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Abstract

Scientific discovery catalyzes human intellec-
tual advances, driven by the cycle of hypothe-
sis generation, experimental design, evaluation,
and assumption refinement. Central to this pro-
cess is causal inference, uncovering the mecha-
nisms behind observed phenomena. While ran-
domized experiments provide strong inferences,
they are often infeasible due to ethical or practi-
cal constraints. However, observational studies
are prone to confounding or mediating biases.
While crucial, identifying such backdoor paths
is expensive and heavily depends on scientists’
domain knowledge to generate hypotheses. We
introduce a novel benchmark where the objec-
tive is to complete a partial causal graph. We
design a benchmark with varying difficulty lev-
els with over 4000 queries. We show the strong
ability of LLMs to hypothesize the backdoor
variables between a cause and its effect. Unlike
simple knowledge memorization of fixed asso-
ciations, our task requires the LLM to reason
according to the context of the entire graph!.

1 Introduction

Scientific discovery has been key to humankind’s
advances. It is a dynamic process revolving around
inquiry and refinement. Scientists adhere to a pro-
cess that involves formulating a hypothesis and
then collecting pertinent data (Wang et al., 2023).
They then draw inferences from these experiments,
modify the hypothesis, formulate sub-questions,
and repeat the process until the research question
is answered (Kiciman et al., 2023).

Central to scientific discovery is formulating hy-
potheses and identifying relevant variables that
drive the underlying causal mechanisms of ob-
served phenomena (Bunge, 2017). Randomized
controlled trials are the gold standard for estab-
lishing causal relationships, but they are often in-
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Figure 1: Scientific discovery iteratively generates hy-
potheses from assumptions using human expertise. We
use LLMs as proxy experts to propose new hypotheses
about missing variables in causal DAGs.

feasible due to ethical, financial, or logistical con-
straints (Nichol et al., 2010). In such cases, re-
searchers rely on observational data, where a key
challenge lies not only in analyzing relationships
but in determining which variables should be ob-
served and included in the analysis, particularly
confounders or mediators that influence causal
mechanisms underlying the outcomes (Ananth and
Schisterman, 2017; Gupta et al., 2021).

With the recent advancement of Large Lan-
guage Models (LLMs), there has been a grow-
ing interest in using them for scientific discov-
ery (Al4Science and Quantum, 2023; Lu et al.,
2024; Cory-Wright et al., 2024). LLMs have
demonstrated strong performance in internalizing
knowledge (Sun et al., 2024; Yu et al., 2024) and
reasoning-based tasks (Valmeekam et al., 2023;
Guo et al., 2025), including causal discovery, where
they infer pairwise causal relationships based on
variable semantics (Kiciman et al., 2023; Long
et al., 2023; Ban et al., 2023; Vashishtha et al.,
2023; Darvariu et al., 2024; Binkyte et al., 2025).

Scientific reasoning is fundamentally context-
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driven; unlike simple factual retrieval, it requires
adapting hypotheses based on new evidence and
integrating knowledge across varying subpopula-
tions. While recent work has explored the use of
LLMs for causal discovery (Kiciman et al., 2023;
Long et al., 2023; Darvariu et al., 2024; Ban et al.,
2023; Vashishtha et al., 2023), much of it assumes
a fixed set of variables and focuses on identifying
relationships among them. However, a critical and
underexplored aspect is determining which vari-
ables should be considered in the first place. This
demands flexible, context-sensitive reasoning to
identify missing causal factors.

In our paper, we use the term reasoning oper-
ationally to describe the model’s ability to gener-
ate hypotheses or identify variables that complete
partial causal graphs. Our usage follows previous
work by Kiciman et al. (2023) in causal discov-
ery and LLM research, where “reasoning” often
refers to generating plausible hypotheses or priori-
tizing potential candidates given partial structural
information, rather than strict deductive logic.

To address this gap, we propose a novel task:
given a partial causal graph with missing variables,
the LLM is prompted to hypothesize what those
variables might be, using the structure and known
nodes as context. By systematically omitting dif-
ferent variables, we generate diverse test cases to
evaluate the robustness of model reasoning. We fur-
ther decompose the benchmark into subtasks, start-
ing from baseline variable identification to more
realistic, open-ended settings where multiple unob-
served mediators exist between known treatments
and outcomes.

Our task mirrors real-world scientific workflows,
where identifying missing variables—especially
confounders and mediators is essential for valid
causal inference. This typically demands costly,
interdisciplinary effort. LLMs, trained on diverse
knowledge sources, offer a scalable alternative. For
example, in a stroke drug study, an LLM might
suggest socioeconomic status as an unmeasured
confounder. While recent works advocate using
LLMs as co-pilots for causal tasks (Petersen et al.,
2024; Alaa et al., 2024), systematic evaluations
are lacking. Our benchmark addresses this gap
by assessing LLMs’ ability to infer missing causal
variables across domains.

Our main contributions are: 1) We propose and
formalize the novel task of LLM-assisted causal
variable inference. 2) We propose a benchmark for
inferring missing variables across diverse domains

of causal graphs. 3) We design experimental tasks
with different difficulty levels and knowledge as-
sumptions, such as open-world and closed-world
settings, the number of missing variables, etc. 4)
Our benchmark allows for both grounded evalua-
tions and a reproducible framework to benchmark
LLMs’ capabilities in hypothesis generation.

2 Related Work

LLMs and Causality. Our work builds on the
foundational framework of causality by Pearl
(2009). Prior studies have explored extracting
causal relationships from text (Girju et al., 2002;
Hassanzadeh et al., 2020; Tan et al., 2023; Dhawan
et al., 2024) and using LLMs for causal reason-
ing (Kiciman et al., 2023), including common-
sense (Frohberg and Binder, 2021; Singh et al.,
2021) and temporal causality (Zhang et al., 2020,
2022). Recent efforts prompt LLMs with variable
names to discover causal structures (Kiciman et al.,
2023; Long et al., 2023; Darvariu et al., 2024; Ban
et al., 2023; Vashishtha et al., 2023). Others inte-
grate LLLMs with deep structural causal models (Ab-
dulaal et al., 2024; Yu et al., 2019), or focus on
graph formatting (Sheth et al., 2024), query de-
sign (Jiralerspong et al., 2024), and causal infer-
ence (Jin et al., 2023). In contrast to prior work, we
use LLMs to infer missing variables before data col-
lection and evaluation, leveraging their pre-trained
knowledge for this novel hypothesizing task.

LLMs and Hypothesis Generation. Existing
work tested hypothesis generation with LLMs in
reasoning tasks or free-form scientific hypotheses
from background knowledge provided in the con-
text (Gendron et al., 2023; Qi et al., 2023; Xu et al.,
2023a,b; Qiu et al., 2024; Lu et al., 2024). In con-
trast, we consider the structured task of causal hy-
pothesis generation, where the ground-truth vari-
ables are known and can be used for evaluation.

Context-aware reasoning has been explored
through prompt engineering (Dutta et al., 2024;
Zhou et al., 2023; Ranaldi and Zanzotto, 2023),
premise ordering manipulation (Chen et al., 2024),
diagnostic analyses (Prabhakar et al., 2024), and
compositional reasoning evaluations (Press et al.,
2022; Saparov et al., 2024). Unlike premise-based
or linguistic evaluations, our setup requires reason-
ing over causal graph topology, using contextual
cues by varying assumptions.
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3 Preliminaries: Causal Graph

A causal relationship can be modeled via a Directed
Acyclic Graph (DAG). A causal DAG represents
relationships between a set of IV variables defined
by V = {v1,...,un}. The variables are encoded
in a graph G = (V, E) where E is a set of directed
edges between the nodes € V such that no cycle is
formed. Mathematically, it can be expressed as:

g= (VvE)a
E= {ei,j ‘ Vi, V5 € V,i 7éj and v; — 'Uj}

Each edge ¢; ; denotes causal relationship and the
influence from v; to vj, v; BN ;.

We define d(v) as the degree of a node v, rep-
resenting the total number of edges connected to
v. djp (v) is the in-degree, representing the number
of incoming edges to v. doy(v) is the out-degree,
representing the number of outgoing edges from v.
Source has no incoming edges; di,(v) = 0.

Sink has no outgoing edges. Sinks are doy(v) = 0.
Treatment is characterized by nodes that are being
intervened upon.

Outcome is characterized by nodes that are ob-
served for interventions from the treatments.
Mediator has both incoming and outgoing edges
(din(v) > 0 and doy(v) > 0) as intermediaries in
the pathways between treatment and outcome.
Confounder influences both treatment and out-
come, exhibiting edges directed towards the treat-
ment and outcome nodes (doy(v) > 2). Hence v
is a confounder if it is a parent of both v; and v;.
Collider has two edges meeting, and d;,(v) > 1.
Le., vis a collider if it is a child of both v; and v;.

4 Inferring Causal Variables

Motivated by the challenge of discovering variables
that block backdoor paths to ensure unbiased causal
inference (Glymour et al., 2019), in this work, we
leverage language models to infer missing variables
in a causal DAG. We assume that a part of the graph
is already known, and the aim is to find additional
variables that can be incorporated into the existing
DAG to enhance the underlying causal mechanism.

Formally, we assume a partially known causal
DAG, G* = (V*,E), where V* C V. The ob-
jective is to identify the set of missing variables
V* = V \ Vuising thereby expanding G* to G.
This implies that all causal relationships (edges)
among variables in V* are known and correctly
represented in G*; i.e., E is fully specified. Here,

“missing” variables are not latent or hidden by mea-
surement error but known unknowns within the
causal graph reflective of the LLM’s perspective.

To systematically assess LLMs’ ability to infer
missing causal variables, we construct a multi-stage
benchmark with increasing levels of complexity.
We begin with a controlled setting, where the model
is provided with a partial causal DAG and a set of
multiple-choice options to identify missing vari-
ables. Then, the task becomes open-ended, where
LLMs hypothesize missing variables, simulating
an open-world paradigm. Additionally, as the task
escalates, we introduce more complexity by omit-
ting additional nodes, challenging the model to
hypothesize multiple missing variables.

We evaluate the reasoning capability of LLMs
through prompting. We represent the graph G*
using a prompt template Py (-) which enables
LLMs to parse causal relationships in the DAG.

4.1 Task 1: Out-of-Context Identification

Motivation. To assess whether LLMs can infer
missing variables in causal graphs, we begin with
a controlled multiple-choice setting that serves as
a baseline. This task isolates the core challenge:
identifying a single missing variable from a causal
DAG. By restricting the search space to a fixed
set of options, including the correct variable and
out-of-context distractors, we evaluate whether the
model can distinguish the variable that meaning-
fully completes the causal structure.

The partial DAG G* is created by removing one
variable, denoted as v, from the original DAG G.
The role of the LLM is to select a variable from
the multiple choices, MCQ,, , that can be used to
complete the graph. The out-of-context distractors
are unrelated to the causal domain of the given
DAG, chosen to minimize any contextual overlap
with the true missing variable. Let v} represent the
variable selected by the LLM to complete G*.

v; = PLLM(Q*, MCQUZ) Yv, € V

4.2 Task 2: In-Context Identification

Motivation. In real-world domains like healthcare
and finance, missing or unobserved variables often
challenge causal inference (Hughes et al., 2019;
Tian and Pearl, 2012). This task simulates such
ambiguity by requiring LLMs to identify a rele-
vant missing variable when presented with multiple
plausible options, going beyond the baseline.
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Figure 2: Leveraging LLM to identify the missing variable for a causal DAG in the presence of out-of-context
distractors (a), an in-context distractor along with out-of-context distractors (b).

Here, instead of removing one node from the
ground truth DAG G, two nodes, v, and v,,, are
now removed to create the partial graph, G*.

G* =G\ {vsg,,vs,} for

Vg, Vzy €V

The MCQA paradigm provides multiple choices,
including the missing variables v,, and v,,. The
task for the LLM here is to select the correct vari-
able v, only, given an in-context choice v,, and
out-of-context choices. The in-context variables
are plausible within the same causal graph, allow-
ing the LLM to use DAG-defined context infer-
ence to distinguish the relevant from the irrelevant
options. We ensure v,, and v, are not directly
connected i.e., neither is a parent of the other.

vy, = PLLM(Q*’MCQ%”’UW) YV Vg, Vs €V

and vy, # Uzgy Vzy Vad Vzy

4.3 Task 3: Hypothesizing in Open World

Motivation. Previous tasks constrained the model
to select from predefined options. However, real-
world reasoning rarely offers such scaffolding.
This task increases complexity by removing the
multiple-choice format entirely.

Given a partial DAG G*, formed by removing a
node v, the model must generate potential missing
variables without any provided candidates (see Fig-
ure 3a). The output is a ranked list of hypotheses
{v3 1, v}, } for k suggestions, simulating open-
ended disco7very.

{vz1, Va2 s vyt = Pm(GT) Vop €V
4.4 Task 4: Iteratively Hypothesizing in Open
World

Motivation. Building on the open-world setting, we
further increase task difficulty by removing mul-
tiple nodes from the causal graph. The goal is no

longer to recover a single missing variable but to
iteratively hypothesize a set of mediators that link
a treatment to an outcome.

Given a partial DAG G* = G \ vg,,..., 0z,
the task (illustrated in Figure 3b) involves gen-
erating a sequence of missing mediators M =
Umys Uma, -+, Umy that plausibly connect a treat-
ment variable v; to an outcome variable v,.

At each iteration 7, , the LLM is prompted with
the current partial graph and returns a hypothesis
for the next mediator. This process continues until
all of the mediators are inferred.

U, = Pm(G" Uy, v, 1),

fort =1,..., H. The sequence of mediators M =
{Um,sVmys - Umy, | 18 chosen at random.

To assess how mediator order affects perfor-
mance, we draw on mediation analysis con-
cepts (Pearl, 2014), specifically the Natural Di-
rect Effect (NDE)—the treatment’s effect not me-
diated by a variable—and the Natural Indirect Ef-
fect (NIE)—the portion mediated by it (see Ap-
pendix A.4). We propose the Mediation Influence
Score (MIS) to quantify each mediator’s impact
between a treatment and outcome. Defined as the
ratio of NIE to NDE, MIS is a scale-free, positive
measure of a mediator’s relative contribution:

NIE(v,,)

MIS () = ’NDE(U_)

This metric quantifies the relative importance of
the indirect effect (through the mediator) compared
to the direct impact. Mediators are then ranked and
prioritized based on their MIS scores, with higher
scores indicating a stronger mediation effect.

5 [Evaluation and Results

Graphs. We evaluate a variety of causal graphs
spanning diverse domains. We use the semi-
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Figure 3: Leveraging LLM to hypothesize the missing variable in a causal DAG in an open-world setting for one
variable (a), in an iterative fashion for multiple missing mediators (b).

synthetic DAGs from BNLearn repository - Can-
cer (Korb and Nicholson, 2010), Survey (Scutari
and Denis, 2021), Asia (Lauritzen and Spiegel-
halter, 1988), Child (Spiegelhalter, 1992), Insur-
ance (Binder et al., 1997), and Alarm (Beinlich
et al., 1989). We also evaluate our approach on
a realistic Alzheimer’s Disease graph (Abdulaal
et al., 2024), developed by five domain experts
and Law (VanderWeele and Staudt, 2011). See
Appendix A.1 for further details.

Graph | V. E | Description

Cancer 5 4 | Factors around lung cancer

Survey 6 6 | Factors for choosing trans-
portation

Asia 8 8 | Factors affecting dysponea

Law 8 20 | factors around legal system

Alzheimer | 9 16 | Factors around Alzheimer’s
Disease

Child 20 25 | Lung related illness for a child

Insurance | 27 52 | Factors affecting car accident
insurance

Alarm 37 46 | Patient monitoring system

Table 1: Datasets used in the benchmark.

Models. We evaluate our setups across differ-
ent open-source and closed models. The mod-
els we use are GPT-40 (Hurst et al., 2024), GPT-
4 (OpenAl, 2023), LLama3-chat-8b (Touvron
et al., 2023), Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023), Mixtral-7B-Instruct-v0.1 (Jiang et al., 2024),
Zephyr-7b-Beta (Tunstall et al., 2023) and Neural-
chat-7b-v3-1 (Intel, 2023).

Prompt. We used the textual prompting strategy
from Sheth et al. (2024) after performing experi-
ments on some of the proposed encoding methods
(see Appendix B.10). Implementation details are
in Appendix A and prompts in Appendix F. Our
code will be available after anonymity period.

5.1 Taskl1

Setup. The input to the LLM consists of a partial
DAG G*, and multiple choices including the cor-
rect missing variable v, and several out-of-context
distractors. This task includes 120 queries. We
define accuracy to assess the LLM’s v, prediction.

N
Accuracy = % Z 1(vi=0t)
i=1

Results. In Figure 4a, we report the accuracy of
different LLMs in identifying the missing variable.
GPT-4, followed closely by Mixtral and GPT-4o,
consistently performs well, achieving perfect accu-
racy on most of the graphs. Other models, includ-
ing Mistral-7b, Llama-7b, Neural, and Zephyr-7b,
have varying degrees of success. Insurance remains
the most challenging graph, potentially due to the
high number of edges present in the DAG. All mod-
els significantly outperform the random baseline.
However, we conjecture that the high performance
could be partially attributed to the simplicity of the
task. The models might be using the context of
the graph domain to exclude unrelated distractors
rather than engaging in deeper causal reasoning
among multiple plausible choices. To investigate
this, we introduce an in-domain choice among the
multiple choices in the next experiment.

5.2 Task2

Setup. This is a more challenging task where the
partial graph has two missing nodes. In addition
to out-of-context distractors and the ground-truth
variable, v, , the multiple-choice set includes the
second missing variable v,, as an in-context dis-
tractor. This setup tests the model’s ability to rea-
son over indirect causal relations contextually to
identify the correct variable. This task results in
over 3800 queries. To evaluate performance, we
use two metrics: Accuracy and False Node Accu-
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Figure 4: Accuracy of LLMs in identifying the missing causal variable from multiple choices with out-of-context
distractors (a), and from both out-of-context and in-context distractors (b).

racy (FNA). FNA captures how often the model
incorrectly selects the in-context distractor instead:

N
1 *
FNA |= N E 1(vy, = Vz,)
i=1

Results. In Figure 4b, we report Accuracy and
False Node Accuracy (FNA) across graphs. Ac-
curacy reflects how often the correct missing vari-
able is chosen, while FNA measures how often
the model incorrectly selects the in-context dis-
tractor—another missing variable included to test
deeper causal reasoning. Since there are 5 options,
random accuracy is 0.2, and FNA under random
guessing would be around 0.2 as well. GPT-4 and
GPT-40 achieve high accuracy and low FNA, show-
ing that they reliably distinguish the true missing
node from both distractors and the in-context vari-
able. GPT-40 slightly outperforms GPT-4 on sev-
eral graphs. Open models like Mistral, Zephyr, and
Mixtral show more variability, performing well on
simpler graphs like Cancer but struggling on com-
plex ones like Alarm. While most models exceed
random chance, higher FNA in some cases high-
lights a tendency to confuse plausible but incorrect
variables, emphasizing the difficulty of reasoning
over multiple missing nodes.

5.3 Task3

Setup. In real-world settings, partial causal graphs
provided by domain experts often lack ground truth
and multiple choices. Hypotheses may vary de-
pending on context, data, or domain knowledge. To
simulate this, we prompt the LLM to generate. The
LLM generates k = 5 suggestions for the missing
node v,. This task has 120 queries. We compare
suggestions to the ground truth, recognizing that
real-world cases often lack a single correct answer.

Since traditional metrics may miss contextual nu-
ances, we use two evaluations: semantic similarity
and LL.M-as-Judge (see Appendix B.4).

1. Semantic Similarity. We compute the co-

sine similarity between the embeddings of the
predictions, vy, _, and the ground truth v, av-
eraging the highest similarity scores across all

nodes v, € V (see Appendix A.5 for details).

2. LLM-Judge. Inspired by Zheng et al. (2023),
this two-step metric assesses contextual se-
mantic similarity beyond exact matches. First,
LLM ranks suggestions vy, = based on how

well they fit the partial graph. Second, it rates

the best match on a 1-10 scale. Scores are
averaged across nodes for an overall measure

(see Appendix A.6).

Results. We report models’ performances using
both semantic similarity and LLM-Judge metrics
in Table 2. For brevity, we provided the variances
in Appendix B.1. We provide a detailed analysis
of each metric across different types of node vari-
ables (defined in Section 3). We evaluate sources,
sinks, colliders, and mediators for each of the par-
tial causal graphs. The results, fine-grained by
node type, are given in Figure 5, which shows each
model’s average performance across graphs with a
detailed performance per graph in Figure 8. GPT-4,
GPT-40 and Mixtral generally achieve higher se-
mantic similarity and LLM-as-Judge scores across
most graphs (Figure 8). We observe that semantic
similarity is a stricter metric than LLM-as-judge
since it cannot encode contextual information about
the causal DAG (see example in Table 10). De-
spite different scales, both metrics seem to be fairly
correlated. Figure 5, shows that models display
stronger performance for colliders and mediators
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| Cancer | Survey | Asia | Law

| Alzheimers |

Child | Insurance | Alarm | Avg

| sim LLMJ| Sim LLMJ| Sim LLMJ| Sim LLM-T| Sim LLM-T| Sim LLM-T| Sim LLM-J| Sim LLMJ| Sim LLM-J

Zephyr | 0.36 0.61]0.34 0.60|0.45 0.66|0.41 0.70
Mixtral | 0.41 0.66|0.39 0.66 0.66 0.75]0.38 0.69
Neural {0.38 0.77]0.43 0.55|0.53 0.55|0.47 0.72
Llama |0.40 0.48]0.40 0.54|0.53 0.58]0.67 0.65

0.35 0.75]0.51 0.70|0.45 0.44|0.46 0.69|0.42 0.63
0.31 0.77]0.53 0.77/0.46 0.56(0.50 0.72]0.46 0.70
0.44 0.71]0.48 0.70/0.47 0.43|0.47 0.67|0.45 0.63
0.45 0.61]0.48 0.63/0.42 0.34|0.46 0.65|0.45 0.55

Mistral | 0.33 0.67|0.44 0.65|0.60 0.73]0.49 0.67|0.34 0.76 |0.48 0.68|0.46 0.47|0.47 0.71|0.44 0.67

GPT-4 (0.49 0.90(0.51 0.67|0.66 0.76|0.55 0.78

0.47 0.98]0.36 0.53/0.52 0.56(0.49 0.75]0.50 0.73

GPT-40|0.52 0.89]0.50 0.71(0.66 0.78|0.58 0.80(0.50 0.91|0.40 0.60|0.54 0.58|0.44 0.76/0.54 0.76

Table 2: Task 3 Results. Average semantic similarity and LLM-as-Judge metrics to evaluate LLMs in hypothesizing

the missing variable in a causal DAG.

on average. This suggests that these models are bet-
ter at reasoning about common causes and indirect
causal relationships. Sinks are typically the nodes
that represent the outcomes or effects of interven-
tions (treatments) applied to other nodes. Source
nodes represent the causes in a causal graph. Lower
performance on these nodes indicates to reason
about the potential causes and outcomes of the
causal graphs is difficult.

In Figure 6a, model performance improves with
more suggestions (k). Figure 6b shows that accu-
racy also correlates with node degree (d;;, + doyt),
indicating that more context aids prediction. Over-
all, LLMs perform well on many nodes, especially
mediators and colliders, making them promising
tools for real-world causal discovery where treat-
ments and outcomes are known.

—8— Zephyr
Source Mixtral
—e— Neural
—8— LlLama
—8— Mistral
055 —e— GPT4
GPT-40

Mediator

(a) Semantic similarity.

—8— Zephyr

Source Mixtral
—o— Neural
—o— llama
—o— Mistral
—o— GPT4
GPT-40

Collider

(b) LLM-as-Judge.

Figure 5: Task 3 Results. Visualizing each model’s
performances, averaged across the different graphs, for
Sink, Source, Mediator, and Collider nodes.

5.3.1 Hypothesizing Confounder

Backdoor paths are alternative causal pathways
that confound the estimation of causal effects and
introduce bias if not accounted for. Hence, hypoth-
esizing and controlling for confounders is an im-
portant task in causal inference (Pourhoseingholi
et al., 2012). We extract confounder subgraphs
from (Sachs et al., 2005), Alarm, and Insurance
graphs. From Table 3 and Appendix D, we find

| Sachs | Alarm | Insurance
Zephyr 0.10 0.45 0.53
Mixtral 0.95 0.85 0.63
Neural 0.30 0.45 0.61
LLama 0.20 0.47 0.63
Mistral 0.20 0.85 0.61
GPT-4 0.95 0.73 0.78
GPT-40 0.95 0.70 0.73

Table 3: Hypothesizing Confounders in Task 3.

that while LLMs accurately hypothesize some con-
founders, models struggle with domain-specific
graphs like SACHS. Larger models like GPT-40
don’t necessarily always perform best, underscor-
ing the need for diverse benchmarks.

54 Task4

Setup. We adopt an iterative approach for hypoth-
esizing mediators, allowing the model to refine
predictions step-by-step—unlike global prediction,
which yields lower performance (Appendix B.6).
This aligns with Chain-of-Thought (Wei et al.,
2022) reasoning and improves accuracy. There are
more than 140 queries for this task, ranging from 1-
10 missing mediators. For unordered evaluation,
mediators are given in random order and scored
via average semantic similarity. For ordered eval-
uation, we rank mediators using the Mediation
Influence Score (MIS) and compare model perfor-
mance when prompted in ascending vs. descending
MIS order. We define a metric, A, to capture this
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difference.

Asia Child Insurance Alarm

Sim A Sim A Sim A Sim A
Zephyr | 0.61 —0.02 | 0.54 0.17 | 0.47 0.19 | 0.51 0.20
Mixtral | 0.87 0.01 | 0.50 0.18 | 0.48 0.15 | 0.52 0.13
Neural 0.65 0.04 | 0.48 0.21 | 0.42 0.16 | 0.46 0.12
Llama 0.80 0.07 | 0.49 —0.05| 0.44 0.21 | 0.51 0.07
Mistral 0.33 0.02 | 0.50 0.12 | 0.48 0.13 | 0.47 0.11
GPT-4 0.49 0.04 | 0.39 0.16 | 0.52 0.14 | 0.60 —0.07
GPT4o0 | 0.55 0.00 | 0.48 0.10 | 0.51 0.08 | 0.62 0.01

Table 4: Task 4 Results. Accuracy of iterative mediator
prediction when prompted in random order. A reflects
the change in performance when mediators are ordered
by their Mediation Influence Score (MIS).

Results. The results of this experiment are in Ta-
ble 4. Results with variances are provided in Ap-
pendix B.1. In this highly complex environment
with more than one node missing and with open-
world search space, LLMs can still maintain their
performance. Unlike the overall consistent per-
formance of GPT-4 across all graphs, other mod-
els showed superior performance in Insurance and
Alarm graphs only. As the complexity of the graph
increases, we observe larger differences in hypoth-
esizing the mediators according to the MIS order.
Positive A values suggest that prompting the LLM
based on the MIS metric leads to higher semantic
similarity between the mediator hypotheses and the
ground truth variables. In summary, we observe
that LLLMs can be effective in iteratively hypothe-
sizing multiple mediators in a DAG, and if present,
some domain knowledge about the significance of
the mediator can boost the performance.

5.5 Memorization

A concern in evaluating pretrained LLMs on
knowledge-intensive tasks is contamination i.e.,
memorization of evaluation data from training.
This is especially relevant for public datasets like
those in the BNLearn repository, which may have
appeared in training corpora.

To assess this, we tested whether models could
recall the number and names of variables from each
of the eight datasets in our benchmark. This in-
cluded well-known BNLearn graphs (e.g., Asia,
Child, Insurance, Alarm) and less common ones
(e.g., Law, Alzheimer’s). We prompted each model
to report node counts and variable names, including
explicit references to BNLearn for relevant datasets,
to detect signs of memorization.

In Table 5, except GPT family models, which
exhibited partial recall for some widely known BN-
Learn datasets, we observe that full reconstruction

Model Cancer Survey Asia Law Alz Child Insurance Alarm

Zephyr X X X X X X X X
Mixtral X X 0.71 X X X X 0.13
Neural X X X X X X X X
LLama X X v X X X X X
Mistral v X X X X X X X
GPT-4 v v v X 0.55 v v v
GPT-40 v v v X 0.45 v v v

Table 5: Memorization analysis: Whether the model
could correctly recall node information from the dataset
(V), failed to recall (X), or proportion of nodes recalled.

of the graphs’ details was rare. This recall was con-
sistently absent for lesser-known datasets such as
Law and Alzheimer’s, which are less likely to have
appeared during pretraining. While these findings
cannot eliminate memorization with certainty, they
suggest that it is not predominant for most models.

To further test GPT-4, we explicitly mentioned
the graph provenance (e.g., “This graph is from
BNLearn”) during “Task 3”, shown in Table 17.
GPT-4’s performance improved across most graphs.
This suggests that its initial responses were not
purely reciting these graphs but potentially based
on broader parametric knowledge.

5.6 Discussion

The results show that LLMs effectively hypothesize
missing variables, especially mediators, though
performance varies with task complexity. Simple
tasks, like identifying missing variables from con-
trolled options, had high success rates.

Performance differences across domains may
stem from biases in LLM training data, affecting
parametric memory. For instance, confounder hy-
pothesis quality varied across graphs, with domain-
specific gaps lowering accuracy, like in the Sachs
graph (Appendix D).

We explored fine-tuning and few-shot prompt-
ing to enhance performance, but small DAG sizes
limited the graph size, yielding mixed results (Ap-
pendix C.1). While fine-tuning may help special-
ization, it can also reduce reliance on general para-
metric knowledge (Yang et al., 2024). Future work
could explore domain-specific fine-tuning.

Though model training data is undisclosed, we
used a recently released graph (Abdulaal et al.,
2024) that postdates cut-off dates (at the time of per-
forming experiments). Our novel task and verbal-
ization approach further reduce the risks of mem-
orization. Table 2 confirms LLMs generate novel
hypotheses rather than retrieving memorized pat-
terns, with no evidence of direct graph reconstruc-
tion. Our work relies on reasoning via parametric
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knowledge rather than explicit memorization.

Our setup assumes known edges among miss-
ing variables for controlled evaluation, which fu-
ture work can extend. We envision this as a
human-LLM collaboration under expert supervi-
sion, as LLMs cannot self-assess plausibility or
confidence (Zhou et al., 2024). Future work could
also refine filtering mechanisms and improve per-
formance on source and sink nodes.

5.7 Human Evaluation

To complement our automatic evaluation metrics,
we conducted a small-scale human evaluation on
three representative graphs (Cancer, Survey, and
Asia). Two independent annotators (a CS PhD
student and a CS PhD graduate) rated the quality of
LLM-suggested variables. We then measured the
agreement between human judgments, semantic
similarity, and our LLM-judge using Spearman
correlation.

| Correlation | p-value

Sim - LLM-judge | 0.430 | 0.2475
Sim - R1 0781 | 0.0130
Sim - R2 0623 | 0.0732
LLM-judge—R1 | 0622 |0.0738
LLM-judge—R2 | 0831 | 0.0055
RI-R2 0.823 | 0.0065

Table 6: Spearman correlations between human anno-
tators (R1, R2), semantic similarity (Sim), and LLM-
judge scores on Cancer, Survey, and Asia graphs.

Table 6 indicates strong correlations among hu-
man annotators and between human judgments and
the automatic metrics. In particular, the LLM-judge
shows high alignment with both annotators, sug-
gesting that it serves as a reliable proxy for human
evaluation. This supports the use of our automatic
evaluation framework as a scalable approach for
benchmarking causal reasoning tasks.

6 Conclusion

Most causality research focuses on identifying rela-
tionships from observed data, while hypothesizing
which variables to observe remains largely reliant
on expert knowledge. We propose using LLMs as
proxies for this step and introduce a novel task: hy-
pothesizing missing variables in causal graphs. We
formalize this with a benchmark that spans vary-
ing levels of difficulty and ground-truth knowledge.
Our results highlight LLMs’ strengths in inferring
backdoor paths, including colliders, confounders,

and mediators, which often lead to biased causal
inference when unaccounted for. Our work LLMs
can serve as useful tools for early-stage hypoth-
esis generation, supporting scientists in formulat-
ing plausible causal variables before data collec-
tion. By evaluating models across different graph
completeness, open- and closed-world settings, we
highlight their potential and limitations.

7 Limitations

While this work presents promising advancements
in leveraging LLMs for hypothesizing missing vari-
ables in causal graphs, there are some limitations
to consider. Our evaluation relies on established
DAGs and comparisons with known ground truth,
limiting assessment in scenarios without a defined
baseline. Future work can include validation using
human in loop evaluation. Future work can also
integrate our work into the full causal discovery
pipeline with statistical data.

8 Ethics and Risk

Our work leverages LLMs for hypothesis gener-
ation in causal discovery but comes with ethical
risks. Biases from training data may lead to skewed
hypotheses, and over-reliance on Al without expert
validation could result in misleading conclusions.
While we design our task to minimize memoriza-
tion, risks of data leakage remain. Additionally,
LLM performance varies across domains, making
errors in high-stakes fields like healthcare particu-
larly concerning. To mitigate these risks, we em-
phasize human-AlI collaboration, transparency in
model limitations, and improved evaluation frame-
works for reliability.
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A Implementation

A.1 Datasets

We use 7 real-world based graphs. These graphs span different domain knowledge topics. These graphs
have ground truth graphs along with their observational data. The simplest graph used is the cancer graph
with 4 edges and 5 node variables. In addition to the semi-synthetic graphs from the BNLearn library, we
also evaluate our approach on a realistic Alzheimer’s Disease graph (Abdulaal et al., 2024), which was
developed by five domain experts. Given that each expert created a different causal graph, the final causal
DAG comprises only those edges that were agreed upon by consensus.

graph |V E| Description

Cancer 5 4 Factors around lung cancer
Survey 6 6 Factors for choosing transportation
Asia 8 8 Factors affecting dysponea

Law 8 20 factors around legal system
Alzheimer | 9 16| Factors around Alzheimer’s Disease
Child 20 25 Lung related illness for a child
Insurance | 27 52 | Factors affecting car accident insurance
Alarm 37 46 Patient monitoring system

Table 7: graph description.

A.2 Reproducibility

For reproducibility, we used temperature 0 and top-p value as 1 across all of the models. We also
mentioned the snapshot of the model used. We have also included the prompts and examples below. Our
code will be released upon acceptance. The graphs are under CC BY-SA 3.0, which allows us to freely
modify the graphs for benchmarking. Our benchmark will be released under the CC BY-SA License.

GPT-40, GPT-4 was accessed via API. The rest of the models were run on 1 A100 GPU. Since we used
an off-the-shelf LLM, there was no training to be performed. Since many of the models were run by API,
it is difficult to calculate the entire computation, however, all of the experiments for each model took ~ 6
hours.

A.3 Controlled Variable Identification

For variable identification, we generate multiple choices that remain consistent across all missing nodes
and all of the graphs. The words were randomly chosen to be far enough from the nodes. The options
chosen were weather, book sales, and movie ratings. We wanted to make sure that the options were not
from one specific domain, such that the LLM could do the process of elimination.

A.4 Causal effect

Average Treatment Effect. Average Treatment Effect (ATE) quantifies the expected change in the
outcome v, caused by the unit change of the treatment v;. ATE is a part of the causal do-calculus
introduced by (Pearl, 2009). We consider binary causal DAGs, i.e., each variable can either take 0 or 1 as
values.

ATE = E[vy|do(vy = 1)] — E[vy|do(vy = 0)]

where the do(-) operator, represents an intervention. The E[v,|do(v; = 1)] represents the expected
value of the outcome variable v, when we intervene to set the treatment variable v; to 1 (i.e., apply the
treatment), and E[v,|do(v; = 0)] represents the expected value of v, when we set v; to 0 (i.e., do not
apply the treatment).

Mediation Analysis. Mediation analysis is implemented to quantify the effect of a treatment on the
outcome via a third variable, the mediator. The total mediation effect can be decomposed into the Natural
Direct Effect (NDE) and the Natural Indirect Effect (NIE). The Natural Direct Effect (NDE) is the effect
of the treatment on the outcome variable when not mediated by the mediator variable. The Natural Indirect
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Effect (NIE) is the effect of the treatment variable on the outcome variable when mediated by the mediator
variable.

NDE = E[v—1, V=0 — V¢=0, Um=0)

Here, NDE is calculated by comparing the expected outcome when the treatment variable is set to 1 and
the mediator is fixed at the level it would take under the control treatment v; = 0, with the expected
outcome when both the treatment and the mediator are set to the control level.

NIE = E[vi=0, Vm=1 — Vt=0, Um=0]

Here, NIE is calculated by comparing the expected outcome when the treatment variable is set to 1 and
the mediator is allowed to change as it would under the treatment, with the expected outcome when the
treatment variable is set to 1 but the mediator is fixed at the control level.

A.5 Semantic Similarity

Given the task of hypothesizing missing nodes in a partial graph G* in the absence of multiple-choices, we
evaluate the semantic similarity between the model’s predictions and the ground truth node variable. We
leverage an open model namely *all-mpnet-base-v2’ to transform the textual representations of the model’s
predictions and the ground truth into high-dimensional vector space embeddings. Post transforming
textual representations into embeddings and normalizing them, we calculate the cosine similarity. Scores
closer to 1 indicate a high semantic similarity, suggesting the model’s predictions align well with the
ground truth. This metric gives a score of similarity without the contextual knowledge of the causal graph.
We perform our experiments to consider every node of the ground truth as a missing node iteratively.
For all the suggestions for a node variable, we calculate the semantic similarity. The average similarity
reported is the highest semantic similarity for each of the variable suggestions.

Algorithm 1 Evaluating Semantic Similarity for Hypothesized Missing Nodes

1: Input: Partial graph G*, Ground truth node variables Vgr, Language model LM =
’all-mpnet-base-v2’

2: Qutput: Average highest semantic similarity score
3: procedure SEMANTICSIMILARITY(G*, Vgr, LM)
4: Initialize similarityScores as an empty list
5: for each node vgr in v do
6: predictions < GeneratePredictions(G*, LM)
7: Initialize nodeScores as an empty list
8: for each prediction p in predictions do
9: embeddinggr < Embed(vgr, LM)
10: embedding, < Embed(p, LM)
11: Normalize embeddinggr and embedding,
12: score < CosineSimilarity(embeddinggr, embedding,,)
13: Append score to nodeScores
14 end for
15: mazxScore < Max(nodeScores)
16: Append maxScore to similarityScores
17: end for
18: averageScore < Average(similarityScores)
19: return averageScore
20: end procedure
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Ground Truth:

Smoking status

LLM Suggestions: Smoking Alcohol Consumption  Exposure to Radiation ~ Poor Diet Genetic Predisposition
Semantic similarity : 0.72 0.38 0.22 0.22 0.17
Ground Truth: Employee or self-
employed
LLM Suggestions: Income Level Job Location Environmental Aware- Lifestyle Preferences Health Consciousness
ness
Semantic similarity : 0.30 0.25 0.17 0.15 0.10
Ground Truth: Dyspnea laboured
breathing
LLM Suggestions: Shortness of breath Chest Pain Coughing Fatigue Weight Loss
Semantic similarity : 0.57 0.41 0.36 0.29 0.11
Ground Truth: Montreal Cognitive As-
sessment score
LLM Suggestions: Cognitive Function Neurological Function ~ Mental Health Status Risk of Alzheimer’s Memory Performance

Disease

Semantic similarity : 0.60 0.47 0.38 0.36 0.16

Ground Truth: Grunting in infants

LLM Suggestions: Respiratory distress Asthma Pneumonia Pulmonary infection Bronchopulmonary dys-
plasia (BPD)

Semantic similarity : 0.22 0.18 0.17 0.11 0.01

Ground Truth: Driving history
LLM Suggestions: Previous accidents Distance driven daily Type of car insurance Frequency of car main- Location of parking
tenance
Semantic similarity : 0.55 0.42 0.27 0.26 0.18
Ground Truth: Heart rate blood pres-
sure
LLM Suggestions: Pulse Rate Blood Pressure Respiratory Rate EKG Reading Blood Oxygen Level
Semantic similarity : 0.78 0.78 0.57 0.49 0.42

Table 8: Examples of model suggestions from and the corresponding semantic similarity score for a missing node

variable from each of the graphs.
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A.6 LLM-as-Judge

To capture the domain knowledge of the expert that selects the most relevant causal variable, we use
LLM-as-Judge as a proxy expert. This also allows for evaluation based on contextual DAG knowledge as
well. Given the impressive results of GPT-4 in (Zheng et al., 2023), we use GPT-4 as a judge for all of the
experiments.

Algorithm 2 Evaluating Model Suggestions with LLM as Judge

1:

Y X RDINE R

L O T N T G S G S N S e U
S I P SN e B AR A S Tl

Input: Partial graph G*, Ground truth node variables Vgr, Predictions P, Language model LLM =
GPT-4
Output: Average quality rating of model’s suggestions
procedure LLMASJUDGE(G*, Vgr, P, LLM)
Initialize quality Ratings as an empty list
for each node vgr in V do
suggestions < GenerateSuggestions(G*, P, LLM)
bestSuggestion < SelectBestSuggestion(suggestions, vgr, LLM)
rating < RateSuggestion(bestSuggestion, LLM)
Append rating to quality Ratings
end for
averageRating < Average(qualityRatings)
return averageRating

: end procedure
: function GENERATESUGGESTIONS(G*, P, LLM)

return A set of suggestions for missing nodes based on P

: end function
: function SELECTBESTSUGGESTION(suggestions, vgr,LLM)

Prompt LLM with G*, vgrt, and suggestions
return LLM’s choice of the best fitting suggestion
end function

: function RATESUGGESTION(suggestion, LM)

Prompt LLM to rate suggestion on a scale of 1 to 10
return LLM’s rating

. end function

Ground Truth: Education up to high school or university degree
Top ranked suggestion: Education level
Rating : 9.5

Ground Truth: Pollution

Top ranked suggestion: Smoking history
Rating : 2.0

Ground Truth: Bonchitis

Top ranked suggestion: smoking behavior
Rating : 2.0

Ground Truth: Lung XRay report
Top ranked suggestion: Lung Damage

Rating : 8.0

Ground Truth: Socioeconomic status

Top ranked suggestion:

Rating :

Driver’s lifestyle
7.0

Table 9: Examples of model suggestions from and the corresponding LL.M-as-judge score for a missing node

variable.
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Ground Truth: Dyspnea laboured breathing
LLM Suggestion: Shortness of breath

Semantic similarity to GT: 0.57
LLM-as-Judge score: 9.5

Table 10: Example comparing the semantic similarity and LLM-as-Judge metrics. Dyspnea is a medical term for
shortness of breath. In this example, the contextual information, beyond exact matching, is better captured by
LLM-as-Judge.

Shortcomings of LLM-as-judge. LLM-as-judge uses GPT-4 as a judge model which could be biased
towards some data. Since the training graphs are not public for this model, it would be hard to judge how
these biases might affect the final score. Hence for robust evaluation we also evaluate using the semantic
similarity.

A.7 TIteratively Hypothesizing in Open World

For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion
with the highest semantic similarity to the context, and iteratively updates the partial graph with these
mediators. A, quantifies the impact of mediator ordering by comparing the average highest semantic
similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds
light on how the sequence in which mediators are considered might affect the LLM’s ability to generate
contextually relevant and accurate predictions.

Algorithm 3 Random Order Mediator Hypothesis

1: Input: Partial graph G* (where G* = G — H), Treatment v;, Outcome v,, Number of mediators H,
Number of suggestions &

2: Qutput: Updated graph G* with selected mediators

3: procedure GENERATEMEDIATORSRANDOM(G™, v¢, vy, H, k)

4: for i < 1to H do

5 suggestions <— Generate k suggestions for vy, using PLpm(G*)

6: Initialize highestSimilarity < 0

7 Initialize selected M ediator < null

8 for each suggestion in suggestions do

9: stmilarityScore < Calculate semantic similarity for suggestion
10 if similarityScore > highestSimilarity then

11: highestSimilarity < similarityScore

12: selectedMediator < suggestion

13: end if

14 end for

15: Update G* < G* U {selectedM ediator}

16: end for

17: return G*

18: end procedure
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Algorithm 4 Ordered Mediator Generation and Evaluation Based on MIS

—_

: Input: Partial graph G*, Treatment v;, Outcome v,, Set of potential mediators M, Number of
suggestions k

2: Qutput: A - measure of the influence of mediator ordering

3: procedure CALCULATEMIS(vy, vy, M)

4: Initialize MISList as an empty list

5: for each mediator v,,,, in M do

6: Calculate NIE(v,,,, ) and NDE(v,,,)

7 MIS (v, ) ¢ %

8: Append MIS(v,,,, ) to MISList

9: end for

10: return MISList

11: end procedure

12: procedure GENERATEMEDIATORSORDERED(G™, vy, vy, M, k)
13: MISList < CALCULATEMIS (v, vy, M)

14: Sort M in descending order of MISList to get Mgegc

15: Sort M in ascending order of MISList to get Mg

16: averageDesc < GENERATEANDEVALUATE(G*, Myesc, k)
17: averageAsc < GENERATEANDEVALUATE(G*, My, k)
18: A averageDesc—averageAsc|

averageDesc

19: return A
20: end procedure
21: function GENERATEANDEVALUATE(G*, Myrder, k)
22: Initialize similarityScores as an empty list
23: for each mediator v,,,; in Morger do
24: Perform the same steps as in the refined random order mediator generation
25: (Generate k suggestions, select the most similar, update G*)
26: Append the highest similarity score to similarityScores
27: end for
28: return Average of similarityScores
29: end function
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B Further results

B.1 Variances

For brevity we didnt add variance in the main text, the following results have variances:

| Cancer | Survey |

Asia

|Alzheimers|

Child

| Insurance | Alarm | Avg

| sim LLMT| Sim LLMJ| Sim LLMT| Sim LLMJ| Sim LLMJ| Sim LLMJ| Sim  LLMT| Sim  LLMJ

Zephyr‘g.oiiofé1 0.61‘0.34 0.60(0.45 0.66

+0.06

4+0.07 +£0.05[4+0.05 £0.04

Mixtral‘g(.)élol3 0.66 [0.39 0.66 ‘0.66 0.75

+0.04|£0.05 +0.06

Neural ‘263082 0.7710.43 0.55

+0.05

+0.04 £0.05

0.53 0.55
£0.02 £0.03|£0.03 £0.04|£0.05

Llama ‘2640% 0.48 ‘ 0.40 0.54 ‘ 0.53 0.58

+0.05

Mistral ‘263(?1 0.67 ‘ 0.44 0.65 ‘ 0.60 0.73

+0.05|£0.05 +0.04

‘0.35
£0.03
0.31

+0.02 +0.03|+0.04

0.44
0.45

+0.03 +0.06|+0.05

0.34

40.03 +0.04|+0.04

GPT-4 ‘2.49 0.90/0.51 0.67 ‘0,66 0.76/0.47

0.02 +0.03|40.06 +0.04

40.02 +0.03|40.02

973

07|

1(:) 6.7013 ‘

j([) 66013 ‘

0,78 |

+0.04 £0.03

0.48 0.68 ‘ 0.46 0.47
+0.04 £0.03

0.51 0.70‘0.45 0.44
£0.02 £0.04

0.53 0.77/0.46 0.56/0.50 0.720.46 0.70
+0.03 +0.02(£0.03 +0.04|£0.03 £0.06|+0.03 £0.05

0.48 0.70
£0.04 £0.03|£0.04 £0.05

0.48 0.63 ‘ 0.42 0.34

+0.04 £0.05

0.47 0.43

‘0.46 0.69]0.42 0.63
+£0.03 £0.02| £0.04 £0.04

‘ 0.47 0.67 ‘ 0.45 0.63
£0.02 +£0.03| £0.03 +0.04

0.46 0.65]0.45 0.55

+0.01 +0.05|+0.02 £0.03|+0.03 £0.04

0.47 0.71]0.44 0.67

40.03 +0.01|+0.03 £0.03|+0.03 £0.03

0.9810.36 0.53 ‘0,52 0.56/0.49 0.75|0.50 0.73

+0.02|+0.05 £0.04

40.03 +0.03|+0.06 £0.02|+0.04 £0.03

Table 11: Average semantic similarity and LLM-as-Judge metrics to evaluate LLMs in hypothesizing the missing

variable in a causal DAG.

Asia Child Insurance Alarm
Sim A Sim A Sim A Sim A
Zephyr | 0.61 —0.02]0.54 0.17 | 0.47 0.19 | 0.51  0.20
£0.03  +0.01 | £0.04 £0.02 | £0.05 =£0.02 | £0.05 £0.02
Mixtral | 0.8 0.01 | 0.5 0.1 0.48 0.15|0.52 0.13
£0.02 +£0.01 | £0.05 +£0.02 | £0.05 +0.02 | £0.05 £0.01
Neural | 0.65 0.04 | 0.48 0.21 |0.42 0.16 | 0.46 0.12
+0.06 +£0.02 | £0.05 £0.02 | £0.04 £0.02 | £0.04 +£0.01
Llama | 0.80 0.07 | 0.49 —0.05| 0.44 0.21 | 0.51 0.07
+0.08 +£0.02 | £0.05 40.01 | £0.06 =£0.02 | £0.05 +0.01
Mistral | 0.33 0.02 | 0.50 0.12 | 0.48 0.13 | 0.47 0.11
+0.03 +£0.01 | £0.05 £0.01 | £0.05 =+£0.02 | £0.04 +£0.01
GPT-4 | 049 0.04 |0.39 0.16 {0.52 0.14 | 0.60 —0.07
+0.07  +£0.01 | £0.05 +£0.02 | £0.05 +£0.02 | £0.06 +0.01

Table 12: Sim: semantic similarity for iteratively hypothesizing the mediator nodes when prompted with random
order. A measures the change in the prediction of each model according to the MIS.

B.2 Breaking down the performance
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Figure 6: L: Plot of semantic similarity with an increasing number of suggestions for GPT-4 on the Alarm graph. R:
Plot of semantic similarity against the total number of incoming and outgoing edges for GPT-4 on the Alarm graph.

B.3 Effect of context

We observed notable differences in the accuracy of LLM predictions for missing nodes within causal
graphs when context was provided versus when it was absent. Specifically, the inclusion of contextual
information about the causal graph significantly enhanced the LMs’ ability to generate accurate and
relevant predictions. In realistic settings, when this setup is being used by a scientist, they would provide
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the context of the task along with the partial graph. When context was not provided, the models often
struggled to identify the most appropriate variables, leading to a decrease in prediction accuracy, especially
for smaller models. Unsurprisingly, providing context was more important for smaller graphs than larger
graphs. LLLMs were able to understand the context of the graph via multiple other nodes in the graph for
larger graphs.

Cancer | Survey Asia |Insurance | Alarm

X vV]X vVvI|IX vI|IX v |X V
In-Context 0.75 1.00|0.67 1.00|0.68 0.88]0.85 0.90|0.96 0.96
Out-of-Context 0.00 0.25|0.33 0.33]0.53 0.61]0.58 0.58|0.60 0.57
Open world Hypothesis |0.39 0.41]0.40 0.39]0.63 0.66]0.49 0.50(0.44 0.46

Table 13: Model-Mixtral to evaluate the effect of context given in the prompt.

B.4 Using explanations

While using LLMs for hypothesizing the missing nodes within the causal graph for the open world setting,
an additional question is for the model to provide explanations for each of its predictions. This was
motivated by the fact that incorporating a rationale behind each prediction might enhance the model’s
semantic similarity. We present the results in the Table below. We observe that evaluating semantic
similarity with explanations leads to a decrease in performance as compared to the earlier setting where
the language model returned phrases. This is because semantic similarity, as a metric, evaluates the
closeness of the model’s predictions to the ground truth in a high-dimensional vector space, focusing
on the semantic content encapsulated within the embeddings. It is a metric that leaves little room for
interpretative flexibility, focusing strictly on the degree of semantic congruence between the predicted and
actual variables. The introduction of explanations, while enriching the model’s outputs with contextual
insights, did not translate into improved semantic alignment with the ground truth.

Alarm
X v

0.49 0.40
+£0.06 +0.06

0.75 0.75
+£0.02 £0.02

Cancer Survey Asia Insurance
X vVvI|X v |X v I|X V

0.49 0.3810.51 0.44|0.66 0.57 [0.52 0.40
+£0.02 £0.07|+£0.06 +£0.10|£0.02 £0.09 |£0.03 £0.07

090 0.9110.67 0.69]0.76 0.76 | 0.56 0.55
0.03 £0.02|£0.04 £0.02|£0.03 £0.04|£0.03 £0.03

Sim
LLM-Judge

Table 14: Model-GPT 4. Evaluating the effect of explanations on different metrics from Task 3.

Ambiguous predictions which semantically represent the same variable. ~An important linguistic
concern that could be missed by semantic similarity is an ambiguous hypothesis by the LLM that may
have the same semantics, which again breaks the semantic similarity metric. This further motivates the
LLM-judge metric, whose input is the context of the causal graph, the partial causal graph, the ground
truth variable, and the model predictions. Given the rich context of the LLM-judge metric, we suspect
it would be able to overcome the ambiguity. We prompted the model to justify its hypothesis variables
using explanations. We observe that evaluating semantic similarity with explanations leads to a decrease
in performance as compared to the earlier setting where the language model returned just phrases. In
Table 14, we observed a drop in performance for semantic similarity. In contrast, we observe a similar or
slight improvement in the LLM-judge metric when the explanation of the model hypothesis is given.

B.5 Chain of thought

Chain-of-Thought prompting has gained popularity due to its impressive performance in proving the
quality of LLMs’ output (Kojima et al., 2022), also in metadata-based causal reasoning (Vashishtha et al.,
2023). We also incorporated COT prompting for our prompts. We perform ablation studies in Table 15.
We observe that COT particularly improves the performance of the identification experiments.
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Cancer | Survey Asia | Insurance | Alarm

X vIX v I|IX v|X Vv |X V
In-Context 1.00 1.00|0.83 1.00(0.75 0.88|0.74 0.90|0.91 0.96
Out-of-Context|0.50 0.25|0.18 0.33]0.57 0.61|0.56 0.58|0.54 0.57

Table 15: Model-Mixtral to evaluate the effect of COT given in the prompt.

B.6 Iterative mediator search vs all at once

For Task 4, we iteratively hypothesize the missing variables (mediators). Our choice was primarily driven
by the complexity of Task 4, which involves predicting multiple missing mediators, ranging from 1 to
10. For a Task with 10 missing mediators, the model would have to predict 50 suggestions at once.
We initially hypothesized that LLMs might struggle with making multiple predictions across different
variables simultaneously. This was indeed reflected in our results and GPT-4 outputs from Table X. The
iterative approach allows the model’s prediction to narrow the search space, which would not be possible
in a non-iterative approach. This method is more aligned with the scientific discovery process, where
hypotheses are often refined iteratively based on new findings. Furthermore, our approach simulates
a human-in-the-loop scenario, where the most plausible answer is selected and used to guide the next
prediction.

‘ Asia ‘ Child ‘ Insurance ‘ Alarm
Non-iterative | 0.42 +- 0.07 | 0.33 +- 0.06 | 0.45 +- 0.09 | 0.54 +- 0.05
Iterative 0.49 +- 0.05| 0.39 +-0.03 | 0.52 +- 0.02 | 0.60 +- 0.04

B.7 Results on Neuropathic graph

We added a new graph, the neuropathic pain graph (Tu et al., 2019), which is not part of common LLM
training corpora as one needs to use a python script to download it. The graph consists of 221 nodes and
770 edges, but for feasibility, we selected a subset of the graph for evaluation. We ran experiments for
Task 1, Task 2, and Task 3.

Model ‘ Task 1 ‘ Task 2 Result Task 2 FNA | Task 3 Sim Task 3 LLM-J

Mistral | 0.64 0.51 0.32 0.38 0.53
Mixtral | 0.83 0.55 0.34 0.45 0.69
Llama | 0.78 0.49 0.27 0.44 0.63
GPT-4 | 0.94 0.68 0.24 0.51 0.76

Table 16: Comparison of model performances across tasks on Neuropathic graph.
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B.8 Fine grained model performance
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Figure 8: Detailed spider plots for LLM-as-judge metric
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B.9 Testing whether LLLM is using context or parametric graphs for GPT*

Dataset Current Sim Memorization Est. Sim w/ BNLearn Context

Cancer 0.49 v 0.60
Survey 0.51 v 0.62
Asia 0.66 v 0.78
Law 0.55 X 0.56
Alzheimers 0.47 0.55 0.52
Child 0.36 v 0.52
Insurance 0.52 v 0.64
Alarm 0.49 v 0.62

Table 17: Estimated similarity improvement for GPT-4 when informed that graphs are from the BNLearn repository.
The memorization column shows whether GPT-4 recalled structural details.

To test whether GPT-4’s original performance was driven by the retrieval of memorized content, we reran
the variable inference task with explicit prompts stating that the graphs were from the BNLearn repository.
We observed modest gains in similarity for well-known graphs (e.g., Asia, Alarm), indicating that GPT-4
can retrieve additional details when cued. However, the performance in the original setting, without such
cues, was already strong, suggesting that the model was not merely retrieving memorized structures.
Instead, its responses appear to reflect contextual reasoning and generalization beyond rote recall.

B.10 Converting causal graph to prompt

We observe that different graph representations yield similar performance across tasks, with the most
variation for Task 2 where we have 2 missing variables on Mistral and Mixtral models.

Model Asia Child Insurance Alarm
JSON 0.80 0.79 0.50 0.85
GraphML 0.80 0.78 0.47 0.85
Textual (ours) 0.78 0.80 0.49 0.85

Table 18: Different encoding strategies for Task 1

Model Asia Child Insurance Alarm
JSON 0.73/0.16 0.45/0.30 0.37/0.17 0.50/0.21
GraphML 0.70/0.15 0.41/0.29 0.37/0.12 0.53/0.22
Textual (ours) 0.73/0.17 0.42/0.31 0.40/0.12 0.51/0.22

Table 19: Different encoding strategies for Task 2 (Acc/FNA)

Model Asia Child Insurance Alarm
JSON 0.75 0.67 0.46 0.69
GraphML 0.71 0.67 0.50 0.72
Textual (ours) 0.73 0.68 0.47 0.71

Table 20: Different encoding strategies for Task 3 (LLM-J)
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C Finetuning and Few-shot prompting

C.1 Finetuning

We aim to assess the LLM’s causal reasoning via prompting. The following are the reasons why fine-tuning
is not the most practical solution:

* Pretrained models come with a wealth of general knowledge, which we aim to leverage. Fine-tuning
these models could potentially limit their ability to draw on this broad knowledge base. We aim to
understand the utility of pretrained models, as fine-tuning large models like GPT-4 is not always
feasible.

¢ The training graph is too small for fine-tuning. Despite considering a large 52-edged graph: Insurance,
we would have just 27 datapoints or Alarm with 37 datapoint. Additionally:

1. Using the same graph as part of train and test would unfortunately lead to training data leakage.

2. If we consider different graphs for train and test, there would exist a domain shift in the two graphs
and the model may be overfitted to the domain of the train graph.

However, to illustrate our hypothesis and alleviate the reviewer’s concern, we performed Supervised
Fine-Tuning using QLoRA on the Mistral-7b-Instruct model for hypothesizing in the open world task.
The train set here is all of the graphs minus the respective graph it was tested on. We tested on Survey,
Insurance and Alzheimers graphs. The model was trained to give one best-fit suggestion for the missing
variable.

‘ Insurance ‘ Survey ‘ Alzheimers
No fine-tuning | 0.42 +- 0.03 | 0.44 +- 0.05 | 0.34 +- 0.04
Fine-tuned 0.39 +- 0.04 | 0.39 +- 0.03 | 0.36 +- 0.07

Table 21: Finetuning results.

From the above results, it is evident that finetuning does not significantly improve over the prompting
results. This is because during training the LLM gets biased towards the domains of training graphs
which are contextually distant from the test domain, given the diversity of graphs chosen. One may think
that training might help the LLM to understand the task, but from prompt-based model output, it was
evident that the LLM can instruction-follow. In summary, we were able to extract the LLM knowledge via
prompting and domain-specific fine-tuning could be closely looked at in the future works.

C.2 Fewshot prompting

Similar to fine-tuning, few-shot learning’s success depends on balancing domain specificity and generality.
To avoid test examples becoming part of the shots, we have to use different domains as examples. Given
the complexity of the Alarm graph, we decided to use them as a prior. We performed experiments
with 1-shot and 5-shots for the Mixtral 8x7b model. We would like to remind you that Alarm was a
medical graph which means that providing more examples in a different domain might hinder the model
performance. Drop in performance when changing domain for in-context learning has been discussed in
(Kwan et al., 2024) and (Gupta et al., 2024).
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D Confounders

graph 0-shot | 1-shot | 5-shot
Cancer 041 | 043 | 046
Survey 0.39 | 0.38 | 0.36
Asia 0.66 | 0.70 | 0.72
Alzheimer’s| 0.31 | 0.33 | 0.34
Child 0.53 | 0.55 | 0.56
Insurance 0.46 | 042 | 045

Table 22: Fewshot prompting results.

‘ Sachs ‘ Alarml1 ‘ Alarm?2 ‘ Ins1 ‘ Ins2 ‘ Ins3 ‘ Ins4 ‘ Ins5 ‘ Ins6 ‘ Ins7

Zephyr | 0.12 0.37 029 [(0.45(0.49/0.37(0.29/0.33|0.46|0.73

Mixtral | 0.89 0.54 0.57 [0.57]1.0(0.32(0.23/0.38/0.28| 1.0

Neural | 0.34 0.27 028 10.42]10.47(0.3410.48[0.48|0.38]0.48

LLama | 0.27 0.39 044 [0.55]1.01(0.29(022/057(045| 1.0

Mistral | 0.23 0.62 046 |0.58| 1.0 |0.280.280.28|0.28| 1.0

GPT-4 | 0.91 0.49 044 [0.62(0.39/0.58(0.44/0.58/0.52| 1.0
Table 23: Semantic similarity

‘ Sachs ‘ Alarml1 ‘ Alarm?2 ‘ Insl1 ‘ Ins2 ‘ Ins3 ‘ Ins4 ‘ Ins5 ‘ Ins6 ‘ Ins7

Zephyr
Mixtral
Neural
LLama
Mistral
GPT-4

0.10
0.95
0.30
0.20
0.20
0.95

0.40
0.70
0.60
0.50
0.90
0.65

0.30
1.0
0.30
0.44
0.80
0.80

0.45
0.75
1.0
0.40
0.55
0.60

0.60
1.0
0.60
1.0
1.0
0.70

0.40
0.80
0.30
0.50
0.30
0.80

0.40
0.20
0.80
0.20
0.20
0.85

0.30
0.20
0.30
0.70
0.70
0.80

0.70
0.20
0.40
0.45
0.30
0.75

0.80
1.0
0.60
1.0
1.0
1.0

Table 24: LLM judge
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F Prompt template

Hello. You will be given a causal graph. The context of the graph [CONTEXT]. Please
understand the causal relationships between the variables - [VERBALISED DAG].

Prompt 1: Base prompt to describe the causal graph

Hello. You will be given a causal graph. The context of the graph is hypothetical patient
monitoring system in an intensive care unit (ICU). Please understand the causal relationships
between the variables - < anaphylaxis > causes < total peripheral resistance >. < arterial co2
> causes < expelled co2 >. < arterial co2 > causes < catecholamine >. < catecholamine
> causes < heart rate >. < cardiac output > causes < blood pressure >. < disconnection >
causes < breathing tube >. < error cauter > causes < heart rate displayed on ekg monitor
>. < error cauter > causes < oxygen saturation >. < error low output > causes < heart rate
blood pressure >. < high concentration of oxygen in the gas mixture > causes < pulmonary
artery oxygen saturation >. < heart rate > causes < heart rate blood pressure >. < heart rate
> causes < heart rate displayed on ekg monitor >. < heart rate > causes < oxygen saturation
>. < heart rate > causes < cardiac output >. < hypovolemia > causes < left ventricular
end-diastolic volume >. < hypovolemia > causes < stroke volume >. < insufficient anesthesia
> causes < catecholamine >. < intubation > causes < lung ventilation >. < intubation >
causes < minute volume >. < intubation > causes < alveolar ventilation >. < intubation
> causes < shunt - normal and high >. < intubation > causes < breathing pressure >. <
kinked chest tube > causes < lung ventilation >. < kinked chest tube > causes < breathing
pressure >. < left ventricular end-diastolic volume > causes < central venous pressure >. <
left ventricular end-diastolic volume > causes < pulmonary capillary wedge pressure >. <
left ventricular failure > causes < previous medical history >. < left ventricular failure >
causes < left ventricular end-diastolic volume >. < left ventricular failure > causes < stroke
volume >. < the amount of time using a breathing machine > causes < the intensity level
of a breathing machine >. < sudden blockage in the pulmonary arteries > causes < shunt
- normal and high >. < sudden blockage in the pulmonary arteries > causes < pulmonary
artery pressure >. < pulmonary artery oxygen saturation > causes < oxygen saturation >. <
oxygen saturation > causes < catecholamine >. < shunt - normal and high > causes < oxygen
saturation >. < stroke volume > causes < cardiac output >. < total peripheral resistance >
causes < catecholamine >. < total peripheral resistance > causes < blood pressure >. <
alveolar ventilation > causes < arterial co2 >. < alveolar ventilation > causes < pulmonary
artery oxygen saturation >. < lung ventilation > causes < expelled co2 >. < lung ventilation
> causes < minute volume >. < lung ventilation > causes < alveolar ventilation >. < the
intensity level of a breathing machine > causes < breathing tube >. < breathing tube > causes
< lung ventilation >. < breathing tube > causes < breathing pressure >.

Prompt 2: An example of the base prompt for Alarm graph. Each relationship is enclosed in pointed
brackets,<> followed by a full stop.
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects
of a patient’s health related to lung diseases. Please understand the causal relationships between
the variables - < x > causes < tuberculosis >. < bronchitis > causes < dyspnoea-laboured
breathing >. < individual has either tuberculosis or lung cancer > causes < positive xray >.
< individual has either tuberculosis or lung cancer > causes < dyspnoea-laboured breathing
>. < lung cancer > causes < individual has either tuberculosis or lung cancer >. < smoking
cigarettes > causes < lung cancer >. < smoking cigarettes > causes < bronchitis >. <
tuberculosis > causes < individual has either tuberculosis or lung cancer >.Based on your
understanding and analytical skills, please identify what the variable X could most likely be
from the given multiple choices. It’s important to note that you MUST select an option from
the provided choices, as one of them is the correct answer. The choices are: [ visited Asia;
weather; book sales; movie rating ]. Please think step by step. Your answer should be formatted
as follows - Answer: X = choice. The choice must be one of the provided options, and it should
be formatted exactly as it appears in the choices. Generating your own options is not allowed in
this task.

Answer: X = .My thought process is as follows:The causal graph suggests that
X causes tuberculosis, and tuberculosis is related to lung diseases. Visiting Asia is a possible
explanation for why an individual may have been exposed to tuberculosis, as the disease is
more prevalent in some Asian countries. Therefore, visited Asia is the most likely option for X.

Prompt 3: Out-of-context controlled variable identification, Ground truth variable: visited Asia
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects
of a patient’s health related to lung diseases Please understand the causal relationships between
the variables - < x > causes < tuberculosis >. < bronchitis > causes < dyspnoea-laboured
breathing >. < individual has either tuberculosis or lung cancer > causes < y >. < individual
has either tuberculosis or lung cancer > causes < dyspnoea-laboured breathing >. < lung
cancer > causes < individual has either tuberculosis or lung cancer >. < smoking cigarettes
> causes < lung cancer >. < smoking cigarettes > causes < bronchitis >. < tuberculosis >
causes < individual has either tuberculosis or lung cancer >. Based on your understanding
and analytical skills, please identify what the variable X could most likely be from the given
multiple choices. It’s important to note that you MUST select an option from the provided
choices, as one of them is the correct answer. The choices are: [ weather; book sales; movie
rating; positive xray; visited Asia ]. Please think step by step. Your answer should be formatted
as follows - Answer: X = choice. The choice must be one of the provided options, and it should
be formatted exactly as it appears in the choices. Generating your own options is not allowed in
this task.

Answer: Answer: X = . My thought process is as follows:1. The graph shows that
X causes tuberculosis, which suggests that X is a variable related to healthcare or medicine.
2. The graph also shows that bronchitis causes dyspnoea-laboured breathing, which further
supports the idea that X is a variable related to healthcare or medicine. 3. The graph shows
that individual has either tuberculosis or lung cancer causes y, which suggests that X could be
a variable related to diagnosing or treating lung diseases. 4. The graph shows that smoking
cigarettes causes lung cancer and bronchitis, which suggests that X could be a variable related to
smoking or lung health. 5. Based on the above observations, it seems unlikely that X would be
weather, book sales, or movie rating.6. Visited Asia is a variable that could potentially relate to
healthcare or medicine, particularly if the patient has traveled to a region with a high prevalence
of tuberculosis or other lung diseases.7. Therefore, based on the information provided in the
graph, it seems most likely that X =

Prompt 4: In-context controlled variable identification, Ground truth variable: visited asia
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects
of a patient’s health related to lung diseases. Please understand the causal relationships between
the variables - < x > causes < tuberculosis >. < bronchitis > causes < dyspnoea-laboured
breathing >. < individual has either tuberculosis or lung cancer > causes < positive xray >.
< individual has either tuberculosis or lung cancer > causes < dyspnoea-laboured breathing
>. < lung cancer > causes < individual has either tuberculosis or lung cancer >. < smoking
cigarettes > causes < lung cancer >. < smoking cigarettes > causes < bronchitis >. <
tuberculosis > causes < individual has either tuberculosis or lung cancer >. Using your causal
knowledge, can you suggest what variable X most likely? Give 5 suggestions for what variable
X could be. Give reason for your suggestions. Finally, return your answer (without reasoning)
in the following format: <Answer> [first suggestion, second suggestion, third suggestion ..
and so on] </Answer> No explanations, no reasoning, just answers as a list as described earlier.
For example, if the suggestions are A,B,C,D,E then - <Answer> [A, B, C, D, E] </Answer>

Answer: <Answer> [HIV/AIDS, Chronic respiratory conditions, , Exposure to
asbestos, Silicosis] </Answer>

Reasons:

1. HIV/AIDS: It is known to weaken the immune system, making the individual more suscepti-
ble to infections like tuberculosis.

2. Chronic respiratory conditions: These can make an individual more susceptible to lung
diseases like tuberculosis.

3. : It is a lung infection that can lead to serious conditions like tuberculosis if not
treated properly.

4. Exposure to asbestos: Long-term exposure to asbestos can lead to lung diseases including
lung cancer and tuberculosis.

5. Silicosis: It is a lung disease caused by inhalation of silica dust, leading to inflammation and
scarring of the lung tissue, making the individual more susceptible to tuberculosis.

Prompt 5: Hypothesizing missing variable in open world, Ground truth variable: Visited Asia
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects
of a patient’s health related to lung diseases. Please understand the causal relationships between
the variables - < visited asia > causes < tuberculosis >. < bronchitis > causes < dyspnoea-
laboured breathing >. < individual has either tuberculosis or lung cancer > causes < positive
xray >. < individual has either tuberculosis or lung cancer > causes < dyspnoea-laboured
breathing >. < x > causes < individual has either tuberculosis or lung cancer >. < smoking
cigarettes > causes < X >. < smoking cigarettes > causes < bronchitis >. < tuberculosis >
causes < individual has either tuberculosis or lung cancer >. Using your causal knowledge,
can you suggest what variable X most likely? Give 5 suggestions for what variable X could
be. Give reason for your suggestions. Finally, return your answer (without reasoning) in the
following format: <Answer> [first suggestion, second suggestion, third suggestion .. and so
on] </Answer> No explanations, no reasoning, just answers as a list as described earlier. For
example, if the suggestions are A,B,C,D,E then - <Answer> [A, B, C, D, E] </Answer>

Answer: <Answer> [ , Chronic Obstructive Pulmonary Disease, Emphysema,
Pneumonia, Asthma] </Answer>

Reasons:

1. : Smoking is a major cause of lung cancer and lung cancer can lead to

tuberculosis or other lung diseases.

2. Chronic Obstructive Pulmonary Disease: Smoking is a leading cause of COPD and it can
lead to other lung diseases including tuberculosis and lung cancer.

3. Emphysema: It is a type of COPD often caused by smoking and can lead to other lung
diseases.

4. Pneumonia: Smoking increases the risk of pneumonia and pneumonia can lead to other lung
diseases.

5. Asthma: Smoking can trigger asthma attacks and severe asthma can lead to other lung
diseases.

Prompt 6: Hypothesizing missing variable in open world, Ground truth variable: Lung cancer
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G Assumptions

The causal sufficiency of G, by definition, implies that for every pair of variables within V, all common
causes are also included within V. Extending this assumption to G*, we assume that the partial graph
inherits causal sufficiency for its given that all edges among these variables are preserved as in G. This
preservation ensures that the observed relationships within V* are not confounded by omitted common
causes. Since the faithfulness of G ensures that the observed conditional independencies among variables
in 'V are accurately reflected by the causal structure represented by E. By maintaining the same set of
edges E in G* for the subset V*, we uphold the faithfulness assumption within the partial graph.
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