompt tokens throughout the input
sequence reduces contextual bias from appending
them only at the end. This approach broadens the
predictive capacity of prompt tokens beyond a lim-
ited vocabulary such as <eos> and punctuation.

Knowledge Distillation: To align the predictive
behavior of prompt tokens with the original LLM,
we employ knowledge distillation. Instead of us-
ing hard labels, prompt tokens are trained against
the logits produced by the original LLM. Follow-
ing Medusa (Cai et al., 2024), the loss function is
formulated as:

LPD =
1

N

N∑

i=1

DKL(Pi ∥ Qi) · αi−1, (1)

where DKL is the KL divergence, Pi is the pre-
dicted distribution of the ith prompt token, Qi is
the corresponding distribution from the original
LLM, and α is the decay ratio.

4 Sparse Tree Pruning

4.1 Customized Sparse Tree Attention

Tree attention, introduced by SpecInfer (Miao et al.,
2024), increases the expected acceptance rate by
considering the top-k candidates from a single de-
coding step. In their approach, the input is struc-
tured as a tree, where each level of the tree cor-
responds to a specific output position. An atten-
tion mask is applied to the tree-structured input,
allowing the model to process multiple candidates
efficiently without increasing the batch size.

To improve the efficiency and performance of
LLM inference, this paper proposes a novel sparse

2224

tree customized for PPD, which prioritizes candi-
dates in the tree structure with higher prediction ac-
curacy. A key difference from previous works (Cai
et al., 2024; Chen et al., 2024) is the appending of
a sequence of prompt tokens to each guess token.
The length of the prompt token sequence decides
the maximum depth of the speculative tree at the
next decoding step. To further hide the latency in-
troduced by the extra prompt tokens, we propose
a novel tree pruning algorithm (Section 4.2) that
optimizes the number of prompt tokens.

4.2 Two-Stage Tree Pruning Algorithm

As depicted in Figure 3, our tree pruning algorithm
consists of two stages: an offline static tree prun-
ing phase and an online hardware-aware tree op-
timization phase. These two stages are applied
subsequently to reduce the amount of computation
involved in PPD multi-token generation.

Static Tree Pruning. The first stage, static tree
pruning, is applied offline prior to runtime deploy-
ment. The goal is to reduce the number of prompt
tokens in the tree to achieve the desired tree size.
As shown on the left side of Figure 3, the tree
pruning process consists of three key steps:

1. Candidate Trees Construction: Building
trees using only candidate tokens at vary-
ing depths, employing the algorithm from
Medusa (Cai et al., 2024) and Sequoia (Chen
et al., 2024) to maximize f(Tk).

2. Prompt Tokens Appending : Attaching the
maximum allowable prompt tokens to each
candidate token from the first step.

3. Greedy Prompt Token Removal: Removing
a prompt token greedily to maximize expected
amortized acceptance lengths, continuing un-
til the desired prompt token budget is reached.

Each guess token in the tree is appended with
a sequence of prompt tokens, with each prompt
token corresponding to a unique output position.
The length of this sequence determines the tree’s
maximum depth at the next decoding step. Thus,
removing a prompt token at a guess token reduces
the maximum tree depth at the next decoding step if
this guess token is accepted in the current step. Let
pc represent the acceptance probability of guess
token c, and fd denote the expected acceptance
length with d prompt tokens before removal. The
decrease in expected acceptance length, ∆F , due

to removing a prompt token at c is given by ∆F =
pc · (fd − fd−1). More details are discussed in
Appendix A.

Hardware-Awareness Tree Optimization.
Given that hardware platforms differ in terms of
memory and compute resources, we propose a
hardware-aware tree optimization to maximize
the performance of PPD. As shown on the right
of Figure 3, this optimization adjusts the tree size
budget based on the performance characteristics of
the target hardware.

To achieve this, we define two key functions:
1. Acceptance length τ(n) (hardware-independent)
and 2. Forward pass latency Lfp(n) (hardware-de-
pendent). The speedup ratio, Speedup(n) =
τ(n)

Lfp(n)
, is estimated using a validation dataset, with

τ(n) evaluated once and Lfp(n) tested on different
hardware platforms. We then choose the tree size
budget that maximizes Speedup(n) based on the
measured runtime latency on the specific hardware
platform. To eliminate runtime overhead, hardware
latency profiling is conducted during idle periods.

5 Experiments

Models and testbeds. We conducted all the ex-
periments using MobileLLaMA-1.4B (Chu et al.,
2023), Vicuna-7B and Vicuna-13B (Chiang et al.,
2023). We used 3 prompt tokens and 1 EPT per
prompt token for all inference experiments. The in-
ference throughputs of the models are evaluated on
a single NVIDIA A100 GPU with 40GB of mem-
ory and a GeForce RTX 4090 using a batch size
of 1 and FP16 precision. Further details about the
experimental setup can be found in Appendix G.

Training. We froze all trainable parameters of
the original LLM. Prompt token embeddings were
trained using distillation logits generated from the
ShareGPT dataset (ShareGPT, 2023), with a maxi-
mum context length of 1024, a cosine learning rate
scheduler starting at 0.01, and no warmup. Prompt
token embeddings are initialized with normal text
token embeddings. For each model, the same set
of prompt tokens is used across experiments to
demonstrate its generalizability.

Datasets. We assess the throughput performance
of PPD across various tasks and datasets. Specif-
ically, we evaluated PPD using the MT-Bench
dataset (Zheng et al., 2023), which contains multi-
turn questions with a range of topics, in both non-
greedy (temperature follows the default configu-
ration) and greedy settings (temperature=0). We

2225

Figure 3: Illustration of Tree Pruning Pipeline. The tree structure is optimized as a result of pruning.

V-7B V-13B
20

30

40

50

60

70

80

90

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1.0

2.24
2.09

1.4

1.59
1.48

1.0

2.18 2.07

1.3
1.42 1.46

Speedup on different model sizes
Vanilla
PPD
Medusa
LookAhead
REST
PLD

Figure 4: Comparative evaluation of latency speedup
between PPD and other parallel decoding methods.
The experiments were conducted using the MT-Bench
dataset, with the temperature set to MT-Bench’s default
configuration for Medusa and PPD.

used the GSM8K (Cobbe et al., 2021) and Hu-
manEval (Chen et al., 2021) datasets only in the
greedy setting. The GSM8K dataset consists of
grade school math problems and we used the first
500 questions of the test split for our evaluations.
HumanEval includes coding tasks, for which we
set a maximum new token limit of 512 to control
the length of the generated sequences. We used
the Alpaca (Li et al., 2023) dataset as the valida-
tion dataset to produce the latencies and acceptance
lengths used for sparse tree pruning.

5.1 Speedup Comparison with Parallel
Decoding Methods

We compare the speedup ratios of PPD with state-
of-the-art parallel decoding methods on MT-Bench
in non-greedy settings in Figure 4. PPD achieves
speedups up to 13.8% higher than Medusa and be-
tween 2 times and 3 times higher than other parallel
decoding methods. We examine the factors con-

tributing to the enhanced speedup ratios and other
performance metrics, as presented in Table 1. The
reasons for the increase in speedup ratios are two-
fold. Firstly, PPD produces candidate tokens with
a higher acceptance rate than Medusa when utiliz-
ing a sparse tree of the same size. Notably, PPD
continues to achieve a comparable or slightly bet-
ter acceptance rate even when employing a much
smaller sparse tree – ranging from one-third to half
the size. Secondly, PPD benefits from lower for-
ward pass latency due to its ability to use smaller
sparse tree sizes and hence shorter input lengths.
PPD also eliminates the computational overhead as-
sociated with separate decoding heads. PPD main-
tains the same output quality, achieving about the
same score on MT-Bench while using significantly
fewer trainable parameters.

Figure 5 displays the throughput of PPD on
MT-Bench, HumanEval, and GSM8K with tem-
perature equal to 0. PPD achieves consistent wall-
time speedup ratios from 2.12× to 2.49× on dif-
ferent GPUs, which demonstrates that prompt to-
kens generalize well on different tasks. In general,
PPD performs better in coding and math reason-
ing tasks, achieving speedups between 2.21× and
2.49×. This can be attributed to the fact that both
code and math equations often contain fixed pat-
terns and repetitive symbols, which narrows the
range of plausible candidates and simplifies the
prediction. We also found that with typical ac-
ceptance, the speedup increases with temperature.
Another notable trend is that smaller models, such
as Vicuna-7B, generally achieve more significant
speedup ratios as compared to larger models, like
Vicuna-13B. PPD aims to generate more tokens per
step, which comes with increased computational
demands. For larger models that already require
substantial computational resources, it is neces-

2226

Model Method T τ Lfp (s) Quality Ptr (%) Str Sinput

M
Vanilla 50.2 1.00 0.020 - NA NA 1
PPD 108.7 2.43 0.022 Same 4.50e−4 (10,84,89) (40,285,285)

V-7B
Vanilla 39.2 1.00 0.026 5.99 NA NA 1
Medusa 82.0 2.51 0.0307 5.98 8.07 63 63

PPD 88.0 2.54 0.029 5.93 1.82e−4 (10,33,34) (40,105,105)

V-13B
Vanilla 30.4 1.00 0.0330 6.38 NA NA 1
Medusa 63.4 2.59 0.0408 - 5.52 63 63

PPD 66.1 2.44 0.0379 6.32 7.87e−5 (10,20,20) (40,60,60)

Table 1: Comparative performance metrics of MobileLLaMA (M) for greedy setting, Vicuna-7B (V-7B) and Vicuna-
13B (V-13B) for non-greedy setting using different decoding methods. The table details throughput (T in tokens/s),
average accept lengths (τ in tokens), forward pass latency (Lfp in seconds), quality scores on MT-benchmark,
percentages of additional trainable parameters (Ptr) and input lengths (Sinput) after the prefilling phase. The sparse
tree size (Str) of PPD varies at different time steps as a consequence of different numbers of prompt tokens at each
guess token, hence represented as tuples. Same means the output matches with that of the original LLM.

sary to limit the size of the sparse tree to avoid
exceeding the GPU’s utilization cap and causing
increased latency. As a result, the number of to-
kens accepted per step is reduced, leading to lower
speedups. However, this can be amortized when
using more powerful GPUs than the NVIDIA A100
and the RTX 4090, such as NVIDIA H100.

5.2 Long-range Token Prediction

For a specific sparse tree, the accumulative accu-
racy provides a theoretical upper bound for the
number of generated tokens per step and the maxi-
mum possible speedup ratio. Hence, maximizing
accumulative accuracy is crucial for the effective-
ness of PPD. Figure 6 demonstrates the accumu-
lative accuracy of the tokens predicted at various
positions. We summarize the following three key
insights from the results.

PPD excels at predicting more distant tokens.
As depicted in Figure 6a, PPD consistently outper-
forms Medusa in accuracy across all token posi-
tions. The accuracy gap between PPD and Medusa
widens with the increased token distance (e.g., the
top-10 accuracy difference is 0.03 for the ‘next
next’ word versus 0.12 for the ‘next next next
next’ word). This improvement can be attributed
to PPD’s ability to partially recover conditional de-
pendency information through causally connected
prompt tokens.

PPD performs well at generating a broader
array of plausible token candidates. For exam-
ple, in predicting the token at a token distance of

3, the top-10 candidates exhibit an accuracy im-
provement of 0.1 over Medusa, compared to only
0.02 for the top-1 candidate. This demonstrates the
value of using tree attention and the largest viable
tree size during inference, as multiple candidate
continuations further boost accuracy improvement.

Multiple EPTs per prompt token and larger
model sizes yield modest improvements in pre-
diction accuracy. Figure 6b shows that using
100 EPTs per prompt token leads to accuracy im-
provement, ranging from 0.018 to 0.045. Figure 6c
displays that PPD with Vicuna-13B outperforms
Vicuna-7B with an accuracy gain of 0.011∼0.038.
This increase is due to Vicuna-13B’s greater embed-
ding dimensions and deeper layers, which enhance
the expressive power of prompt tokens. However,
these gains are modest and can be offset by the
increased computational burden of larger models.

5.3 Memory and Training Efficiency

Memory efficiency. As shown in Figure 7a, we
compare the memory overhead of PPD with the
leading parallel decoding (Medusa) and specula-
tive decoding approaches (Eagle). The memory
overhead of PPD is negligible, whereas Eagle in-
curs up to 5.8× overhead and Medusa up to 1.6×.
This efficiency stems from: (1) PPD’s parameter
efficiency—token embeddings are much smaller
than decoding heads and draft models, which scale
with vocabulary size; and (2) using a single KV
cache, unlike methods like Eagle that require sepa-
rate caches for the draft and target models.

2227

MobileLLaMA V-7B V-13B

20

40

60

80

100

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1.0

2.16

1.0

2.19

1.0

2.12

Multi-turn Dialogue - MT-Bench, A100
Vanilla
PPD

MobileLLaMA V-7B V-13B

20

40

60

80

100

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1.0

2.25

1.0

2.28

1.0

2.21

Coding - HumanEval, A100
Vanilla
PPD

MobileLLaMA V-7B V-13B

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1.0

2.47

1.0

2.33

1.0

2.27

Math - GSM8K, A100
Vanilla
PPD

MobileLLaMA V-7B

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1.0

2.2

1.0

2.14

Multi-turn Dialogue - MT-Bench, 4090
Vanilla
PPD

MobileLLaMA V-7B

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1.0

2.26

1.0

2.33

Coding - HumanEval, 4090
Vanilla
PPD

MobileLLaMA V-7B

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

1.0

2.49

1.0

2.29

Math - GSM8K, 4090
Vanilla
PPD

Figure 5: Throughput of PPD and vanilla models across different tasks (multi-turn dialogue, coding, and math).
The temperature for experiments is set to 0 and the generated output exactly matches that of the original LLM. We
do not show the results of Vicuna-13B on RTX 4090 as it does not fit into the GPU memory.

2 4 6 8 10
top-k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cu
m

ul
at

iv
e

Ac
cu

ra
cy

PPD, V7, 100 EPT, @ 1
PPD, V7, 100 EPT, @ 2
PPD, V7, 100 EPT, @ 3

Medusa, V7, @ 1
Medusa, V7, @ 2
Medusa, V7, @ 3

(a) PD vs Medusa

2 4 6 8 10
top-k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cu
m

ul
at

iv
e

Ac
cu

ra
cy

PPD, V7, 100 EPT, @ 1
PPD, V7, 100 EPT, @ 2
PPD, V7, 100 EPT, @ 3

PPD, V7, 1 EPT, @ 1
PPD, V7, 1 EPT, @ 2
PPD, V7, 1 EPT, @ 3

(b) 100 vs 1 EPT

2 4 6 8 10
top-k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cu
m

ul
at

iv
e

Ac
cu

ra
cy

PPD, V13, 1 EPT, @ 1
PPD, V13, 1 EPT, @ 2
PPD, V13, 1 EPT, @ 3

PPD, V7, 1 EPT, @ 1
PPD, V7, 1 EPT, @ 2
PPD, V7, 1 EPT, @ 3

(c) 13b vs 7b

Figure 6: Accumulative accuracy comparisons across
different model configurations and prediction distances.
‘V7’ for Vicuna-7B, and ‘V13’ for Vicuna-13B. The
notation ‘@i’ refers to a token distance of i. ‘100 EPT’
represents 100 EPTs per prompt token. Accumulative
accuracy is defined as top-k accuracy (e.g., a prediction
is correct if the top-k candidates contain the ground
truth). These measurements were obtained from the
Alpaca Eval dataset with a maximum of 20 steps.

MobileLLaMA (4-bit) MobileLLaMA (16-bit) Vicuna-7b (4-bit)
1

2

3

4

5

6

7

8

M
em

or
y

us
ag

e
(G

B)

1.0 1.0
1.6

5.8

1.0 1.0
1.2

2.7

1.0 1.0

1.3

2.1GTX 960 memory
Vanilla
PPD
Medusa
Eagle

(a)

0

20

40

60

80

100

120

Th
ro

ug
hp

ut
s o

n
M

T
Be

nc
h

(To
ke

ns
/s

) 2.26

1.71
1.6 1.54 1.5

1.0

PPD with Tree Attention
PPD w/o Tree Attention
Medusa w/o Tree Attention

REST
LookAhead
Vanilla

(b)

Figure 7: (a) Memory usage of PPD and other baseline
methods including Vanilla, Medusa, and Eagle with a
context window length of 30k and batch size of 8; (b)
Throughput comparison of PPD with other parallel de-
coding approaches. We control the use of tree attention
in some approaches for ablation analysis.

Method Training Time
PPD (Ours) 0.52 hours

Medusa 1.24 hours
Eagle 1-2 days

Table 2: Training time of PPD, Medusa, and Eagle, on
4 A100 GPUs. PPD takes less than half of the time
compared to Medusa.

Training efficiency. Table 2 compares the train-
ing times of PPD with parallel and speculative
decoding methods. PPD is trained until its evalua-
tion accuracy of top-10 candidates surpasses that of
Medusa on Alpaca Eval. Notably, PPD surpasses
Medusa in evaluation accuracy while training in
less than half the time, demonstrating its great po-

5 10 20 35 60 120 200 500
Prompt Length

1.6

1.8

2.0

2.2

2.4

2.6

Ac
ce

pt
an

ce
 L

en
gt

h

Acceptance Lengths for Different Sparse Trees
Naive Sparse Tree
Pruned Sparse Tree
Random Sparse Tree

(a)

5 10 20 35 60 120 200 500
Prompt Length

1.0

1.5

2.0

2.5

3.0

3.5

La
te

nc
y

Ov
er

he
ad

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Th
eo

re
tic

al
 S

pe
ed

up

**
Latency Overhead and Theoretical Speedup

Latency A100
Latency 4090
Theoretical Speedup A100
Theoretical Speedup 4090
Optimal Tree A100
Optimal Tree 4090

(b)

5 10 20 35 60 120 200 500
Prompt Length

1.0

1.2

1.4

1.6

1.8

2.0

Ac
tu

al
 S

pe
ed

up

**

Actual Speedup for Pruned Sparse Tree

Actual Throughput A100
Actual Throughput 4090
Optimal Tree A100
Optimal Tree 4090
Peak Speedup A100
Peak Speedup 4090

(c)

Figure 8: Evaluation of Sparse Tree Pruning Algorithm.
The naive sparse tree in (a) applies the same number of
prompt tokens to each guess token, while the pruned
sparse tree follows our pruning algorithm. The random
sparse tree allocates prompt token budget randomly. The
theoretical speedup in (b) is calculated as the ratio of
acceptance lengths (hardware-independent) to latency
overhead (hardware-dependent). The optimal tree size is
obtained from the peak value of the theoretical speedup.
The latencies in (b) are obtained from inference on the
same prompt for 512 forward passes. (c) shows the ac-
tual speedup obtained by running inference on different
GPUs with different tree lengths on Alpaca Eval dataset.

tential to reduce training cost.

5.4 Ablation Study

Tree Attention. As illustrated in Figure 7b, tree
attention boosts the speedup ratio of PPD by an
additional 32%, indicating that PPD generates ac-
curate top-k predictions. Even without the use of
tree attention, PPD still outperforms all other paral-
lel decoding methods, achieving up to a 14% higher
speedup ratio, demonstrating the effectiveness.

Sparse Tree Pruning Algorithm. Figure 8a
shows that the pruned sparse trees consistently
achieve longer acceptance lengths compared to
naive and random ones across varying sizes. The
acceptance length for pruned sparse trees shows a
steady increase as the tree size extends, suggesting
its good scalability. The convergence of pruned
and naive sparse trees at larger sizes suggests a
structural similarity emerging from constraints in
tree depth and tree node count.

Hardware-aware Tree Size. Figure 8b presents
the theoretical speedup across different GPUs. Fig-
ure 8c validates that the optimal sparse tree size,
derived from theoretical speedup models, indeed

2228

results in the greatest actual speedup observed.
PPD + Speculative Decoding. As an orthogonal

optimization in accelerating LLMs, PPD can be
easily integrated with speculative decoding (Kim
et al., 2024). To demonstrate this, we applied PPD
to Vicuna-68M (Yang et al., 2024) and used it as
the draft model for Vicuna-7B. This combination
resulted in a speedup of up to 1.22× for specu-
lative decoding on Vicuna-7B compared to using
speculative decoding alone.

6 Conclusion

We introduced PPD, a memory-efficient and cost-
effective parallel decoding method that incorpo-
rates a hardware-aware online tree optimization.
Utilizing specially trained prompt tokens to pre-
dict long-range tokens accurately, PPD achieves a
speedup of up to 2.49× in inference while employ-
ing negligible additional trainable parameters and
memory overhead. We showcased that PPD offers
a novel perspective on the capabilities of parallel
decoding. Importantly, it could be synergized with
other speculative or parallel decoding techniques
to expedite inference even further.

Limitations

Despite its efficiency, we have identified the fol-
lowing limitations of PPD:

1. GPU compute resource constraint. Since
PPD trades additional compute resources for
increased throughput, its effectiveness de-
pends on the availability of idle GPU compute
resources. On a GPU with limited compute re-
sources, the speedup ratios achieved by PPD
are expected to decrease.

2. Extended input length. The improvement in
acceptance length with PPD is not as signif-
icant as the gain in prediction accuracy com-
pared to Medusa. This is because PPD must
reserve a substantial portion of the input for
prompt tokens, which limits the size of the
sparse tree that can be used.

References
Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,

Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple LLM Inference Acceleration Frame-
work with Multiple Decoding Heads. In Interna-
tional Conference on Machine Learning (ICML).

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating Large Language Model
Decoding with Speculative Sampling. arXiv preprint
arXiv:2302.01318.

Mark Chen et al. 2021. Evaluating Large Lan-
guage Models Trained on Code. arXiv preprint
arXiv:2107.03374.

Zhuoming Chen, Avner May, Ruslan Svirschevski,
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. 2024. Sequoia: Scalable, Robust,
and Hardware-aware Speculative Decoding. arXiv
preprint arXiv:2402.12374.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An Open-
Source Chatbot Impressing GPT-4 with 90%* Chat-
GPT Quality.

Xiangxiang Chu, Limeng Qiao, Xinyang Lin, Shuang
Xu, Yang Yang, Yiming Hu, Fei Wei, Xinyu Zhang,
Bo Zhang, Xiaolin Wei, and Chunhua Shen. 2023.
MobileVLM : A Fast, Strong and Open Vision Lan-
guage Assistant for Mobile Devices. arXiv preprint
arXiv:2312.16886.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the Sequential Dependency of LLM In-
ference Using Lookahead Decoding. In International
Conference on Machine Learning (ICML).

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D. Lee,
and Di He. 2023. Rest: Retrieval-based Speculative
Decoding. arXiv preprint arXiv:2311.08252.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense Passage Retrieval for
Open-Domain Question Answering. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6769–
6781.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Ji-
tendra Malik, Michael W. Mahoney, Amir Gholami,
and Kurt Keutzer. 2024. Speculative Decoding with
Big Little Decoder. Advances in Neural Information
Processing Systems (NeurIPS), 36.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The Power of Scale for Parameter-Efficient Prompt
Tuning. In Conference on Empirical Methods in
Natural Language Processing (EMNLP).

2229

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast Inference from Transformers via Spec-
ulative Decoding. In International Conference on
Machine Learning (ICML).

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning:
Optimizing Continuous Prompts for Generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597. Association for Computational Linguistics.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. AlpacaEval: An Au-
tomatic Evaluator of Instruction-following Models.
https://github.com/tatsu-lab/alpaca_eval.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024a. EAGLE-2: Faster Inference of Lan-
guage Models with Dynamic Draft Trees. In Em-
pirical Methods in Natural Language Processing
(EMNLP).

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024b. EAGLE: Speculative Sampling Re-
quires Rethinking Feature Uncertainty. In Interna-
tional Conference on Machine Learning (ICML).

Feng Lin, Hanling Yi, Hongbin Li, Yifan Yang, Xiaotian
Yu, Guangming Lu, and Rong Xiao. 2024. Bita: Bi-
directional tuning for lossless acceleration in large
language models. arXiv preprint arXiv:2401.12522.

Xupeng Miao et al. 2024. SpecInfer: Accelerating
Large Language Model Serving with Tree-based
Speculative Inference and Verification. In ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS).

Giovanni Monea, Armand Joulin, and Edouard Grave.
2023. PaSS: Parallel Speculative Sampling. arXiv
preprint arXiv:2311.13581.

Andrea Santilli, Silvio Severino, Emilian Postolache,
Valentino Maiorca, Michele Mancusi, Riccardo
Marin, and Emanuele Rodolà. 2023. Accelerating
Transformer Inference for Translation via Parallel
Decoding. In Annual Meeting of the Association for
Computational Linguistics (ACL).

Apoorv Saxena. 2023. Prompt Lookup Decoding.

ShareGPT. 2023. ShareGPT.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise Parallel Decoding for Deep Autore-
gressive Models. In Advances in Neural Information
Processing Systems (NeurIPS).

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen.
2024. Multi-Candidate Speculative Decoding. arXiv
preprint arXiv:2401.06706.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2023. Draft
& verify: Lossless large language model accelera-
tion via self-speculative decoding. arXiv preprint
arXiv:2309.08168.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-Judge with MT-Bench and Chatbot Arena.
In Advances in Neural Information Processing Sys-
tems (NeurIPS).

2230

https://github.com/tatsu-lab/alpaca_eval
https://github.com/apoorvumang/prompt-lookup-decoding/
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered

A Appendix

A Detailed Tree Construction Algorithm

We follow the same optimal sparse tree construc-
tion approach as in Medusa (Cai et al., 2024).

Definition A.1. Let m be the maximal number
of prompt tokens per tree node. The sparse tree
T can exist in m states, each represented by Tk

corresponding to state sk, where 1 ≤ k ≤ m. Let
C(Tk) denote the subtree of Tk composed solely of
candidate tokens. The maximum depth of C(Tk) is
k.

Proposition A.1. For a sparse tree state Tk, where
each candidate token v follows a path Path(v)
from the root, and the acceptance probability pk
at each path position k, the expected number
of tokens f(Tk) generated is given by f(Tk) =∑

v∈C(Tk)

∏
i∈Path(v) pi, where

∏
i∈Path(v) pi repre-

sents the contribution of a token v to the expected
number of tokens.

We then propose an approximation of the amor-
tized number of tokens generated, by considering
the tokens generated at the current and the next
decoding step.

Proposition A.2. The expected total number of
tokens F (Tk) generated for the sparse tree state
F (Tk) at the current and the next decoding step is
given by F (Tk) = f(Tk) +

∑m
i=1 p(si|sk)f(Ti),

where p(si|sk) represents the state transition prob-
ability from state sk to state si.

We are now ready to introduce Proposition A.3,
which we use in the pruning algorithm.

Proposition A.3. For a sparse tree state Tk with
candidate subtree ck = C(Tk), the change in ex-
pected total tokens F (Tk) due to the removal of
a prompt token at candidate token c is given by
∆F = p(c) · (f(Ti)− f(Ti−1)), where p(c) is the
acceptance probability of candidate c, i denotes
the number of prompt tokens prior to removal. We
assume that i > 1.

We now introduce the formulation of the real
amortized number of tokens generated.

Proposition A.4. The amortized number of tokens
R(Tk) generated for the sparse tree state F (Tk) is
given by R(T) =

∑m
i=1 p(si)f(Ti), where p(si)

is the steady-state probability of state si, and f is
the function defined in Proposition A.1.

The sparse tree construction algorithm can now
be formulated as finding the sparse tree T with nc

candidate tokens and np prompt tokens to maxi-
mize R(T):

c(nc, np) = max
T,|C(T)|=nc,|T |=nc+np

R(T).

For a fixed tree size n, we explore all combina-
tions of nc and np where n = nc + np, to identify
the sparse tree that maximizes R(Tk).

B Comparison with More Baselines

B.1 Comparison with Speculative Decoding

Temperature Method Speedup Ratio

T=1 (Stochastic)
PPD 2.26
Eagle 2.15
Sps 1.38

T=0 (Greedy)
PPD 2.15
Eagle 2.60
Sps 1.68

Table 3: Comparison with Speculative Decoding.

Table 3 compares the speedup ratios of dif-
ferent speculative decoding methods on Vicuna-
7B and MT-Bench. PPD outperforms Eagle at
T = 1, whereas Eagle achieves better performance
at T = 2. This trend aligns with findings in typical
acceptance (Cai et al., 2024), which tends to be
more effective at higher temperatures.

PPD serves as a cost-effective and memory-
efficient alternative to speculative decoding (Li
et al., 2024b; Kim et al., 2024), specifically de-
signed for edge and mobile deployments. Both
memory usage and training time are critical met-
rics in this context. More free memory enables
the use of larger batch sizes, resulting in improved
throughput.

Memory efficiency is also vital for long-context
tasks, where a large KV cache size could otherwise
lead to OOM errors. Additionally, reducing train-
ing time significantly lowers training costs, making
PPD more accessible for local deployments. Faster
training is particularly valuable in online learning
scenarios, where the target model distribution may
shift over time, requiring frequent retraining.

B.2 Comparison with More Baselines

Table 4 and Table 5 compare PPD with PaSS
and Draft&Verify. PPD consistently outperforms

2231

Temperature Method Speedup Ratio

T = 0.1
PPD 2.28
PaSS 1.47

T = 0.8
PPD 2.40
PaSS 1.24

Table 4: Speedup ratios for PPD and PaSS (Monea et al.,
2023).

Method Speedup Ratio

PPD 2.26
Draft&Verify 1.456

Table 5: Speedup ratios for PPD and
Draft&Verify (Zhang et al., 2023).

both methods in terms of speedup ratio. Al-
though PPD requires additional training compared
to Draft&Verify, Table 2 shows that this training
overhead is minimal.

C Training Loss

We study the training loss of PPD with different
EPTs. Figure 9a shows that, with 3 prompt tokens
and 1 EPT, the initial loss is quite high, starting
above 5. There is a sharp decrease in loss within
the first epoch, dropping below 2. After this ini-
tial drop, the loss stabilizes and oscillates around a
value slightly below 2 for the remainder of the train-
ing epochs (up to epoch 12). The loss oscillations
remain within a narrow range, indicating consistent
performance. The fluctuation can be attributed to
the insertion of prompt tokens at random positions.
On the other hand, Figure 9b, with 3 prompt to-
kens and 100 EPTs, shows the initial loss starting
below 3, significantly lower than PPD with 1 EPT.
Similarly, there is a sharp decrease within the first
epoch, with the loss dropping to around 2.5. How-
ever, unlike PPD with 1 EPT, the loss continues
to decrease gradually over the epochs, showing a
downward trend. This suggests that increasing the
number of EPTs improves the model’s learning
capacity and reduce training loss more effectively
over time.

D Generalizability of Prompt Tokens to
Different Tasks

While original prompt tuning tailors LLMs for spe-
cific downstream tasks, our prompt tokens are task-
agnostic. To demonstrate their generalizability, Fig-

0 2 4 6 8 10 12
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Lo
ss

Training Loss vs Epoch

(a) 3 prompt tokens 1 EPTs

0 2 4 6 8 10 12
Epoch

2.0

2.5

3.0

3.5

Lo
ss

Training Loss vs Epoch

(b) 3 prompt tokens 100 EPTs

Figure 9: Training Loss

2 4 6 8 10

top-k
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cu
m

ul
at

iv
e

Ac
cu

ra
cy

GSM8K Accuracy

GSM8K @ 1
GSM8K @ 2
GSM8K @ 3

(a)

2 4 6 8 10

top-k
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cu
m

ul
at

iv
e

Ac
cu

ra
cy

Humaneval Accuracy

Humaneval @ 1
Humaneval @ 2
Humaneval @ 3

(b)

2 4 6 8 10

top-k
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cu
m

ul
at

iv
e

Ac
cu

ra
cy

MT Bench Accuracy

MT Bench @ 1
MT Bench @ 2
MT Bench @ 3

(c)

2 4 6 8 10

top-k
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cu
m

ul
at

iv
e

Ac
cu

ra
cy

MT Bench Accuracy

MT Bench @ 1
MT Bench @ 2
MT Bench @ 3
MT Bench @ 4
MT Bench @ 5

(d)

Figure 10: Evaluation accuracy of the same set of
prompt tokens on (a) GSM8K dataset, (b) HumanEval
dataset, (c) MT-Bench dataset, and (d) prediction accu-
racy of 5 prompt tokens.

ure 10 shows the prediction accuracy of a single
set of prompt tokens across three different datasets.
Trained on the ShareGPT dataset, these tokens gen-
eralize effectively to unseen tasks. We also report
the prediction accuracy for using 5 prompt tokens.

E Extended Ablation Study

E.1 Effect of EPTs on Prediction Accuracy

Table 6 presents the prediction accuracy of PPD
using different EPTs. The results indicate that in-
creasing the number of EPTs generally enhances
the prediction accuracy of PPD, particularly for
long-range token predictions. Higher EPT num-
bers (e.g., 100 and 50) consistently produce better
prediction accuracy compared to lower EPT num-
bers.

E.2 Impact of Knowledge Distillation (KD),
Epochs, and Batch Size on Prediction
Accuracy

Table 7 summarizes our results with different set-
tings. We analyze the effect of each factor on the
prediction accuracy in the following discussion.

2232

EPT @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

100 0.506 0.794 0.276 0.602
50 0.502 0.791 0.281 0.604
20 0.501 0.791 0.276 0.607
10 0.494 0.786 0.273 0.600
5 0.499 0.787 0.265 0.596
2 0.486 0.777 0.259 0.583
1 0.472 0.771 0.248 0.576

Table 6: Prediction Accuracy of PPD with different EPTs. ’@i’ denotes a token distance of i. ’Top-k’ denotes the
top-k prediction accuracy. The results are obtained on Alpaca dataset with 20 steps.

EPT KD Epoch Batch @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

100 Yes 1 4 0.504 0.793 0.273 0.598
100 Yes 2 4 0.512 0.797 0.288 0.611
100 Yes 6 4 0.520 0.802 0.302 0.620
100 Yes 8 4 0.524 0.804 0.307 0.619
100 Yes 10 4 0.523 0.804 0.305 0.623
100 Yes 12 4 0.525 0.805 0.308 0.625
100 No 12 4 0.506 0.794 0.276 0.602
100 Yes 12 1 0.530 0.809 0.309 0.626
1 Yes 12 1 0.484 0.775 0.259 0.581
1 Yes 2 4 0.474 0.773 0.247 0.574
1 Yes 6 4 0.480 0.773 0.250 0.580
1 Yes 8 4 0.484 0.778 0.257 0.583
1 Yes 10 4 0.482 0.777 0.257 0.584
1 Yes 12 4 0.485 0.779 0.261 0.586
1 No 12 4 0.472 0.771 0.248 0.576

Table 7: Prediction Accuracy for PPD with and without knowledge distillation (KD) for different EPTs, epochs,
and batch sizes.

E.2.1 Training Epochs

We first investigate the effect of the number of
training epochs on prediction accuracy. For models
using 100 EPTs with KD enabled and a batch size
of 4, we observe a steady improvement in predic-
tion accuracy as the number of epochs increases.
Specifically, the Top-1 accuracy at a 1-token dis-
tance increases from 0.504 at 1 epoch to 0.525 at
12 epochs, while the Top-5 accuracy at a 1-token
distance improves from 0.793 to 0.805. Similarly,
Top-1 accuracy at a 2-token distance increases from
0.273 to 0.308, and Top-5 accuracy at a 2-token
distance improves from 0.598 to 0.625 over the
same range of epochs. This trend demonstrates
the positive impact of prolonged training on the
performance of PPD when KD is applied.

E.2.2 Knowledge Distillation
When KD is not applied, as shown for 100 EPTs at
12 epochs with a batch size of 4, the performance
metrics are generally lower. The improvement in
prediction accuracy with KD is up to 12%. This
suggests that KD contributes significantly to pre-
diction accuracy for PPD.

E.2.3 Effect of Batch Size
We also examine the impact of batch size on the
prediction accuracy. For the model trained with
100 EPTs, KD enabled, and 12 epochs, reducing
the batch size from 4 to 1 results in a slight im-
provement in prediction accuracy up to 1%.

E.3 Prefix Tuning + Prompt Token
Prefix tuning (Li and Liang, 2021), similar to
prompt tuning, provides a parameter-efficient ap-
proach to fine-tune a pre-trained model. Unlike

2233

prompt tuning, it modifies the KV cache of ev-
ery attention layer by prepending trained vectors.
We hypothesize that the combination of prefix tun-
ing and prompt tokens can lead to greater learn-
ing capacity and higher prediction accuracy. This
hypothesis is based on the intuition that prompt
tokens should see a different context than the input
tokens when predicting long-range tokens. For ex-
ample, if the input sequence is "Once upon a time",
then enhancing the input with a prompt template
might provide more suitable semantic context for
long-range prediction. An enhanced input like "Pre-
dict the next-next token. Once upon a time" might
empower the prompt token to predict the correct
next-next token. Prefix tuning serves as the prompt
template to enhance the hidden states visible to the
prompt tokens.

Figure 11: ’P1’ is the prefix token for the prompt token
’S1’ and ’P2’ for ’S2’. ’C’ is the input token. The green
tick means visibility during attention calculation. For
instance, ’S1’ can see ’P1’ but cannot see ’P2’. ’C’
does not see any prefix tokens so the generated output
corresponding to ’C’ is not altered by the use of prefix
tuning.

To retain the original model’s distribution, we
modify the attention mask so that prefix tokens are
only visible to prompt tokens. This ensures that
we can generate outputs that preserve the original
model’s distribution. We posit that prompt tokens
at different positions should see different contexts
so we allow a prompt token at a specific position
to see a distinct set of prefix tokens, as shown in
Figure 11.

Table 8 compares the prediction accuracy of
PPD with and without the use of prefix tuning.
The results show that the models without prefix
tuning outperform those with prefix tuning up to
28%, which suggests that, in this setup, prefix tun-
ing does not enhance the prediction accuracy of
PPD. Instead, it appears to degrade performance,
potentially due to the complexity introduced by
modifying the KV cache of attention layers with
the prefix token. Unlike prompt tokens, prefix to-
kens do not interact with input tokens, meaning

they do not change dynamically through the trans-
former layers based on the input context. This lack
of interaction and dynamic adjustment could be
a factor contributing to the decreased prediction
accuracy observed with prefix tuning.

E.4 Custom Decoding Heads + Prompt Token

It has been demonstrated that a fine-tuned decod-
ing head alone can effectively predict long-range
tokens (Stern et al., 2018; Cai et al., 2024). Thus,
we hypothesize that combining a separately fine-
tuned decoding head with prompt tokens might
further enhance the potential of PPD. As shown in
Figure 12, we trained a separate decoding head to
transform only the hidden states of prompt tokens
into logits. A key distinction from Medusa is that
this decoding head is responsible for generating
tokens at multiple positions, rather than just one.

Figure 12: Custom decoding head with PPD. The fea-
ture extractor refers to the LLMs without the decoding
heads. ’H1’ is the generated hidden state for the input
token ’C’. ’H2’ is the hidden state for the prompt token
’S1’ and ’H3’ for ’S2’. ’LM1’ is the original LLM’s
decoding head and it takes in the hidden states of input
tokens. ’LM2’ is the custom decoding heads for PPD
and only takes in the hidden states of prompt tokens.

We propose two training methods. In the first
method, the custom decoding head and prompt
tokens are trained together from scratch in a single
stage. In the second method, the prompt tokens are
initially trained for 2 epochs, followed by training
both the prompt tokens and the decoding head with
a smaller learning rate in a two-stage process.

Table 9 presents the prediction accuracy of PPD
with and without a custom decoding head. When
trained using the single-stage method, PPD with
the custom decoding head shows a 12%-21% de-
crease in prediction accuracy compared to the base-
line PPD without the custom decoding head. This
suggests that the single-stage approach does not
result in stable or effective training.

In contrast, the two-stage training method re-
sults in a limited improvement of 2.1%-4.3% in
prediction accuracy compared to the baseline. This
suggests that adding a custom decoding head may
not be necessary, given the additional trainable pa-

2234

Prefix Tuning @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

No 0.485 0.779 0.261 0.586
Yes 0.412 0.738 0.204 0.541

Table 8: Prediction Accuracy of PPD with and without prefix tuning. 1 EPT is used for all models and 1 prefix
token is used for prefix tuning.

Method Name @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

PPD without custom decoding head 0.485 0.779 0.261 0.586
PPD with custom decoding head (1-stage) 0.385 0.614 0.229 0.482
PPD with custom decoding head (2-stage) 0.506 0.795 0.276 0.602

Table 9: Prediction Accuracy of PPD with and without custom decoding head. 1 EPT is used for all models. 1-stage
and 2-stage refer to the training strategies of custom decoding head.

rameters and the limited improvement in prediction
accuracy.

E.5 Attention Masking for EPTs

In this paper, we proposed a specialized attention
mask for EPTs to achieve the effect of prompt en-
semble. However, there are alternative masking
strategies available. Here, we describe and com-
pare three types of attention masks that we imple-
mented and experimented with.

(a) Ensemble Atten-
tion Mask

(b) Decoder-like At-
tention Mask

(c) Encoder-like At-
tention Mask

Figure 13: Different Mask Strategies for EPTs. ’C’ is
an input token. ’V1’ and ’V2’ are the EPTs for prompt
tokens ’S1’ and ’V3’ and ’V4’ for ’S2’.

E.5.1 Ensemble Attention Masking

The ensemble attention masking is the masking
strategy we previously described. In this approach,
EPTs are divided into n disjoint groups, where n
is the number of EPTs per prompt token. All kth

EPTs across prompt tokens are placed in the same
group. An EPT v in group i can only attend to EPTs
that meet the following two criteria: 1) they must
belong to group i, and 2) their position indices must
be smaller than the position index of v. Since this
masking strategy effectively averages the results
of disjoint groups of EPTs, we refer to it as the

"ensemble attention masking". Figure 13a provides
an example of the ensemble attention masking.

E.5.2 Decoder-like Attention Masking
Decoder-like attention masking is a simple strat-
egy where EPTs can only attend to EPTs with
smaller position indices. This results in a triangular-
shaped attention mask, similar to the one used in
decoder layers, hence the name "decoder-like atten-
tion masking". Figure 13b provides an example of
this masking strategy.

E.5.3 Encoder-like Attention Masking
In encoder-like attention masking, an EPT corre-
sponding to a prompt token P can attend to all
EPTs with smaller position indices as well as all
EPTs associated with P . This allows EPTs to see
both preceding and succeeding EPTs, similar to
the token visibility in an encoder layer, hence the
name "encoder-like attention masking". Figure 13c
illustrates this masking strategy.

E.5.4 Results
The results in Table 10 indicate that the ensem-
ble attention mask outperforms the other masking
strategies. In comparison, the PPD with decoder
attention mask shows 4.9%-8.0% lower prediction
accuracy. The PPD with encoder attention mask
also underperforms in prediction accuracy relative
to the ensemble attention mask by 3.7%-7.2%.

These results suggest that the ensemble atten-
tion mask is the most effective strategy among the
three, likely due to its ability to effectively average
the votes of disjoint groups of EPTs, thereby im-
proving prediction accuracy. The decoder-like and
encoder-like attention masks, while simpler, do not

2235

Method Name @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5
PPD with ensemble attention mask 0.506 0.794 0.276 0.602
PPD with decoder attention mask 0.465 0.755 0.262 0.572
PPD with encoder attention mask 0.473 0.765 0.256 0.573

Table 10: Prediction Accuracy of PPD with different attention masking strategies for EPTs. 100 EPT is used for all
models.

provide the same level of performance, indicating
that the structure and specificity of the ensemble
attention mask better facilitate accurate long-range
token prediction. Additionally, ensemble attention
masking is more sparse, which offers greater po-
tential for optimization.

E.6 Aggregation Method for EPTs
In addition to simply averaging the logits from
EPTs, we explored more advanced aggregation
methods. For instance, we applied learned weights
to aggregate the logits. The final logit p can be
expressed as:

p =

n∑

i=1

wi · pi,

where n is the number of EPTs and wi is the
learned scalar weight for the ith EPT.

The results in Table 11 show the prediction
accuracy of PPD with two different aggregation
methods for EPTs: simple averaging and learned
weights. When using learned weights to aggre-
gate logits, the model shows a slight decrease of
0.6%-9.4% in prediction accuracy.

These results suggest that while learned weights
provide a more flexible aggregation method, they
do not necessarily lead to improved prediction accu-
racy in this context. The simplicity and stability of
the averaging method appear to offer better perfor-
mance, possibly due to the additional complexity
and potential overfitting introduced by learning the
weights.

E.7 Multi-exit Ensemble
While using EPTs for prompt ensemble improves
prediction accuracy, it also increases input length,
resulting in higher computational overhead and for-
ward pass latency. To address this, we propose
the use of a multi-exit ensemble method. In multi-
exit ensemble, the hidden states of a prompt token
from the last k decoder layers are extracted and
averaged to produce the final hidden state, which
is then decoded by the decoding head into a guess

token, as illustrated in Figure 14. This approach
achieves prompt ensemble without the associated
computational costs.

Figure 14: Mult-exit ensemble. ’D1’, ’D10’, ’D11’, and
’D12’ are the decoder layers in order. ’S1’ is a prompt
token and ’H1’, ’H2’, ’H3’ are the corresponding hidden
states from the last 3 decoder layers. ’H4’ is obtained
from averaging these 3 hidden states. The decoding
head ’LM’ translates ’H4’ into a token ’E’.

The hypothesis is that taking the hidden states
from the last few decoder layers for ensemble might
work because these layers capture increasingly ab-
stract and high-level representations of the input
sequence. By averaging the hidden states from mul-
tiple layers, we can combine diverse but comple-
mentary information, leading to a more robust and
accurate final hidden state. Additionally, since the
final layers are closest to the output, they are more
likely to contain refined and contextually relevant
information, making the ensemble more effective.

Table 12 shows the comparison of prediction
accuracy of PPD with and without mult-exit en-
semble. The results indicate that the introduction
of multi-exit ensemble with both 2 and 3 exits re-
sults in a 7%-18% decrease in prediction accuracy
compared to the baseline model without multi-exit.

These findings suggest that the multi-exit ensem-
ble approach, as implemented, does not enhance
prediction accuracy and instead leads to a notable
decrease in performance. This may be due to the
averaging of hidden states from multiple layers in-
troducing noise or reducing the specificity of the
representations needed for accurate prediction. Fur-
ther refinement of the multi-exit ensemble may be
necessary to achieve the desired improvements in
accuracy.

F Effect of Batch Size on Speedup

As shown in Table 13, consistent speedup ratios
are achieved across different batch sizes without

2236

Aggregation Method @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

Average 0.506 0.794 0.276 0.602
Learned Weight 0.503 0.779 0.250 0.576

Table 11: Prediction Accuracy of PPD with different aggregation methods for EPTs. 100 EPT is used for all models.

Method Name @1 Top-1 @1 Top-5 @2 Top-1 @2 Top-5

PPD without multi-exit 0.485 0.779 0.261 0.586
PPD with 3 exits 0.422 0.723 0.214 0.517
PPD with 2 exits 0.420 0.723 0.213 0.518

Table 12: Prediction Accuracy of PPD with and without multi-exit ensemble. 1 EPT is used for all models. k exits
refer to the number of exits used.

tree attention. However, with tree attention, the
speedup ratio decreases as batch size increases, a
pattern similar to other parallel and speculative
decoding methods.

G Experiment Details

For the throughput experiments, each result is ob-
tained by averaging three separate runs. The stan-
dard deviations of these runs are reported as error
bars in the bar charts. To ensure a fair comparison
in our comparative experiments, we maintained
consistent hardware settings and software versions.

We selected 3 prompt tokens because adding
more would not further increase the expected ac-
ceptance length due to the tree size limit. The
number of EPTs per prompt token was optimized
to maximize throughput.

In Fig. 2, the temperature settings for PPD, Ea-
gle (Li et al., 2024b), and Medusa (Cai et al., 2024)
follow the default configuration, while the other
models use a greedy setting (temperature=0). This
choice is based on findings that retrieval-based
methods perform significantly worse in non-greedy
settings. Similarly, LOOKAHEAD DECODING (Fu
et al., 2024), REST (He et al., 2023), and PLD (Sax-
ena, 2023) in Fig. 4 also use a temperature setting
of 0 for the same reasons.

H Societal Impact

In this paper, we proposed PPD to accelerate LLMs
easily and cheaply. Since PPD reduces the time
required for handling a single inference request,
it could bring down the cost of deploying LLMs
for both the companies and the public. This might
lead to increased accessibility of LLM services.
Moreover, latency-sensitive applications like chat-

bots will benefit greatly from the usage of PPD
as it reduces the inference latency greatly, thereby
enhancing the user experience.

While PPD aims to make AI more accessible,
there may still be a digital divide where certain
communities lack the necessary infrastructure, such
as stable internet connections or modern hardware,
to fully benefit from these advancements. This
could further widen the gap between technology-
privileged and underserved populations. On the
other hand, PPD might be misused by malicious
parties to manipulate the output of the original
LLM, resulting in the generation of unreliable in-
formation and fake data.

2237

Batch Size 1 2 3 4
PPD Speedup Ratio (w/o Tree Attention) 1.71 1.65 1.63 1.64
PPD Speedup Ratio (with Tree Attention) 2.26 1.90 1.58 1.52

Table 13: Speedup ratio of PPD compared to baseline across different batch sizes.

2238

