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Abstract

Auto-regressive Large Language Models
(LLMs) demonstrate remarkable performance
across different domains such as vision and
language tasks. However, due to sequential
processing through multiple transformer layers,
autoregressive decoding faces significant com-
putational challenges, particularly in resource-
constrained environments like mobile and edge
devices. Existing approaches in literature that
aim to improve latency via skipping layers
have two distinct flavors: (1) early exit, and
(2) input-agnostic heuristics where tokens exit
at pre-determined layers irrespective of input
sequence. Both the above strategies have lim-
itations, the former cannot be applied in the
presence of KV caching, which is essential
for speed-ups in modern inference frameworks,
and the latter fails to capture variation in layer
importance across tasks or, more generally,
across input sequences. To address these limi-
tations, we propose FIRST, a model-agnostic
framework that reduces inference latency by
using layer-specific routers to adaptively skip
transformer layers during decoding, based on
routing decisions made from the input prompt
in the prefill stage. FIRST remains fully com-
patible with KV caching, enabling faster de-
coding while maintaining quality. Our method
reveals that input adaptivity is essential: Dif-
ferent tasks rely on different subsets of layers
to evolve meaningful representations. Exten-
sive experiments show that FIRST significantly
reduces latency while outperforming existing
layer selection strategies in quality. It retains
performance comparable to the base model
without skipping. FIRST is thus a promising
and efficient solution for LLM deployment in
low-resource environments.

1 Introduction

Large Language Models (LLMs) have revolution-
ized the fields of Natural Language Processing and
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Computer Vision achieving incredible performance
on a diverse set of benchmark tasks. However, the
massive scale of LLMs, often involving billions of
parameters, poses significant challenges for deploy-
ment in resource-constrained environments, where
memory, compute, and especially latency become
critical bottlenecks. In this work, we focus on ad-
dressing the latency issue, which is particularly
pronounced in edge settings such as laptops and
mobile devices. As noted by Schuster et al. (2022a),
the auto-regressive nature of decoding in LLMs fur-
ther amplifies this bottleneck.

Transformer-based LLMs consist of multiple
stacked layers, including attention and feed-
forward networks, which result in high latency and
computational cost. This makes inference slow or
even impractical in resource-constrained environ-
ments. The inefficiency stems from the need to
process each input token sequentially through all
layers, irrespective of the input sequence or task.
However, it is important to note that in the real
world, there is a lot of heterogeneity in input se-
quences and tasks. (Schuster et al., 2022a; Sun
et al., 2022) observed that LLM generations can
have varying levels of difficulty, and certain gen-
erations can be solved with reduced computation
by exiting the transformer stack early. At the same
time, it has been noted in recent works (Wendler
et al., 2024) that inference forward pass proceeds
in phases through the layers of transformer-based
models, with different types of information being
extracted or mapped at different phases (sequences
of layers) for certain tasks such as translation. Mo-
tivated by these and other related works, we hypoth-
esize that different sequential combinations of lay-
ers are important for different input sequences and
tasks. Learning the right sequential combination of
layers can help reduce inference latency and com-
pute for on-device scenarios. However, there are
several challenges. Any algorithm for determining
the “right” combination of layers should minimize
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any quality loss, be compatible with other latency
reduction strategies such as KV cache handling,
and be learnable with minimal compute/training
overhead.

In the last few years, several promising ap-
proaches have been proposed in literature that adap-
tively prune layers at each decoding step. Token-
level early exit proposed in (Schuster et al., 2022a;
Sun et al., 2022) allow tokens to exit the trans-
former layer stack early based on different strate-
gies to compute the confidence or saturation level.
(Elhoushi et al., 2024; Elbayad et al., 2020; Zhang
et al., 2019) extended this idea to incorporate layer
skipping at a token level during training. While
token level early exit is a useful idea in theory, it
suffers from a major limitation of incompatible KV
caching in practice (Del Corro et al., 2023). The in-
compatibility stems from having to recompute KV
caches for preceding tokens if we have a delayed
exit point for latter tokens, often resulting in loss
of early exit advantages. This limits its practical
adoption since KV cache is crucial in significantly
speeding up auto-regressive decoding.

Recently, (Liu et al., 2024; Del Corro et al., 2023;
Song et al., 2024) have proposed input-agnostic
layer skipping at token level, that handle KV cache
appropriately as well as retain the advantage of
adaptive partial computation. In these solutions,
tokens exit at pre-determined layers irrespective
of the input sequence, and for all sequences in a
batch, tokens at the same position in a sequence
exit at the same layer. Furthermore, tokens at latter
parts of the sequence are constrained to exit earlier
than the previous tokens to ensure that there is no
redundant KV cache re-computation. These solu-
tions are heuristic based and impose hard rules and
constraints irrespective of input sequences, which
can lead to drop in output quality. Others (Jaiswal
et al., 2024; Chen et al., 2024) have proposed skip-
ping layers by identifying redundant ones through
computing cosine similarity of (input/output) repre-
sentations of a layer. However, their strategy does
not take into account that several middle layers are
crucial (see (Liu et al., 2024)) and furthermore, fi-
nal prediction capability of full model is not taken
into account while deciding which layers to skip.
Importantly, in none of the works described above,
the strategy of selecting layers for skipping is se-
quence dependent. Furthermore, they do not con-
sider fine-tuning the models in a way such that not
only the performance improves but the model also

learns to skip layers appropriately.

Due to space constraints, we delegate a study of
other related works and orthogonal approaches
(for e.g. model compression) for exploring la-
tency/performance tradeoff to Appendix A.1.

Our goal is to design an input-adaptive, learn-
able layer selection strategy that provides quality-
aware latency improvements while properly han-
dling KV caching. Ideally, for each input sequence
and task, we want to predict a sequential combina-
tion of layers to run during inference, minimizing
quality loss while achieving as much latency gain
as possible. We also want to do this with mini-
mal computational overhead or extra training. To
achieve this, we propose training routers. At each
layer, the router looks at the current sequence rep-
resentation and decides whether to skip the next
layer. Since the decision is made at the sequence
level, all tokens follow the same path through the
model, avoiding KV cache inconsistencies during
decoding. Finally, we fine-tune the model with
trained routers using LoRA adapters to recover any
quality drop introduced by layer skipping, while
preserving latency gains. LoRA fine-tuning also
smoothens layer skipping and further highlights
the varied importance of layers based on input se-
quence. Our key contributions include:

1. We propose FIRST, a training and inference
algorithm that uses layer-specific routers to per-
form input-adaptive layer selection. All tokens
in a sequence follow the same selected layers,
ensuring compatibility with KV caching and
avoiding additional compute or latency over-
head. FIRST is model-agnostic and can be ap-
plied on top of any pre-trained LLM.

2. We introduce a LoRA-based fine-tuning ap-
proach on top of router-based layer selection to
recover quality while maintaining latency gains.
This also encourages smoother and a more sta-
ble layer selection.

3. Finally, we conduct extensive experiments with
FIRST across multiple datasets spanning three
distinct tasks: Machine Translation, Summariza-
tion, and Question Answering. We evaluate on
two open-source model architectures: LLaMA-
3-8B and LLaMA-3.2-3B, and show that, for
the same target speed-up, FIRST significantly
improves performance across tasks as compared
to baselines.
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2 Problem Statement

Our goal is to exploit the heterogeneity in inputs
and tasks to selectively use LLM layers in a quality-
aware manner for reducing inference latency and
compute for on-device constraints. Ideally, we
want to select an optimal sub-sequence of layers
within a transformer architecture for a given input
and task, such that the overall latency, as well as
expended computation, are both low, while qual-
ity is comparable to the un-modified case where
every input sequence passes through every layer.
For ease of explanation, without loss of generality,
we assume the task is same and simply consider an
input sequence for describing the problem.

Let us consider an input sequence X =
{x1, x2, . . . , xn} with n tokens. Let there be m
transformer layers in the model, where the ith trans-
former layer is represented as the function ϕi(). As
stated lucidly in (Wendler et al., 2024), X is first
converted to an initial latent representation H0 =
{H1

0 , H
2
0 , . . . ,H

n
0 }, where H0

j ∈ RD,∀j ∈ [n]
is a look-up from a learned embedding dictionary
corresponding to the jth token. Thereafter, every
transformer layer ϕi() operates on the latent vec-
tors Hi to generate the embedding for the ith layer
as follows. For the jth token, the embedding at
layer i is computed as follows:

Hj
i = Hj

i−1 + ϕi(H
1
i−1, H

2
i−1, . . . ,H

j
i−1) (1)

Let the (gold) output or generated sequence for
an input sequence X that passed through all m
layers of the model with full computation be Y∗

X .
Our hypothesis is that for a given input sequence
(and task), there exists an optimal subsequence
of functions FOPT (X ) out of the full sequence
{ϕi, i ∈ [m]} such that the output generated by
passing through this subsequence: YOPT,X ≈ Y∗

X .
More formally, if Q is a quantitative quality mea-
sure on Y , and ϵ → 0 is tolerance in deviation in
quality from the gold output, then we hypothesize
that there exists an optimal subsequence, using the
minimum number of layers, FOPT (X ), such that:

Q (YOPT,X ) ≥ (1− ϵ)Q (Y∗
X ) ,∀X . (2)

The optimality above is with respect to the mini-
mum subsequence of layers that can help achieve
the above, to minimize latency while keeping qual-
ity unaffected. Note that, the optimal subsequence
FOPT (X ) need to obey the same autoregressive
computation on previous tokens as given in Equa-
tion 1. Hence, any algorithm that determines the

Figure 1: Binary Tree representation of layer selection.

optimal subsequence, need to be compatible with
KV cache handling, to avoid the re-computation of
values for tokens preceding the current token.

The potential number of subsequences for m lay-
ers is 2m, hence a brute force is infeasible and also
beats the purpose of such a layer selection in the
first place: reducing latency and compute. In the
absence of any known substructure in the behaviour
of the latent layers on each input sequence, it is dif-
ficult to arrive at the optimal solution polynomially
or with low additional latency or compute.

We propose to learn an approximation of the op-
timal subsequence of layers for any input sequence
with low additional latency and minimal training.

3 Proposed Solution: FIRST

Let us first understand what it entails to learn an
optimal subsequence of layers for any input. Con-
sider the full transformer sequence to be F∗ =
{ϕ1, ϕ2, . . . , ϕm}. Any optimal subsequence for
an input X : FOPT,X could be thought of as find-
ing an optimal path through a binary tree of func-
tions. Formally, let every level in the binary tree
correspond to a transformer layer and the 0th layer
corresponds to the initial embedding look up; i.e.,
at depth i ∈ [m], there would be 2i nodes, each
corresponding to either ϕi or ϕi, where the for-
mer denotes that a particular transformer layer is
included in the optimal path whereas the latter de-
notes that it is not included. Each (of the 2i−1

nodes) ϕi or ϕi has two children, corresponding
to the next transformer layer: ϕi+1 and ϕi+1 (See
Figure 1). In such a tree structure, for example, the
path {ϕi, ϕi+1, ϕi+2} indicates the subsequence of
transformer layers {ϕi, ϕi+2}. For any transformer
layer ϕi in this tree, let Anc(ϕi) = k, 0 ≤ k < i
denote the the lowest ancestor node where the cor-
responding transformer node ϕk is included in the
sequence. In the above example, Anc(ϕi+2) = ϕi.

Consider a sequence of functions F , where for
level i, Anc(ϕi) = ϕk. The autoregressive com-
putations for the jth token in the input sequence
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(originally Eq 1), would now be modified as:

Hj
i =

{
Hj

k, if ϕi /∈ F ,

Hj
k + ϕi(H

1
k , H

2
k , . . . ,H

j
k), if ϕi ∈ F .

(3)

Our problem translates to navigating this binary
tree to find the optimal path FOPT for an input
sequence and task. Since there are 2m paths in
this tree, we propose to approximate the optimal by
making a decision in a greedy fashion at each node.
Formally, we add a (lightweight and fast) router Ri

before every transformer layer ϕi in the model, that
will predict whether ϕi will be selected or not.

Our aim is to learn to predict the layer choice at
a sequence level (not token) to maintain compatibil-
ity with the autoregressive computations and avoid
re-computation of of KV cache values. Moreover,
we should spend minimal compute for learning the
Ri functions. Finally, Ri functions should not add
any significant latency to the overall computation.

FIRST modifies any off-shelf pre-trained trans-
former based model by incorporating and training
a router or probability function Ri before every
transformer layer ϕi. The output of Ri is a score
ρi denoting the probability of selecting ϕi in the
layer sequence. During inference, ρi is rounded
to determine selection of ϕi. Let ⌊ρi⌉ = 1 if ρi ≥
0.5, else 0. Equation 1 is now modified as:

Hj
i = Hj

i−1 + ⌊ρi⌉ · ϕi(H
1
i−1, H

2
i−1, . . . ,H

j
i−1)

This recursively approximates Eq 3 for the opti-
mal F in a probabilistic, greedy manner. We train
the functions Ri on datasets and tasks, and further
fine tune using LoRA adapters to make the layer
selections smooth and improve the output quality.

4 FIRST Framework and Algorithm

In this section, we describe the training and infer-
ence frameworks for FIRST in details. We dis-
cuss how to train routers to be adaptive to input
sequences. Given an off-the-shelf pre-trained LLM,
we propose two training phases. In the first phase,
we train a router for each layer that decides whether
the input sequence should skip the layer. In the
second phase, to tackle the issue of unseen skip-
ping during pre-training, we fine-tune the router-
augmented LLM keeping router weights fixed to en-
sure the model improves performance on the target
dataset without reducing the skipping level. While
joint training of the router and LoRA modules is

theoretically possible, we find it introduces opti-
mization instability (see Appendix A.4 for further
discussion on this design choice and its impact).

4.1 Adaptive Router Module

The adaptive router module is a single-layer neu-
ral network without bias, positioned before every
layer in the model. During training of the router, all
model parameters except the router weights remain
frozen. For the first layer, it takes the tokenized
input, and for each of the subsequent layers, it takes
the output of the preceding layer as input. Mathe-
matically speaking, for any layer i, given a batch
of B tokenized inputs sequences, where each se-
quence has n tokens and is embedded in to RD, the
adaptive router module takes as input a B×n×D
tensor output of layer (i−1) and outputs a B×n×1
tensor. Subsequently, corresponding to each value
(or, token) in the B × n× 1 tensor, we apply a sig-
moid function to ensure that all entries in the tensor
are in the interval [0, 1]. Following this, we take a
mean operation at the sequence level - we take a
mean of all the weights in a sequence to output a
B × 1× 1 tensor. For each sequence in the batch,
the corresponding entry is the probability ρi with
which the sequence passes through the layer i. The
input sequence skips the layer i with probability
1 − ρi. During training, the output of a layer is
modified using a skip connection, incorporating
the probability ρi (see Figure: 2).

The routers are trained to encourage skipping by
reducing the probabilities {ρi}i using a regularizer,
to approximate the optimal subsequence for mini-
mizing the latency. The training task is modeled as
a language modeling task, specifically next token
prediction. The loss function comprises of 3 terms:
• Cross-entropy loss: Standard difference be-

tween actual and predicted probability distribu-
tions to ensure the quality of generation: LCE =
−∑

x∈X Y∗
X log(Ŷ).

• Regularization loss: Adds a penalty term to re-
duce overfitting to noise: LReg =

∑
i∈[m] ||Ri||2,

where ||Ri||2 denotes the ℓ2 norm of the router
weights for the ith layer router, and there are m
layers in the model.

• Non-skip penalization loss: This is the summa-
tion of probability values across all layers of the
model architecture: LPP =

∑
i∈[m] ρi

The total loss L is a linear combination of these
three terms: L = LCE+λ·LReg+α·LPP, where α
manages the tradeoff between quality and latency.
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Figure 2: Skip connection used for router training. With
probability p, the sequence is processed by the layer and with
probability 1 − p, the layer is skipped. During inference,
routers make the decision of whether a sequence will skip a
particular layer or pass through it.

4.2 LoRA Compensation Module
Skipping layers naturally leads to some perfor-
mance loss - especially so since the pre-trained
model was not trained to skip layers. To compen-
sate for the loss in performance caused by skip-
ping layers, we finetune the router-augmented pre-
trained model on the downstream task 1 using Low
Rank Adapters (LoRA). During finetuning, the
router parameters are frozen while trainable LoRA
adapters are added to both the FFN (Feed-Forward
Network) and the attention modules of each layer
of the pre-trained model. In order to maintain the
skipping level, we again add a non-skip penaliza-
tion loss component during finetuning with scaling
hyper-parameter β. This is essential even though
the router weights are frozen because standard fine-
tuning alters the hidden representations of the in-
put sequence in a manner such that no layers are
skipped. Note that the LoRA adapters do not lead
to any latency overhead during inference.

4.3 Inference for FIRST
During inference, for the input sequence, each
router (corresponding to a layer) outputs a num-
ber in the interval [0, 1]. If this number is greater
than or equal to 0.5, the sequence passes through
the layer. Otherwise, the sequence skips the layer
(Fig. 2). Below, we discuss some salient points
about the functioning of the router during inference
to handle KV Cache appropriately:
1. Prefill phase handling: Skipping is not allowed

during prefill phase. This ensures the first token
is generated correctly, which is crucial for WMT
1similar to Quantization Aware Training such as QLoRA

(Dettmers et al., 2024) - compensates for model compression

tasks, as they are highly sensitive to the correct
generation of the first token in the target lan-
guage. It has been observed in prior works (Liu
et al., 2024) that skipping during prefill phase is
detrimental to performance during inference.

2. Fixed router decisions during decoding and
handling KV Cache: During the prefill phase,
the decisions made by the routers are cached.
During the decoding phase, every token adheres
to the cached decision made during prefill. In
other words, for a particular layer, if a router out-
puts a number less than 0.5 during prefill, the
number is fixed for the decoding steps and there-
fore the same layer will be skipped by all tokens
during decoding. Similarly, if the router outputs
a number more than 0.5 during prefill, the same
layer will be processing all tokens during decod-
ing. Such a step ensures that for each decoding
step and each layer that is not skipped, the KV
cache for all previous tokens is available for that
layer. This approach effectively addresses the
caching issues encountered in early exit strate-
gies, ensuring consistent decisions across the
decoding process.

5 Experiments

We conduct experiments on three benchmark tasks:
Machine Translation, Text Summarization, and
Question Answering, demonstrating the robustness
and scalability of FIRST across diverse settings.
We base our task selection on prior work in the
field to ensure a fair and meaningful comparison
(Liu et al., 2024; Del Corro et al., 2023; Schuster
et al., 2022b).
Datasets: For machine translation, we use WMT
development sets (2017–2020) for English-to-
Chinese and English-to-German tasks, evaluating
performance on the WMT 2022 test set, which
covers diverse domains such as news, social me-
dia, e-commerce, and conversational contexts. For
summarization, we use the CNN/DailyMail dataset,
with 4,000 randomly selected training samples and
evaluation on the standard test set of 11,490 sam-
ples. For question answering (QA), we utilize
SQuAD v1.1 and Natural Questions (NQ). We
train on 4,000 randomly selected samples from
each dataset and evaluate on their respective val-
idation sets as test set labels are unavailable. For
NQ, we incorporate a retrieval step before answer
generation, retrieving relevant passages as context.
Appendix A.2 contains detailed descriptions.
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En-to-De En-to-Zh

Skip (%) Model Type LLaMA-3-8B LLaMA-3.2-3B LLaMA-3-8B LLaMA-3.2-3B
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

0 Original Model Base + LoRA 0.199 93.00 0.160 89.72 0.333 82.66 0.278 79.13
Base 0.169 87.13 0.125 81.66 0.208 68.95 0.166 61.84

15

Skip Decode Router + LoRA 0.094 55.62 0.105 44.58 0.149 55.98 0.2 46.7
Router 0.019 23.33 0.055 32.74 0.03 21.75 0.062 34.14

Random Skip Router + LoRA 0.097 66.25 0.079 47.26 0.237 67.32 0.154 57.79
Router 0.132 60.27 0.048 36.3 0.168 59.89 0.077 35.86

Unified Skip Router + LoRA 0.153 59.34 0.095 44.72 0.23 69.58 0.157 57.1
Router 0.117 59.26 0.067 39.81 0.122 54.57 0.087 45.16

FiRST (Ours) Router + LoRA 0.161 82.14 0.113 60.29 0.247 68.63 0.218 67.45
Router 0.108 67.74 0.069 43.04 0.08 42.76 0.1 54.55

25

Skip Decode Router + LoRA 0.07 31.47 0.077 32.33 0.088 33.85 0.147 42.01
Router 0.015 21.55 0.05 27.64 0.024 20.93 0.045 29.51

Random Skip Router + LoRA 0.018 29.71 0.023 30.97 0.065 27.73 0.137 45.53
Router 0.011 29.95 0.015 27.22 0.04 35.16 0.053 31.5

Unified Skip Router + LoRA 0.06 31.69 0.05 39.81 0.142 50.59 0.108 42.3
Router 0.048 32.15 0.032 30.86 0.068 38.74 0.079 31.63

FiRST (Ours) Router + LoRA 0.071 34.95 0.072 45.38 0.119 56.92 0.126 41.66
Router 0.029 26.01 0.029 29.08 0.051 25.45 0.053 27.83

Table 1: Machine Translation results for the English-to-German and English-to-Chinese task for both models: BLEU and
COMET scores are reported across varying skip levels. FiRST (Ours) performs consistently well across both translation
directions.

Evaluation Metrics: We employ standard met-
rics to assess output quality across three distinct
tasks. For Machine Translation, we benchmark
performance using BLEU and COMET; COMET
is included for its more nuanced assessment capa-
bilities beyond the n-gram overlap measured by
BLEU. Summarization quality is evaluated with
ROUGE scores and BERT Score, the latter captur-
ing meaning-based similarity. For Question An-
swering, we use Exact Match (EM) and F1 Score
on the SQuAD dataset, and report Exact Match
(EM) for Natural Questions (NQ). Finally, to bench-
mark latency, we measure Time Per Output Token
(TPOT) on GPU, which gauges overall decoding
performance. Detailed descriptions of all evalua-
tion metrics are available in Appendix A.3. Hyper-
parameters used during training and inference are
provided in Appendix A.4.

5.1 Baselines for comparison

We report the latency improvement and quality
numbers relative to the base models (no skipping).
• Random Skipping: We skip a set of k layers

randomly where k depends on the target speedup.
• Skip Decode: We implement Skip Decode

(Del Corro et al., 2023) method that features
a monotonic decrease in processing layers, en-
abling later tokens to leverage the computational
resources used for earlier ones.

• Unified Skipping: This, to the best of our knowl-
edge, is the state-of-the-art method relies on us-
ing a heuristic-based strategy for retaining layers

at fixed intervals. We replicate the algorithm
in (Liu et al., 2024) and compare performance
both with and without LoRA fine-tuning across
various skipping percentages.

5.2 Experimental Results on Different Tasks

WMT: For LLaMA-3-8B, at 15% skipping, FIRST
achieves a latency improvement of upto 10% on
TPOT (see Tables 1 and 4).In most cases, it signif-
icantly outperforms other layer skipping strate-
gies (Skip Decode, Random and Unified Skipping)
and in other cases, it is comparable in quality.
When compared to the gold output (Base + LoRA),
FIRST generally retains a high percentage of the
quality, for instance, often achieving ≥ 80% of the
COMET score for LLaMA-3-8B, and ≥ 70% in
BLEU scores. For 25% skipping, FIRST achieves
significant improvement in quality over other strate-
gies, in almost all metrics, while achieving ∼ 18%
reduction in TPOT.
For LLaMA-3.2-3B, for similar latency improve-
ment (∼ 10%), the COMET scores are signifi-
cantly higher that other baselines while the BLEU
scores are comparable. (Table 4). It remains within
65− 85% of BLEU and COMET scores (Table 1)
achieved by the gold standard.
CNN/DailyMail Dataset: For LLaMA-3-8B, at ∼
15% skipping, our method outperforms the Base
+ LoRA setting(Table: 3) while obtaining a 12%
improvement in TPOT (Table 4). For LLaMA-3.2-
3B, at 15%, the quality is comparable (∼ 98%) to
gold and other baselines with 12% improvement in
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Skip (%) Model Type SQuAD NQ
EM F1 EM

LLaMA-3-8B

0 Original Model Base + LoRA 73.93 85.99 51.88
Base 19.46 36.73 37.40

10 Skip Decode R + LoRA 60.14 65.33 41.98
Router 16.38 31.48 33.22

Random Skip R + LoRA 65.73 80.08 44.95
Router 18.25 33.75 34.09

Unified Skip R + LoRA 55.54 74.58 45.91
Router 17.39 32.91 33.64

FiRST (Ours) R + LoRA 70.85 83.61 47.85
Router 14.58 31.52 33.53

20 Skip Decode R + LoRA 45.00 55.10 26.62
Router 10.68 26.69 14.39

Random Skip R + LoRA 47.79 66.37 28.96
Router 6.71 22.46 27.40

Unified Skip R + LoRA 52.87 69.28 25.30
Router 18.18 32.51 23.57

FiRST (Ours) R + LoRA 60.60 75.49 32.22
Router 13.21 27.48 18.02

LLaMA-3.2-3B

0 Original Model Base + LoRA 73.07 84.17 40.50
Base 18.92 37.74 30.10

10 Skip Decode R + LoRA 60.79 75.00 31.74
Router 20.00 31.55 21.51

Random Skip R + LoRA 64.78 77.27 36.02
Router 13.76 28.59 22.76

Unified Skip R + LoRA 65.03 77.53 32.90
Router 13.16 32.31 21.03

FiRST (Ours) R + LoRA 69.44 81.35 37.82
Router 12.79 28.37 22.55

20 Skip Decode R + LoRA 40.12 40.00 27.28
Router 20.45 37.62 14.73

Random Skip R + LoRA 11.32 38.34 26.60
Router 6.75 15.51 13.24

Unified Skip R + LoRA 37.39 52.49 26.84
Router 7.81 18.20 16.09

FiRST (Ours) R + LoRA 39.70 54.59 29.87
Router 5.52 15.33 17.51

Table 2: Quality Analysis on Question Answering tasks us-
ing LLaMA-3-8B and LLaMA-3.2-3B across SQuAD (Exact
Match and F1) and Natural Questions (Exact Match). Re-
sults are shown for multiple skip strategies and levels. FiRST
(Ours) consistently performs best under skipping, demonstrat-
ing strong robustness. R + LoRA indicates Router Augmenta-
tion followed by LoRA fine-tuning.

TPOT. At 24%, FIRST is significantly better than
other layer skipping strategies, while achieving >
20% improvement in latency.
SQuAD Dataset: For the LLaMA-3-8B model,
FIRST(at 10% skip level) maintains over 95% of
the performance of the gold standard (Base + LoRA
without skipping)(Table 2), with overall latency
gains upto 16% (Table 4). It is significantly better
in quality than all other baselines across all metrics
for different levels of skipping. For LLaMA-3.2-
3B, again FIRST is > 95% in output quality of
gold (base + LoRA) for 10% skipping (Table 2)
with similar gains in latency (upto 16% overall)
(Table 4) over the LoRA fine-tuned base model.
Moreover, it is better than all other layer skipping
strategies across all metrics.
Natural Questions Dataset: For the LLaMA-3-

8B model, FIRST retains over 92% of the EM
achieved by the non-skipping gold standard (Table
2), with overall latency gains of 5-12% (Table 4). It
is significantly better in quality than all other base-
lines for different levels of skipping. For LLaMA-
3.2-3B, again FIRST is > 93% in output quality
of gold (base + LoRA) for 10% skipping (Table
2) with gains in latency of 4-10% overall (Table
4) over the LoRA fine-tuned base model. More-
over, it is better than all other layer skipping strate-
gies. While more sophisticated retrieval strategies
could further enhance performance, our goal was
to demonstrate that FiRST maintains quality perfor-
mance and latency gains even in a retrieval-based
QA setting.

Detailed results for an additional skipping percent-
age are provided in Appendix A.6.

Layer-wise Skipping Patterns: Layer-wise skip-
ping varies significantly across tasks, reflecting
the task-specific importance of each layer. For
LLaMA-3-8B at a 15% skipping rate, layers 7–9
and 21 are fully skipped in English-to-German,
with partial skipping in layer 18. Figure 3 for sum-
marization shows that only some layers in the mid-
dle of the network, specifically layers 19 to 27, are
skipped. The early layers and the last few layers
(28–32) are never skipped. Layers 20, 22, and 23
are fully skipped, with partial skipping in layers
19 and 21. Some layers are skipped less than 10%
of times, indicating their necessity for specific se-
quences. This shows that it’s important to learn
which layers to skip based on each input, as the
skipping pattern is not the same for every sample.
The task-specificity is also evident in Question-
Answering, where only layer 22 is fully skipped
on SQuAD while layers 12, 23 are fully skipped
in case of NQ dataset, and skipping patterns de-
pend on the input. Detailed statistics are in Ap-
pendix A.7. Furthermore, the router is trained in
a task-aware manner, ensuring that skipping deci-
sions align with task complexity. We also conduct
experiments to validate the reusability and gener-
alizability of routers (see Appendix: A.8) across
different datasets for the same underlying task.

Computational overhead of Routers: We aim to
improve the efficiency of pre-trained models by in-
troducing routers, lightweight linear classifiers that
help decide whether to skip certain layers during
inference. A common concern with adding such
components is the potential increase in computa-
tional cost. However, our analysis shows that the
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Skip (%) Model Type BERT R-1 R-L

LLaMA-3-8B

0 Original Model Base + LoRA 84.87 28.46 16.99
Base 82.29 23.49 14.66

15

Skip Decode R + LoRA 84.74 22.04 17.54
Router 82.53 13.68 9.30

Random Skip R + LoRA 83.70 24.60 15.01
Router 81.10 19.64 13.07

Unified Skip R + LoRA 84.25 24.35 14.3
Router 80.3 16.61 10.95

FiRST (Ours) R + LoRA 85.14 31.8 20.13
Router 81.25 20.2 13.01

20

Skip Decode R + LoRA 82.57 20.41 14.87
Router 81.62 13.48 9.19

Random Skip R + LoRA 81.39 21.57 13.83
Router 79.23 15.51 10.93

Unified Skip R + LoRA 82.93 22.3 13.37
Router 80.32 16.51 11.15

FiRST (Ours) R + LoRA 82.8 27.65 17.84
Router 79.32 16.28 10.85

Skip (%) Model Type BERT R-1 R-L

LLaMA-3.2-3B

0 Original Model Base + LoRA 84.89 28.37 17.02
Base 71.85 19.34 12.00

15

Skip Decode R + LoRA 83.20 21.71 13.74
Router 80.97 9.74 6.87

Random Skip R + LoRA 79.52 20.18 12.10
Router 68.20 10.10 7.10

Unified Skip R + LoRA 81.53 18.89 11.72
Router 70.01 12.49 8.68

FiRST (Ours) R + LoRA 83.17 26.47 16.79
Router 70.98 16.47 10.51

24

Skip Decode R + LoRA 78.55 15.83 6.74
Router 76.91 13.29 8.86

Random Skip R + LoRA 80.00 16.33 10.07
Router 67.88 8.49 5.96

Unified Skip R + LoRA 79.31 15.88 10.69
Router 68.86 9.17 6.97

FiRST (Ours) R + LoRA 80.25 21.28 13.89
Router 69.17 12.36 8.43

Table 3: Quality Analysis on Summarization (CNN/DM dataset) on LLaMA-3-8B (left) and LLaMA-3.2-3B (right): BERT F1,
Rouge-1 and Rouge-L scores are reported for varying skipping levels. Note that R + LoRA corresponds to Router Augmentation
followed by LoRA fine-tuning (in the proposed FiRST framework).

Model size Model Type WMT CNN/DM SQuAD Natural Questions

Skip (%) Eng→De Eng→Zh Skip (%) TPOT Skip (%) TPOT Skip (%) TPOT

LLaMA-3–8.B

Base + LoRA 0 1× 1× 0 1× 0 1× 0 1×
R + LoRA 15 0.90× 0.88× 15 0.88× 10 0.95× 10 0.96×
R + LoRA 25 0.82× 0.83× 20 0.81× 20 0.78× 20 0.80×

LLaMA-3.2–3B

Base + LoRA 0 1× 1× 0 1× 0 1× 0 1×
R + LoRA 15 0.90× 0.91× 15 0.88× 15 0.94× 15 0.94×
R + LoRA 25 0.78× 0.75× 24 0.79× 24 0.83× 24 0.84×

Table 4: TPOT variation across all datasets for FiRST. The reported values are relative to the LoRA fine-tuned base model. R +
LoRA indicates Router Augmentation followed by LoRA fine-tuning. Fine-tuning improves TPOT and quality significantly.

Figure 3: LLaMA-3-8B skipping statistics at 15% skipping
rate on summarization task. Layers with no skipping, indicated
by a 0% skipping rate, are not represented in the plot.

additional parameters and operations introduced
by the routers account for a very small fraction
of the total model computation, only 0.0027% for
LLaMA-3-8B and 0.0016% for LLaMA-3.2-3B in
terms of parameter count, and around 0.3% of the
total forward pass time. This fixed cost remains
negligible compared to the overall model execution
time. As a result, the overall latency gain primar-
ily depends on how much computation is skipped,
rather than the routing mechanism itself. Given
similar levels of skipping, different methods tend
to show comparable efficiency gains, so the key

focus becomes minimizing the performance drop
relative to the original model. Our results show that
the proposed routing mechanism achieves this bal-
ance effectively, preserving latency improvements
while maintaining model quality.

6 Conclusion

We propose a new framework, FIRST, for layer
selection that adapts to the input sequence and task,
aiming to reduce latency in a quality-aware manner.
This approach is sequence-dependent and operates
compatibly with KV caching. With an optimal
layer skipping rate of around 15%, FIRST achieves
a 10-20% reduction in latency. This speedup is
achieved while remaining quality-neutral, main-
taining approximately 80% or more of the base
model’s performance on quality metrics across mul-
tiple tasks (Machine Translation, Summarization,
Question Answering) and model architectures on
well-known open-source datasets. Furthermore,
our method significantly outperforms other layer
selection strategies on most quality metrics.
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7 Limitations

FIRST algorithm selects layers in a greedy, myopic
way one layer at a time, corresponding to sequences
(and tasks). A more optimal way of doing this
would be to estimate a subsequence of layers to
traverse through instead of one layer at a time. We
intend to address this in future work. We would like
to select a more optimal subset (subsequence) of
layers which will increase the output quality while
reducing latency even further.

8 Ethical Concerns

There are no ethical concerns to the best of our
knowledge.
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A Appendix

A.1 Related Work

Early Exit: Several works have been proposed in
the early exit theme (Zhu, 2021; Zhou et al., 2020;
Xin et al., 2020; Liu et al., 2020; Li et al., 2020;
Hou et al., 2020; Schuster et al., 2022a; Wu et al.,
2020) where adaptive compute is used for differ-
ent parts of the token sequence. While these ap-
proaches have been popular for encoder-only mod-
els which processes the entire sequence as a whole,
they have faced challenges in generation tasks. The
main limitation of these set of techniques are their
inability to handle KV caching appropriately which
is crucial for multi-fold speed-ups in current LLM
architectures. We emphasize that in our work, we
assign varying compute to sequences in different
batches but within the same sequence, we assign
the same compute to every token.

Input Agnostic Heuristics: In Skip Decoding
(Del Corro et al., 2023), initial tokens pass through
more layers than later ones, contradicting the obser-
vation that later tokens are harder to decode (Liu
et al., 2024). Additionally, Skip Decoding skips
several bottom layers for most tokens, causing un-
desirable sub-network imbalance. To address this,
Unified Layer Skipping (Liu et al., 2024) proposes
a discrete skipping strategy that is uniform for all
tokens in a sequence. Based on a latency budget,
retained layer IDs are passed through by all tokens,
ensuring KV Cache handling and retaining key lay-
ers. However, the limitation of this approach is that
skipping is independent of the input sequence. In
contrast, early exit strategies adapt layer skipping
to the input sequence, offering more flexibility. In
(Fan et al., 2019), a method akin to dropout ran-
domly skips layers during training, but this leads to
performance decline during the pre-fill stage. FFN-
SkipLLM (Jaiswal et al., 2024) constrains skipping
to FFN layers to avoid KV Cache issues, but fails
to fully exploit redundancy as discussed already.
(Song et al., 2024) is a very recent work that also
explores greedily identifying layers to skip while
preserving the model performance on a calibration
dataset - however there are two major limitations of
this work which are resolved in our paper: (A) first
of all, the layer selection strategy is sequence in-
dependent although it can be made task-dependent
by calibrating on task-specific datapoints, our ap-
proach for skipping layers is sequence dependent
and is based on the input to a layer (B) SLEB does
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not explore the impact of fine-tuning on the layers
to be skipped. On the other hand, our skipping
strategy incorporates the trained router already - in-
tuitively, the knowledge of skipping is transferred
during finetuning. (Chen et al., 2024) is another
recent work that compresses models by identifying
redundant layers - this is done by computing the
average similarity between input/output pairs of a
layer. However, as outlined in (Song et al., 2024),
such an approach suffers from the limitation that
it does not take into account the joint association
between the layers while skipping multiple layers.
Moreover, like (Jaiswal et al., 2024), this work
is neither sequence dependent nor takes the final
model predictions into account while identifying
the layers to skip.

Model Compression and Quantization Aware
Training: Orthogonal approaches to explore the
latency/memory-performance trade-off in Large
Language Models aim to build smaller models that
approximate the performance of larger ones with
reduced memory and latency costs. Key techniques
include: 1) compressing model parameters into
fewer bits (Frantar et al., 2022; Lin et al., 2024;
Lee et al., 2024; Saha et al., 2023); 2) pruning the
network by removing components like attention
heads or neurons based on heuristics (Frantar &
Alistarh, 2023; Ma et al., 2023b); and 3) distilling
the large model into a smaller, faster counterpart
(Agarwal et al., 2023; Gu et al., 2024). For fur-
ther details, we refer to the survey by (Zhu et al.,
2023). A significant body of work (Dettmers et al.,
2024; Liu et al., 2023b; Peri et al., 2020; Li et al.,
2023) has focused on quantization-aware training
to reduce memory footprints and mitigate perfor-
mance loss, starting with QLoRA (Dettmers et al.,
2024). In a similar vein, our work proposes fine-
tuning router-augmented models to improve layer
skipping and reduce performance degradation, as
pre-trained models do not account for layer skip-
ping, leading to higher degradation with vanilla
skipping.

Network Pruning: Another orthogonal ap-
proach to improve the inference speed-up is to
prune redundant network weights by zeroing them
out. There has been a significant body of work on
pruning model weights (Frantar et al., 2022; Fran-
tar & Alistarh, 2023; Sun et al., 2022; Zhang et al.,
2023) - most of these works can be categorized
into two clusters namely unstructured pruning and

structured pruning. In case of unstructured prun-
ing, there is no structure to the inserted zeros and
achieving speedups with modern GPU hardware
tailored towards dense matrix multiplication is chal-
lenging. In fact, more than 90% sparsity is typi-
cally required to achieve any significant speedup
(Wang, 2020; Shi et al., 2020). Therefore, struc-
tured pruning which is more amenable to GPU
hardware has become prominent (2:4 pruning and
sub-channel pruning). However, realizing desired
speedups through these techniques have been dif-
ficult (Song et al., 2024). Moreover, several ap-
proaches for dynamically deleting entire rows or
columns of weight matrices have been proposed
(Ma et al., 2023a; Ashkboos et al., 2024; Liu et al.,
2023c) to retain dense matrices but two limitations
remain - (A) hardware support is extremely limited
for realizing speedup gains (B) extensive finetun-
ing is necessary to align the sparsification with
linguistic abilities - this is because, such pruning
techniques were not observed by the model during
pre-training. Finally, note that several prior works
(Tang et al., 2024; Oren et al., 2024; Xiao et al.,
2023) have imposed (query aware/ query agnos-
tic) sparsity in the KV cache matrices to speed up
self-attention mechanism via clever selection of the
critical tokens necessary from the KV cache.

Mixture of Experts Mixture of Experts (MoE)
is a well-established technique for improving the
efficiency and capacity of deep learning models by
conditionally activating subsets of parameters for
different inputs. MoE-based transformer models,
such as Switch Transformers (Fedus et al., 2021)
and GShard (Lepikhin et al., 2020), employ a gat-
ing mechanism to route tokens to a subset of ex-
pert layers, thereby significantly reducing computa-
tional costs while maintaining expressivity. These
architectures are designed to scale up model capac-
ity without a proportional increase in inference cost.
The main goal is to scale up the parameters while
maintaining the cost of pre-training and inference.

Although MoE and input-adaptive layer skipping
share the goal of selective computation, they differ
in fundamental ways. MoE dynamically routes to-
kens to different experts at the layer level, whereas
layer skipping focuses on bypassing entire layers
in the transformer stack based on the input query.
MoE models typically maintain a full-depth model
structure, leveraging sparse activation to reduce
computational overhead, whereas layer-skipping
methods explicitly modify the depth of computa-
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tion for different inputs. Simply put, the techniques
are orthogonal - layer skipping can be used in tan-
dem with Moe to further reduce the depth of com-
putation wherever possible at an expert level

A.2 Details of Datasets

WMT Summarization Question Answering

Split En→De En→Zh CNN/DM SQuAD NQ

Train 3,505 8,983 3,400 3,400 3,400
Validation 876 998 600 600 600
Test 2,038 2,038 11,490 10,570 7,830

Table 5: Train, validation, and test splits for machine
translation (WMT), summarization (CNN/DM), and
question answering (SQuAD, NQ) tasks.

Machine Translation: For translation tasks,
namely English-to-Chinese and English-to-
German, we employ the WMT development
sets from 2017 to 2020 for training/fine-tuning
following the methodology outlined in previous
studies (Liu et al., 2023a; Jiao et al., 2023).
Translation performance is evaluated using the
test set from the WMT 2022 dataset (Kocmi
et al., 2022) which was developed using recent
content from diverse domains. These domains
include news, social media, e-commerce, and
conversational contexts.
Summarization: We use the popular CNN-
DailyMail (CNN/DM) (Hermann et al., 2015)
dataset which is a large collection (over 300k)
of text summarization pairs, created from CNN
and Daily Mail news articles. Each datapoint in
this dataset comprises of an article (the body of
the news article with 683 words on average) and
the corresponding highlights (article summary
as written by the article author). While the
training set contains more than 287k samples, we
have randomly chosen 4k samples for training
both routers and LoRA. During training in our
framework, the number of trainable parameters is
small in both phases - therefore a small subset of
data points is sufficient for training.

Question Answering: We use the popular Stan-
ford Question Answering Dataset (SQuAD v1.1)
(Rajpurkar et al., 2016), a widely-used benchmark
for Machine Question Answering. The dataset con-
sists of over 100k question-answer pairs posed by
crowd-workers on a set of over 500 Wikipedia arti-
cles. Each sample comprises a context (a passage
from a Wikipedia article), a question (crafted to
test comprehension of the passage), and the corre-
sponding answer(a text span from the correspond-

ing reading passage). Similarly to the CNN/DM
dataset, 4k samples are chosen at random to train
both routers and LoRA. The training and validation
splits contain 87,599 and 10,570 samples, respec-
tively. Evaluation is performed on the validation set
(Schuster et al., 2022a) as the test set labels are not
publicly released. Natural Questions (NQ): We
use the Natural Questions dataset (Kwiatkowski
et al., 2019), which consists of real queries issued
to Google Search paired with relevant Wikipedia
articles. Each example in NQ contains a query (an
actual user question), a context(Wikipedia article),
and two types of answers: a long answer (typically
a paragraph) and a short answer (a specific text
span, when available). We implement a naïve RAG
solution using a simple S-BERT model to generate
embeddings for the query and passages and retrieve
the top 5 most relevant passages based on similarity.
Once retrieved, these passages are used as context
to answer the query and then compared against
gold answers. Similar to SQuAD, 4k samples are
randomly chosen to train both routers and LoRA.
The training set contains over 300k examples, with
evaluation performed on 7.83k validation samples
containing short answers. For further details on
training-testing split, refer to table: 5

A.3 Evaluation Metrics

Quality-Based Metrics for Translation task:
• BLEU Score: BLEU (Bilingual Evaluation Un-

derstudy) scores are used to measure the quality
of translations. BLEU compares n-grams of the
candidate translation to n-grams of the reference
translation, providing a score between 0 and 1,
with higher scores indicating better translations.
In this evaluation, NLTK BLEU is employed and
We report BLEU-1, BLEU-2, and the cumulative
BLEU score, which is computed as the geometric
mean of individual n-gram precision scores from
unigram to 4-gram. To mitigate the issue of zero
counts for higher-order n-grams, we apply the
smoothing strategy utilized in (Post, 2018).

• COMET: COMET (Cross-lingual Optimized
Metric for Evaluation of Translation) is used to
assess translation quality further. COMET eval-
uates translations using a model trained to cor-
relate well with human judgments. Specifically,
Unbabel/XCOMET-XL 2 is used in this evalua-
tion. COMET provides a more nuanced assess-
ment of translation quality by considering the

2https://github.com/Unbabel/COMET
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intricacies of both source and target languages,
beyond the n-gram matching used in BLEU.
Quality based Metrics for Summarization

Task:
• BERTScore: This metric quantifies semantic

similarity between texts by leveraging contextual
word embeddings.
BERTScore captures meaning-based similarity
rather than relying on exact word matches, pro-
viding a nuanced evaluation of text generation
quality.

• ROUGE: (Recall-Oriented Understudy for Gist-
ing Evaluation) is a common metric - ROUGE-1
refers to overlap of unigrams between the sys-
tem summary and reference summary. Similarly,
ROUGE-L measures longest matching sequence
of words.

Quality based Metrics for Question Answering
Task:
• Exact Match: This metric measures the percent-

age of predictions that exactly match the ground
truth answer.

• F1 score: Since EM is a highly stringent metric,
we also report the F1 score which provides a
more flexible evaluation of answer prediction.
This metric also takes into account near-matches.

A.4 Training and Inference Setup

• Training settings: We perform extensive experi-
ments on two models, namely LLaMA-3-8B and
LLaMA-3.2-3B from Meta, which consist of 32
and 28 layers, respectively. Training of routers
and LoRA adapters is conducted on A100 80GB
GPUs, with training/inference is performed in
full precision to avoid performance degradation
due to quantization. The training process em-
ploys our custom loss function and continues for
a fixed number of epochs, terminating when the
validation loss fails to improve over 4 consecu-
tive steps. The learning rate is set between 1e−4

and 3e−4 - a cosine scheduler is used to adjust
the learning rate. Gradients are accumulated af-
ter five steps, and we set the regularization loss
coefficient (λ = 0.01), ensuring it meaningfully
contributes to the overall loss without overpower-
ing primary losses like cross-entropy and penal-
ization loss. After training, we verify the router
weight norms (e.g., thresholds of 0.1 or 0.05)
to ensure they remain stable, neither exploding
nor vanishing, preventing overfitting or underfit-
ting. For LoRA fine-tuning, we employ a rank

of 8, a dropout rate of 0.1, and a scaling factor
(lora_alpha = 32). Our approach involves two
key penalization coefficients: α for the router
and β for LoRA training. The non-skip coeffi-
cient (α) is adjusted based on dataset character-
istics, sequence length, and model depth, requir-
ing some tuning. Typically, router penalization
(α) is set 2–4× higher than LoRA’s (β) based
on experimental observations to maintain a con-
sistent skipping percentage across both training
phases. A reasonable starting point is to tune α
for a 10–15% skipping range, then gradually in-
crease it at regular intervals to encourage higher
skipping levels. In addition to the above hyper-
parameters, we define the maximum sequence
length based on the task. For translation, it is
set to 128 for router training and 256 for LoRA
training. Similarly, for summarization, the se-
quence length is set to 500 and 700, respectively.
For Question Answering, this length is set to
512. The prompts for the different tasks related
to training / inference are shown in Appendix
A.5.

• Joint training considerations: The decision to
split training into two phases, first training the
router and then the LoRA modules, was made to
ensure better stability during optimization. In our
experiments, this approach allowed the router to
establish a robust skipping strategy without inter-
ference from the fine-tuning of LoRA modules,
which otherwise introduces instability. While
training both the router and LoRA modules to-
gether is theoretically possible and could elimi-
nate the need for reapplying the non-skip penalty
in the second phase, initial experiments revealed
that it led to suboptimal convergence and con-
flicting gradients. This was particularly evident
when the router’s decisions were not yet stable,
causing inconsistencies in the joint optimization
process.

• Inference settings: For all the tasks, we set the
temperature to 0.8 and enable top-k sampling
over 10 tokens. The maximum number of tokens
to be generated is set to 80 for WMT, 200 for
CNN/DM and 32 for SQuAD and NQ. Caching
is turned on during inference.

A.5 Prompt Details

The prompt structures used for both training and
inference are as follows:

• For the machine translation task (English-to-
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German or English-to-Chinese), the following
general prompt structure is used to train the
routers and during final inference:

### Instruction:
Translate the following sentences from English to
German.

### Input:
{Text to be translated}

### Response:

• For the summarization task (used in
CNN/DailyMail dataset), the prompt structure
used is:

### Instruction:
Summarize the news article in around 100-200
words.

### Input:
{Article to be summarized}

### Response:

• For the Question Answering task (used in
SQuAD/NQ dataset), the following prompt
structure is utilized:

### Instruction:
Answer the question based on the given passage.

### Passage:
{context}

### Question:
{Question to be answered}

### Response:

During the training of the LoRA module, task-
aware training is applied. The expected translation
or summary is appended after the ### Response
section, making the model predict the response
tokens following the "Response:\n".

A.6 Detailed Result Table

Tables 6 and 7 present the detailed results for the
LLaMA-3.2-3B and LLaMA-3-8B models for an
additional skipping percentage on Machine Trans-
lation Task. The results are reported using BLEU
(BLEU-1, BLEU-2, BLEU) and COMET metrics,
highlighting performance across different skipping
percentages. Similarly, Table 11 presents cumu-
lative results for both models reporting BERT F1,
ROUGE-1 and ROUGE-L. Lastly, Table 8 presents
Exact Match (EM) and F1 scores for both models
for three skipping percentage variations.

Skip (%) Model Type Config BLEU-1 BLEU-2 BLEU COMET

LLaMA-3.2-3B

0 Original Model Base + LoRA 0.376 0.174 0.160 89.72
Base 0.312 0.137 0.125 81.66

15

Skip Decode Router + LoRA 0.207 0.069 0.105 44.58
Router 0.099 0.039 0.055 32.74

Random Skip Router + LoRA 0.190 0.048 0.079 47.26
Router 0.121 0.028 0.048 36.30

Unified Skip Router + LoRA 0.216 0.059 0.095 44.72
Router 0.164 0.040 0.067 39.81

FiRST (Ours) Router + LoRA 0.247 0.071 0.113 60.29
Router 0.165 0.041 0.069 43.04

25

Skip Decode Router + LoRA 0.168 0.047 0.077 32.33
Router 0.091 0.035 0.050 27.64

Random Skip Router + LoRA 0.090 0.011 0.023 30.97
Router 0.053 0.007 0.015 27.22

Unified Skip Router + LoRA 0.151 0.027 0.050 39.81
Router 0.102 0.016 0.032 30.86

FiRST (Ours) Router + LoRA 0.189 0.041 0.072 45.38
Router 0.095 0.014 0.029 29.08

35

Skip Decode Router + LoRA 0.058 0.011 0.018 23.30
Router 0.017 0.003 0.005 19.34

Random Skip Router + LoRA 0.047 0.001 0.007 25.08
Router 0.020 0.001 0.003 21.18

Unified Skip Router + LoRA 0.012 0.000 0.002 19.65
Router 0.009 0.000 0.001 20.36

FiRST (Ours) Router + LoRA 0.095 0.013 0.027 27.45
Router 0.057 0.006 0.014 25.03

LLaMA-3-8B

0 Original Model Base + LoRA 0.418 0.217 0.199 93.00
Base 0.372 0.186 0.169 87.13

15

Skip Decode Router + LoRA 0.230 0.105 0.094 55.62
Router 0.040 0.012 0.019 23.33

Random Skip Router + LoRA 0.304 0.110 0.097 66.25
Router 0.265 0.088 0.132 60.27

Unified Skip Router + LoRA 0.289 0.106 0.153 59.34
Router 0.232 0.079 0.117 59.26

FiRST (Ours) Router + LoRA 0.380 0.179 0.161 82.14
Router 0.288 0.118 0.108 67.74

25

Skip Decode Router + LoRA 0.118 0.052 0.070 31.47
Router 0.032 0.009 0.015 21.55

Random Skip Router + LoRA 0.060 0.009 0.018 29.71
Router 0.037 0.005 0.011 29.95

Unified Skip Router + LoRA 0.157 0.034 0.060 31.69
Router 0.126 0.027 0.048 32.15

FiRST (Ours) Router + LoRA 0.178 0.041 0.071 34.95
Router 0.097 0.014 0.029 26.01

35

Skip Decode Router + LoRA 0.049 0.020 0.028 23.85
Router 0.030 0.008 0.013 20.03

Random Skip Router + LoRA 0.018 0.001 0.004 25.56
Router 0.014 0.001 0.002 25.34

Unified Skip Router + LoRA 0.064 0.008 0.017 22.05
Router 0.039 0.005 0.011 22.88

FiRST (Ours) Router + LoRA 0.064 0.004 0.012 19.96
Router 0.037 0.001 0.005 21.41

Table 6: Machine Translation Results for English to German
on LLaMA-3.2-3B and LLaMA-3-8B: BLEU and COMET
scores for various skipping strategies.

A.7 Layer-wise Skipping Statistics

To illustrate broader layer-wise behaviors, Fig-
ures 4 through 8 show block-wise skip rates ob-
served when the models were configured for an
average skip rate of approximately 15%. These fig-
ures highlight how individual layers exhibit distinct
skipping behaviors across various tasks, includ-
ing translation (English-German, English-Chinese),
summarization (CNN/DM), and question answer-
ing (SQuAD, Natural Questions). It also reveals
that tasks with similar processing requirements
(e.g., different translation language pairs) exhibit
comparable skipping patterns. Providing a more
granular view for specific models, Table 9 reports
the fraction of sequences that skip each block un-
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Skip (%) Model Type Config BLEU-1 BLEU-2 BLEU COMET

LLaMA-3.2-3B

0 Original Model Base + LoRA 0.518 0.300 0.278 79.13
Base 0.321 0.179 0.166 61.84

15

Skip Decode Router + LoRA 0.381 0.217 0.200 46.70
Router 0.096 0.048 0.062 34.14

Random Skip Router + LoRA 0.387 0.174 0.154 57.79
Router 0.136 0.056 0.077 35.86

Unified Skip Router + LoRA 0.370 0.173 0.157 57.10
Router 0.224 0.094 0.087 45.16

FiRST (Ours) Router + LoRA 0.457 0.237 0.218 67.45
Router 0.227 0.109 0.100 54.55

25

Skip Decode Router + LoRA 0.278 0.157 0.147 42.01
Router 0.070 0.034 0.045 29.51

Random Skip Router + LoRA 0.251 0.099 0.137 45.53
Router 0.101 0.037 0.053 31.50

Unified Skip Router + LoRA 0.306 0.123 0.108 42.30
Router 0.152 0.055 0.079 31.63

FiRST (Ours) Router + LoRA 0.329 0.137 0.126 41.66
Router 0.105 0.035 0.053 27.83

35

Skip Decode Router + LoRA 0.028 0.011 0.016 22.30
Router 0.024 0.010 0.014 18.32

Random Skip Router + LoRA 0.042 0.015 0.022 32.81
Router 0.021 0.008 0.011 23.63

Unified Skip Router + LoRA 0.033 0.005 0.010 19.12
Router 0.022 0.004 0.007 19.82

FiRST (Ours) Router + LoRA 0.100 0.070 0.075 28.10
Router 0.065 0.018 0.029 23.13

LLaMA-3-8B

0 Original Model Base + LoRA 0.569 0.356 0.333 82.66
Base 0.380 0.225 0.208 68.95

15

Skip Decode Router + LoRA 0.287 0.158 0.149 55.98
Router 0.047 0.023 0.030 21.75

Random Skip Router + LoRA 0.479 0.258 0.237 67.32
Router 0.366 0.187 0.168 59.89

Unified Skip Router + LoRA 0.466 0.250 0.230 69.58
Router 0.273 0.134 0.122 54.57

FiRST (Ours) Router + LoRA 0.484 0.266 0.247 68.63
Router 0.176 0.087 0.080 42.76

25

Skip Decode Router + LoRA 0.173 0.094 0.088 33.85
Router 0.038 0.018 0.024 20.93

Random Skip Router + LoRA 0.117 0.047 0.065 27.73
Router 0.074 0.028 0.040 35.16

Unified Skip Router + LoRA 0.349 0.158 0.142 50.59
Router 0.177 0.074 0.068 38.74

FiRST (Ours) Router + LoRA 0.358 0.157 0.119 56.92
Router 0.110 0.032 0.051 25.45

35

Skip Decode Router + LoRA 0.112 0.057 0.054 25.23
Router 0.036 0.017 0.023 22.84

Random Skip Router + LoRA 0.074 0.022 0.034 27.35
Router 0.045 0.011 0.018 29.46

Unified Skip Router + LoRA 0.075 0.021 0.034 20.25
Router 0.039 0.011 0.017 21.24

FiRST (Ours) Router + LoRA 0.157 0.040 0.066 26.80
Router 0.061 0.015 0.025 22.89

Table 7: Machine Translation Results for English to Chinese
on LLaMA-3.2-3B and LLaMA-3-8B: BLEU and COMET
scores for various skipping strategies.

der LoRA adaptation for the LLaMA-3-8B and
LLaMA-3.2-3B models. These fractions are pre-
sented as decimals, so a value of 0.10 signifies that
10% of sequences skip the corresponding block.

A.8 Generalizability and Reusability of
Routers

We also investigate whether a router trained on one
dataset can be applied directly to another dataset
for the same task, without any additional training.
Analysis of layer-skipping patterns suggests that
models processing different datasets of the same
task exhibit similar internal behavior, implying that
a router learned on one dataset could be reused
elsewhere. To validate this idea, we train routers on

Figure 4: Comparison of LLaMA-3.2-3B (top) and LLaMA-
3-8B (bottom) at 10% skipping rate on the Natural Questions
Answering Task. Layers with no skipping, indicated by a 0%
skipping rate, are not represented in the plot.

English→German translation data and test them on
English→Chinese translation, and likewise train on
SQuAD for question answering before evaluating
on the Natural Questions dataset. The quantita-
tive results of these cross-dataset evaluations are
presented in Table 10.

In the QA experiments, the router trained and
tested on NQ itself (denoted as Original in Ta-
ble 10) and the router trained on SQuAD but tested
on NQ (Cross-dataset) both skip a comparable frac-
tion of layers. Despite being trained on different
data, the SQuAD-trained router achieves QA ac-
curacy (EM score) very close to that of the NQ-
trained router, as detailed in Table 10. This indi-
cates that the essential decision patterns learned by
the router transfer well across QA datasets when
using a similar level of layer skipping. A similar
pattern emerges in machine translation. Whether
trained on English→German or directly on En-
glish→Chinese data, routers that skip the same pro-
portion of layers produce very similar translation
quality metrics (BLEU and COMET in Table 10)
on the English→Chinese task. This holds across
different model sizes and skip settings. Together,
these results demonstrate that routers learned on
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one dataset can be effectively reused on another
dataset for the same task, as long as they are config-
ured to skip a similar amount of computation. This
reusability can lead to substantial savings in both
training time and computing resources.

Skip (%) Model Type Config EM F1

LLaMA-3-8B

0 Original Model wLoRA 73.93 85.99
Base 19.46 36.73

10

Skip Decode R + LoRA 60.14 65.33
Router 16.38 31.48

Random Skip R + LoRA 65.73 80.08
Router 18.25 33.75

Unified Skip R + LoRA 55.54 74.58
Router 17.39 32.91

FiRST (Ours) R + LoRA 70.85 83.61
Router 14.58 31.52

20

Skip Decode R + LoRA 45.00 55.10
Router 10.68 26.69

Random Skip R + LoRA 47.79 66.37
Router 6.71 22.46

Unified Skip R + LoRA 52.87 69.28
Router 18.18 32.51

FiRST (Ours) R + LoRA 60.60 75.49
Router 13.21 27.48

30

Skip Decode R + LoRA 30.77 48.38
Router 10.67 28.52

Random Skip R + LoRA 25.45 42.68
Router 3.55 15.49

Unified Skip R + LoRA 25.61 38.55
Router 15.19 28.11

FiRST (Ours) R + LoRA 38.20 52.68
Router 3.64 13.30

LLaMA-3.2-3B

0 Original Model wLoRA 73.07 84.17
Base 18.92 37.74

10

Skip Decode R + LoRA 60.79 75.00
Router 20.00 31.55

Random Skip R + LoRA 64.78 77.27
Router 13.76 28.59

Unified Skip R + LoRA 65.03 77.53
Router 13.16 32.31

FiRST (Ours) R + LoRA 69.44 81.35
Router 12.79 28.37

20

Skip Decode R + LoRA 40.12 40.00
Router 20.45 37.62

Random Skip R + LoRA 11.32 38.34
Router 6.75 15.51

Unified Skip R + LoRA 37.39 52.49
Router 7.81 18.20

FiRST (Ours) R + LoRA 39.70 54.59
Router 5.52 15.33

30

Skip Decode R + LoRA 20.68 23.08
Router 0.78 3.83

Random Skip R + LoRA 0.30 8.87
Router 0.62 5.88

Unified Skip R + LoRA 7.39 13.72
Router 0.37 6.15

FiRST (Ours) R + LoRA 33.99 50.37
Router 2.55 10.26

Table 8: SQuAD performance on LLaMA-3-8B and LLaMA-
3.2-3B: EM (Exact Match) and F1 scores for varying skipping
levels. R + LoRA = Router augmentation + LoRA fine-tuning
(FiRST framework). wLoRA = Base model with LoRA fine-
tuning.

Layer ↓ α = 0.005 α = 0.01 α = 0.025

R R+L R R+L R R+L

0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0
7 100.0 100.0 100.0 100.0 100.0 100.0
8 100.0 100.0 100.0 100.0 100.0 100.0
9 100.0 100.0 0.0 0.0 0.1 1.3
10 0.0 0.0 0.0 0.0 89.3 72.7
11 0.0 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 100.0 100.0 100.0 100.0
13 0.0 0.0 0.0 0.0 0.0 0.0
14 0.0 0.0 0.0 0.6 0.0 0.3
15 0.0 0.0 100.0 100.0 100.0 99.4
16 0.0 0.0 0.1 2.5 100.0 100.0
17 0.0 0.0 0.0 0.0 0.0 0.0
18 97.8 32.2 100.0 100.0 100.0 100.0
19 0.0 0.0 99.9 91.2 100.0 99.6
20 0.0 0.0 100.0 100.0 100.0 99.5
21 99.9 98.7 100.0 100.0 100.0 100.0
22 0.0 0.0 0.0 0.0 0.0 0.0
23 0.0 0.0 24.1 0.8 99.8 91.7
24 0.0 0.0 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0 0.0 0.0
26 0.0 0.0 57.3 2.5 100.0 86.0
27 0.0 0.0 0.0 0.0 0.0 0.0
28 0.0 0.0 0.0 0.0 0.0 0.1
29 0.0 0.0 0.0 0.0 0.0 0.0
30 0.0 0.0 0.0 0.0 0.0 0.0
31 0.0 0.0 0.0 0.0 0.0 0.0

Avg 15.6 13.5 27.5 24.9 37.2 36.0

Table 9: Variation in skipping percentage (15–35%) with the
non-skip penalization loss coefficient α for LLaMA-3-8B on
English–German translation. As α increases, average skipping
rises across both Router-only (R) and Router+LoRA (R+L)
models.

Question Answering (Natural Questions)

Setting Skip (%) EM

LLaMA-3.2-3B

Original 10.32 22.55
Cross-Dataset 12.46 20.87

Original 18.03 17.51
Cross-Dataset 19.04 16.93

LLaMA-3-8B

Original 11.44 33.53
Cross-Dataset 13.11 29.70

Original 24.60 18.02
Cross-Dataset 26.80 19.58

Machine Translation (Eng–Zh)

Setting Skip (%) BLEU COMET

LLaMA-3.2-3B

Original 14.69 0.37 0.55
Cross-Dataset 16.57 0.37 0.45

Original 26.12 0.25 0.28
Cross-Dataset 26.16 0.25 0.30

LLaMA-3-8B

Original 16.46 0.25 0.43
Cross-Dataset 14.70 0.37 0.49

Original 27.73 0.25 0.25
Cross-Dataset 30.00 0.25 0.24

Table 10: Top: Exact Match (EM) on Natural Questions
(NQ) with two skip settings: Original: routers trained/tested
on NQ; Cross-dataset: trained on SQuAD, tested on NQ. Bot-
tom: BLEU and COMET for En→Zh translation: Original:
trained/tested on En→Zh; Cross-dataset: trained on En→De,
tested on En→Zh. These results assess router reusability and
generalizability across datasets within the same task.

21973



Figure 5: Comparison of LLaMA-3.2-3B (left) and LLaMA-3-8B (right) at 15% skipping rate on English-to-German Machine
Translation Task. The graph shows how different layers contribute to the skipping behavior for the same dataset. Layers with no
skipping, indicated by a 0% skipping rate, are not represented in the plot.

(a) LLaMA-3.2-3B (b) LLaMA-3-8B

Figure 6: Comparison of LLaMA-3.2-3B (left) and LLaMA-3-8B (right) at 15% skipping rate on SQuAD Question-Answering
Task. Layers with no skipping, indicated by a 0% skipping rate, are not represented in the plot.

Figure 7: Comparison of LLaMA-3.2-3B (left) and LLaMA-3-8B (right) at 15% skipping rate on CNN Summarization Task.
Layers with no skipping, indicated by a 0% skipping rate, are not represented in the plot.
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Skip (%) Model Type BERT R-1 R-L

0 Original Model wLoRA 84.87 28.46 16.99
Base 82.29 23.49 14.66

15

Skip Decode R + LoRA 84.74 22.04 17.54
Router 82.53 13.68 9.30

Random Skip R + LoRA 83.70 24.60 15.01
Router 81.10 19.64 13.07

Unified Skip R + LoRA 84.25 24.35 14.3
Router 80.3 16.61 10.95

FiRST (Ours) R + LoRA 85.14 31.8 20.13
Router 81.25 20.2 13.01

20

Skip Decode R + LoRA 82.57 20.41 14.87
Router 81.62 13.48 9.19

Random Skip R + LoRA 81.39 21.57 13.83
Router 79.23 15.51 10.93

Unified Skip R + LoRA 82.93 22.3 13.37
Router 80.32 16.51 11.15

FiRST (Ours) R + LoRA 82.8 27.65 17.84
Router 79.32 16.28 10.85

27

Skip Decode R + LoRA 79.92 10.67 10.32
Router 77.27 9.59 7.00

Random Skip R + LoRA 76.40 11.45 7.89
Router 77.45 12.56 9.08

Unified Skip R + LoRA 80.28 15.94 9.89
Router 77.43 10.97 7.68

FiRST (Ours) R + LoRA 77.5 14.65 10.45
Router 75.6 9.39 6.92

Skip (%) Model Type BERT R-1 R-L

0 Original Model wLoRA 84.89 28.37 17.02
Base 71.85 19.34 12.00

15

Skip Decode R + LoRA 83.20 21.71 13.74
Router 80.97 9.74 6.87

Random Skip R + LoRA 79.52 20.18 12.10
Router 68.20 10.10 7.10

Unified Skip R + LoRA 81.53 18.89 11.72
Router 70.01 12.49 8.68

FiRST (Ours) R + LoRA 83.17 26.47 16.79
Router 70.98 16.47 10.51

24

Skip Decode R + LoRA 78.55 15.83 6.74
Router 76.91 13.29 8.86

Random Skip R + LoRA 80.00 16.33 10.07
Router 67.88 8.49 5.96

Unified Skip R + LoRA 79.31 15.88 10.69
Router 68.86 9.17 6.97

FiRST (Ours) R + LoRA 80.25 21.28 13.89
Router 69.17 12.36 8.43

28

Skip Decode R + LoRA 70.69 8.76 6.74
Router 40.99 2.05 1.23

Random Skip R + LoRA 79.45 14.69 9.23
Router 67.48 8.14 5.64

Unified Skip R + LoRA 78.57 11.74 7.47
Router 68.23 8.12 5.66

FiRST (Ours) R + LoRA 77.48 15.98 11.14
Router 67.14 8.09 6.00

Table 11: Quality Analysis on Summarization (CNN/DM dataset) on LLaMA-3-8B (left) and LLaMA-3.2-3B (right): BERT F1,
Rouge-1 and Rouge-L scores are reported for varying skipping levels. Note that R + LoRA corresponds to Router Augmentation
followed by LoRA fine-tuning (in the proposed FiRST framework) and wLoRA stands for Base Model with LoRA fine-tuning.
FiRST with fine-tuning, improves upon Unified Skipping for all skipping levels on both Rouge-1 and Rouge-L and is competitive
on BERT F1.

Model Type ∼ Skipping (%) Eng→De Eng→Zh
TPOT TPOT

Base + LoRA 0 1x 1x
R + LoRA 15 0.90x 0.88x
R + LoRA 25 0.82x 0.83x
R + LoRA 35 0.69x 0.68x

Model Type ∼Skipping (%) CNN/DM
TPOT

Base + LoRA 0 1x
R + LoRA 15 0.88x
R + LoRA 20 0.81x
R + LoRA 27 0.76x

Table 12: TPOT variation of LLaMA-3-8B on WMT (left) and CNN/DM (right) for FiRST. The reported values are relative to
the LoRA fine-tuned base model. Fine-tuning improves TPOT and quality significantly.

Model Type ∼ Skipping (%) Eng→De Eng→Zh
TPOT TPOT

Base + LoRA 0 1x 1x
R + LoRA 15 0.90x 0.91x
R + LoRA 25 0.78x 0.75x
R + LoRA 35 0.69x 0.74x

Model Type ∼Skipping (%) CNN/DM
TPOT

Base + LoRA 0 1x
R + LoRA 15 0.88x
R + LoRA 24 0.79x
R + LoRA 28 0.77x

Table 13: TPOT variation of LLaMA-3.2-3B on WMT (left) and CNN/DM (right) for FiRST. The reported values are relative to
the LoRA fine-tuned base model. Fine-tuning improves TPOT and quality significantly.

Figure 8: Comparison of LLaMA-3.2-3B (left) and LLaMA-3-8B (right) at 15% skipping rate on English-to-Chinese Machine
Translation Task. The graph shows how different layers contribute to the skipping behavior for the same dataset. Layers with no
skipping, indicated by a 0% skipping rate, are not represented in the plot.
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