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Abstract

While most current approaches rely on further
training techniques, such as fine-tuning or re-
inforcement learning, to enhance model capac-
ities, model merging stands out for its ability
of improving models without requiring any ad-
ditional training. In this paper, we propose a
unified framework for model merging based
on low-rank estimation of task vectors without
the need for access to the base model, named
LORE-MERGING. Our approach is motivated
by the observation that task vectors from fine-
tuned models frequently exhibit a limited num-
ber of dominant singular values, making low-
rank estimations less prone to interference. We
implement the method by formulating the merg-
ing problem as an optimization problem. Ex-
tensive empirical experiments demonstrate the
effectiveness of our framework in mitigating
interference and preserving task-specific infor-
mation, thereby advancing the state-of-the-art
performance in model merging techniques.

1 Introduction

Large Language Models (LLMs) have become
ubiquitous in numerous real-world applications
(Bommasani et al., 2021; Zhuang et al., 2020). The
utilization of LLMs typically involves fine-tuning
them for specific tasks, a process that often yields
superior performance compared to general-purpose
LLMs. A rapidly emerging technique in this do-
main is model merging (Garipov et al., 2018; Worts-
man et al., 2022; Yu et al., 2024b), which aims
to create a single multi-task model by combining
the weights of multiple task-specific models. This
approach facilitates the construction of multi-task
models by integrating knowledge from fine-tuned
(FT) models without requiring additional training.

Building on recent studies (Ilharco et al., 2022;
Yadav et al., 2024; Yu et al., 2024b), task vector-
based merging approaches have demonstrated sig-
nificant effectiveness, where task vectors are de-

fined as the parameter differences between fine-
tuned models and the base LLM. Achieving opti-
mal results in model merging often requires min-
imizing interference between task vectors associ-
ated with different tasks. To address this, existing
approaches utilize modified task vectors instead of
the original ones. For instance, Yu et al. (2024b) ap-
plied random dropping with probability p to obtain
a sparse representation of task vectors, while Ya-
dav et al. (2024) retained only the top-k elements
of each task vector based on magnitude, setting
the remaining elements to zero. These strategies
aim to produce sparse estimations of task vectors,
a common technique for mitigating interference.

Nevertheless, task vector-based model merging
approaches remain constrained by two fundamental
limitations. First, the computation of task vectors
necessitates access to the base model parameters
and demonstrates heightened sensitivity to para-
metric variations (Yu et al., 2024b). As fine-tuning
progress goes deeper, substantial parametric diver-
gence emerges between the original base model and
its fine-tuned counterpart, thereby greatly hindering
them merging effectiveness (Yu et al., 2024a). Sec-
ond, empirical evidence from Yadav et al. (2024)
reveals that conflicting task vectors interactions
could appear even when employing sparse esti-
mation techniques. On the other hand, the spar-
sification process risks inadvertently eliminating
essential task-specific features, thereby compro-
mising the efficacy of the resultant merged model.
These inherent constraints of sparse approximation
methodologies underscore the necessity for devel-
oping alternative frameworks to estimate higher-
fidelity low-rank task vector representations.

To this end, we first empirically validate that
task vectors exhibit a small number of dominant
singular values, with the remaining singular values
being significantly smaller in magnitude, as shown
in Figure 1. Additionally, the dimension of the in-
tersection of the images of two matrices is bounded
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Figure 1: Singular value distributions for the task vector
in layer 1. We show the top-100 singular values, out of
4096 within the full rank.

by the minimum of their ranks. Therefore, we pro-
pose LORE-MERGING, a unified framework for
model merging based on Low-Rank Estimation
of task vectors, which eliminates the need for ac-
cess to the base model. Specifically, given a set
of FT models, we formulate the merging problem
as an optimization problem whose goal is to si-
multaneously identify an approximate base model
integrated with a set of low-rank task vectors. To-
gether, these vectors collectively approximate the
behavior of the FT models. By leveraging low-rank
estimations, task vectors become inherently less
susceptible to interference, effectively addressing a
fundamental challenge in model merging. We con-
duct extensive experiments on optimization model-
ing problems and math word problems to confirm
the effectiveness of our method.

2 Related Work

Merging fine-tuned models has been shown to offer
several benefits, such as improving performance
on a single target task (Gupta et al., 2020; Choshen
et al., 2022; Wortsman et al., 2022), enhancing out-
of-domain generalization (Cha et al., 2021; Arpit
et al., 2022; Ilharco et al., 2022; Ramé et al., 2023),
creating multi-task models from different tasks (Jin
et al., 2022; Li et al., 2022; Yadav et al., 2024),
supporting continual learning (Yadav and Bansal,
2022; Yadav et al., 2023), and addressing other

challenges (Don-Yehiya et al., 2022; Li et al., 2022).
Besides the full parameters merging, Prabhakar
et al. (2024); Jang et al. (2024) discussed the model
merging for LORA parameters. Among these meth-
ods, task-vector-based merging approaches play
an important role. Task Arithmetic (Ilharco et al.,
2022) first introduced the concept of task vectors
and shows that simple arithmetic operations can
be performed to obtain the merged models. Build-
ing on this idea, methods like DARE (Yu et al.,
2024b) and TIES-Merging (Yadav et al., 2024)
adopt pruning-then-scaling techniques to merge
task vectors, based on the assumption that not all
parameters equally contribute to the final perfor-
mance. However, these methods based on sparsity
estimation consistently suffer from the interference
among task vectors and require access to the base
model, thus limiting their overall effectiveness.

3 Methodology

3.1 Problem Setting

We denotes M; as the candidate models to be
merged, where each M is parameterized by 6;. In
this work, we focus on the homogeneous model
merging (Wortsman et al., 2022; Ilharco et al.,
2022; Yadav et al., 2024), suggesting that the base
models share the same model architecture. Specifi-
cally, these models can be obtained from the train-
ing process, such as checkpoints, or fine-tuned
from the same pre-trained model, referred to as
task-specific models. The primary objective of
model merging is to construct a new model, M*,
having better performance on the target single or
multiple tasks.

3.2 Implicit Low-Rank Estimation for Model
Merging

In this study, drawing upon methodologies similar
to those presented by Matena and Raffel (2022),
we investigate the model merging problem without
presupposing specific characteristics of, or requir-
ing access to, a base model. This methodologi-
cal decision is underpinned by several key ratio-
nales. Firstly, in the context of checkpoint merging
(Liu et al., 2024), a prevalent scenario involves ac-
cess restricted solely to checkpoints saved during
the training trajectory, before the finalization of
a base model. Consequently, in such instances,
the assumption of a pre-defined base model is
untenable. Furthermore, as demonstrated by Yu
et al. (2024b,a), model pairs frequently exhibit
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limited mergeability, particularly when subjected
to extensive fine-tuning or prolonged pre-training,
which can induce substantial parametric shifts. Un-
der these circumstances, existing task-vector-based
merging techniques often prove less effective due
to significant representational divergence between
an original base model and its fine-tuned counter-
part. To surmount this challenge, we introduce
LORE-MERGING, an implicit low-rank estimation
approach to model merging. This method lever-
ages the inherent robustness of low-rank estimation
against perturbations while obviating the require-
ment for base model access.

The core idea of LORE-MERGING is straight-
forward: instead of using the original base model,
we first construct an approximate base model and
subsequently integrate the task-specific vectors via
a low-rank approximation technique. Formally,
denote the FT models as {6;}}_; where n is the
number of FT models. To address this, our method
proceeds in two steps.

Step 1: Approximating the Base Model: We
first approximate a base model from the FT models,
denoted as 6y. Subsequently, the task vector for
each model is defined as §; := 0; — 6.

Step 2: Enforcing Low-Rank Constraint:
Based on observations in this paper, these task
vectors {d;} should exhibit a low-rank property.
Directly enforcing a low-rank constraint on §; is
challenging as it typically involves solving a non-
convex constrained minimization problem. There-
fore, following the established work (Candes and
Recht, 2008), we propose using a nuclear norm
penalty on J;. As proven in (Candes and Recht,
2008), the nuclear norm penalty effectively pro-
motes the low-rank property of d;.

To achieve both steps, we propose solving the
following minimization problem:

n

i e . p.N2 112
%ﬁﬁ%f—ZJWwﬁz&h+mwm,
(1)

Here, the first term ensures an accurate approxima-
tion of (Step 1), and the second term, incorporating
the nuclear norm, effectively enforces the low-rank
constraint on the task vectors (Step 2).

This problem is a standard multi-variable con-
vex optimization problem. To solve it effi-
ciently, we employ the coordinate descent method
(Wright, 2015). Starting from an initial point
{09,69,...,82}, each iteration (round k + 1) up-
dates the variables by iteratively solving the follow-

ing single-variable minimization problem:

o5t , 08
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The update for 6 is trivial, while the update
for & is less straightforward due to the presence
of the nuclear norm. Fortunately, as shown in Cai
et al. (2010), closed-form solutions for the coor-
dinate descent method iterations in Problem (1)
can be obtained using the Singular Value Thresh-
olding (SVT) technique. Recall that for a given
matrix & with the Singular Value Decomposi-
tion (SVD) 6 = UYLV, and a hyperparameter
u, the SVT operator is defined as follows. Let
Yt (p) := diag((o; — pn)™), where (-)T denotes
the positive part function. The SVT(d; i) op-
erator with hyperparameter p is then defined as
SVT(d; p) :=UXH(p)V . Using the SVT opera-
tor, the update for §; can be expressed as: 5f+1 =
SVT(8; — 651 1.

Once the optimization problem is solved, we can
obtain the approximate base model and a set of low-
rank task vectors. Then, existing task-vector based
approaches, such as Average Merging and TIES-
Merging, can be applied to combine the task vec-
tors and the base model. In this work, we directly
adopt Average Merging as our post-calculation
merging methods for simplicity, as as it demon-
strated comparable performance to TIES-Merging
in our preliminary experiments. The overall pro-
cess is outlined in Algorithm 1.

4 Experiments

Baselines & Settings We compare LORE-
MERGING with following popular merging meth-
ods. Average Merging (Choshen et al., 2022):
This method computes the element-wise mean of
all the individual models. DARE (Yu et al., 2024b):
This approach randomly drops task-specific vectors
and rescales the remaining vectors back to the base
model. We set the hyperparameter for the random
probability to 0.5. TIES-Merging (Yadav et al.,
2024): In this method, task-specific vectors are ran-
domly dropped, and only the parameters aligned
with the final agreed-upon sign are merged. For
TIES-merging, we set the top-k value to 20%, and
the hyperparameter A is fixed at 1. For LORE-
MERGING, the rank r is determined dynamically.
For a given task vector § € R"*"™, we set the rank
r = 0.2 x min{m, n} to get a low-rank estimation.
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Method DPSK & Numina LM & Math Math & Code Checkpoints Merging Ave.
GSMS8K  MATH | GSMS8K MATH | MMLU GLUE MBPP | EasyLP ComplexLP NL4OPT
Baseline 76.3 55.8 54.8 12.4 52.0 63.3 32.0 81.9 39.3 94.0 56.18
Average 75.0 45.8 58.8 12.6 52.8 61.7 28.0 759 40.3 91.6 54.25
DARE 81.0 54.2 14.9 37 52.7 59.1 27.6 80.7 35.1 95.1 50.41
TIES 80.8 51.6 58.5 11.8 53.1 59.3 26.8 82.4 42.7 94.8 56.18
"LoRE | 810 527 | 603 130 | 537 624 288 | 834 474 948 | 5775

Table 1: Evaluations on various benchmarks. DPSK and Numina are DeepSeek-Math-7B-Base and NuminaMath-7B
models. LM and Math are Wizard-series models, namely WizardLM-13B and WizardMath-13B. Code is llama-2-
13b-code-alpaca model. The score of baseline is the higher one of base models.

Datasets p=0 =001 p=01 p=10 Datasets A=05 A=10 X=15
GSMSK (%) | 81.3 82.0 79.9 67.3 GSMSK (%) 18.9 82.0 79.1
MATH (%) 53.8 54.5 53.8 42.4 MATH (%) 33.1 54.5 51.0

Table 2: The ablation study for the hyperparameter p
(with A = 1.0) on DPSK & Numina.

For the LoRE-Merging method, there’s no pre-
defined base model, so we construct 8y from the
given list of models. For other merging methods
applied to DeepSeek & NuminaMath, WizardLM
& WizardMath, and WizardMath & LlaMA-2-13B-
Code merging, we consistently designate the first
model as the base model and the second as the tar-
get model. For other checkpoint merging scenarios,
where no inherent reason dictates a specific base
model, we randomly select one checkpoint to serve
as the base model.

Evaluation We first evaluate LORE-MERGING
on diverse benchmarks, including GSM8K (Cobbe
etal., 2021), MATH (Hendrycks et al.) (math word
problem), MMLU (Hendrycks et al.), GLUE(Wang
et al,, 2019) (commonsense reasoning) and
MBPP(Austin et al., 2021) (code task). We evaluate
DeepSeek-series models (NuminaMath-7B (Beech-
ing et al., 2024) (Numina) and DeepSeek-Math-
7B-Base (Shao et al., 2024) (DPSK)) and LLaMA-
series models (WizardLM-13B (Xu et al., 2023)
(LM), WizardMath-13B (Luo et al., 2023) (Math)
and LLaMA-2-13B-Code model (Code)). Addi-
tionally, we also evaluate on the advanced task, i.e.
mathematical optimization modeling problems (Ra-
mamonjison et al., 2023; Huang et al., 2024, 2025).
This task aims to generate solvable mathematical
models given an optimization problem in natural
language. As the lack of public models on this task,
we first fine-tuned Qwen-2.5-Coder-7B-Instruct
model (Hui et al., 2024) with the dataset provided
by Huang et al. (2025) and merge checkpoints in
the training process. The evaluations are conducted
on MAMO dataset (Huang et al., 2024) which in-

Table 3: The ablation study for the hyperparameter A
(with ¢ = 0.01) on DPSK & Numina.

cludes two subsets EasyLP and ComplexLP, and
NL4OPT dataset (Ramamonjison et al., 2023).

Main Results As shown in Table 1, LORE-
MERGING achieves superior performance across
most metrics, as well as the highest overall score.
For the math word problem evaluation, our method
demonstrates consistently superior performance
against baselines, except for the evaluations on
MATH (DPSK & Numina) and MBPP datasets. We
think this is because of the significant performance
gap between the base models, where DeepSeek-
Math achieves only a score of 36.2 on the MATH
dataset, while NuminaMath reaches 55.8. As indi-
cated in Yao et al. (2024), a large performance gap
can significantly impact the effectiveness of model
merging. Another worthy-noting observation is
that DARE demonstrates significantly poorer per-
formance when merging WizardLM and Wizard-
Math. This can likely be attributed to the substan-
tial parameter divergence between these models,
which results in the failure of calculating the task
vector derived from the base model. In contrast,
our LORE-MERGING with the approximate base
model and low-rank task vectors demonstrates su-
perior robustness and effectiveness in solving math
word problems. For the evaluations on optimization
modeling with checkpoints merging, we can see
existing task-vector based merging methods con-
sistently improve the performance because of the
marginal gap between the checkpoints. Therefore,
we believe that checkpoint merging can serve as a
highly effective technique complementary to train-
ing methods, particularly our LORE-MERGING
method. We also conduct a detailed analysis how
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Datasets p=001 p=01 p=0>
GSMSK (%) 72.7 74.8 80.3
MATH (%) 51.2 52.1 524

Table 4: Ablation study of hyperparameter p (with
A = 1.0) on the merged model of DeepSeek-Math-
7B, NuminaMath-7B-CoT, and NuminaMath-7B-TIR.

Method  Average TIES Twin LoRE
Acc. 75.0 80.8 79.9 81.0
Runtime 4.2s 329s  1064s  744s

Table 6: Runtime cost and accuracy on the GSM8K
dataset of different merging methods.

our method enhance the modeling capacity on Com-
plexLLP dataset. We found that the earlier check-
point is more good at identifying the variables and
parameters in the questions while the later one fo-
cuses on more complex components, such as for-
mulating variables and the constraints. With the
merging of task vectors, the merged model exhibits
superior overall performance on the task.

Ablations We conduct a systematic empirical
analysis of the selection of hyperparameters A and
1, as presented in Table 2 and Table 3. Our results
show that the best performance is achieved with
A = 1.0 and p = 0.01. Notably, variations in the
hyperparameters around these values do not signifi-
cantly impact the final performance, indicating the
robustness of LORE-MERGING.

We additionally conduct analysis on p for scenar-
ios involving the merging of multiple models, such
as DeepSeek-Math-7B, NuminaMath-7B-CoT, and
NuminaMath-7B-TIR. The results, as presented
in Table 4, demonstrate that ;x = 0.5 consistently
yields the best performance on both the GSM8K
and MATH datasets. This finding contrasts with
our previous observations for two-model merging,
where 1 = 0.1 was optimal. This discrepancy high-
lights the importance of re-tuning hyperparameters
based on the number of models being merged. The
optimal hyperparameter values are not static and
depend on the specific merging scale, a nuance that
is crucial for robust model fusion.

Rank Determination LORE-MERGING utilizes
the hyperparameter p to implicitly control the rank
of the task vector §. A larger p promotes a lower ef-
fective rank. To improve the stability of Algorithm
1, we introduce an SVD-based low-rank estimation
of § after an initial set of iterations. To further val-
idate this strategy, we conduct an ablation study

Datasets r=20% r=50% r="70%
GSMSK (%) 77.2 81.4 81.6
MATH (%) | 486 52.8 524

Table 5: Ablation study of hyperparameter  on the
merged model of DeepSeek-Math-7B and NuminaMath-
7B-CoT.

on the rank ratio r. Table 5 presents the results of
merging the DeepSeek-Math-7B and NuminaMath-
7B-CoT models, with the rank ratio r varied be-
tween 20%, 50%, and 70%. The results indicate
that a rank ratio of 20% leads to suboptimal perfor-
mance. However, when the rank ratio is within the
50%-70% range, the performance remains stable
and comparable. This observation reinforces our
primary assertion that the rank is predominantly
governed by the implicit control of hyperparameter
1, and a moderate rank ratio setting is sufficient to
achieve optimal performance.

Speed and Computational Cost While standard
SVD exhibits computational inefficiency for ex-
tremely large matrices comprising billions of el-
ements, its application to LLM presents a sub-
stantially different computational profile. Despite
LLMs containing billions of parameters in aggre-
gate, SVD operations are performed on individual
parameter matrices, each typically comprising only
millions of entries. For instance, in the Qwen2.5-
72B architecture, the largest matrix requiring de-
composition is dimensioned at 8192 x 28564, while
for Qwen2.5-7B, the corresponding matrix has di-
mensions of 3854 x 18944. Thus, the substantial
parameter differential between LLM scales does
not translate to proportionally expanded matrix di-
mensions. As shown in Table 6, merging operations
for 7B-scale models require approximately 5 min-
utes using TIES-Merging, while LoRE-Merging
necessitates approximately 12 minutes. However,
compared to another SVD-based mering method,
like Twin-Merging (Lu et al., 2024), our method
exhibit superior performance on efficiency.

5 Conclusion

In this paper, we propose a unified framework
for merging models based on low-rank estimation,
named LORE-MERGING. We achieve it by for-
mulating the merging problem as an optimization
problem. Extensive experiments demonstrate the
efficacy and efficiency of our proposed methods.
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Limitations

Although we have demonstrated the effectiveness
of our method on merging homogeneous models,
we have not yet evaluated it on merging hetero-
geneous models which is a much more challeng-
ing task. Compared to existing task-vector based
model merging methods, our method is the most
suitable one that can be adapted to heterogeneous
model merging, as we disentangle the base model
and task vectors. We think how to expand LORE-
MERGING to heterogeneous model merging should
be a promising future direction.
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A Appendix
A.1 Task Vector Rank Validation

In this subsection, we validate the low-rank prop-
erties underlying the low-rank assumption. Specif-
ically, we focus on the checkpoint merging prob-
lem and compute the rank of the task vectors.
As previously discussed, we set the rank r as
r = 0.2 x min{m, n} for any given task vector
é.

The distribution of the largest 100 singular val-
ues for Layer 1 is presented in Figure 1. Our ex-
perimental results reveal that o, < 0.05 X o1, indi-
cating that the singular values set to 0 in low-rank
estimation are significantly smaller than the largest
singular value across all linear layers. This finding
supports the validity of adopting a low-rank approx-
imation for task vectors, as it reflects the inherent
structure of the data.

Algorithm 1 Implicit low-rank merging method

Input: fine-tuned models {6;}]" ,, parameter di-
mension d, and hyperparameter A, (.
Output: merged model 6*.

> Step 1: Coordinate descent method to solve

problem (1).

Setd; =0fori =1,2,...,n.

while iteration NOT converges do

00 = = > i, (0; — &)

fori=1,...,ndo
0; = SVT(6; — 0y; 1);
end for
end while

> Step 2 (Optional 1): Direct sum.
T = Z?:l 61

> Step 2 (Optional 2): TIES selection (Yadav
et al., 2024).
v = sgn(3oil; 09).
forp=1,2,...,ddo
AP = {i ] =~}
T = ﬁ Z'LEAP TP
end for

> Step 3: Obtain merged checkpoint.
0" =6y + A1.
return 6*
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