
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 21846–21861
November 4-9, 2025 ©2025 Association for Computational Linguistics

Bridging the Capability Gap: Harmonizing Multi-Agent Systems
via Joint Alignment Tuning

Minghang Zhu1* Zhengliang Shi1* Zhiwei Xu1 Shiguang Wu1

Lingjie Wang1 Pengjie Ren1 Zhaochun Ren2† Zhumin Chen1†

1Shandong University, Qingdao, China
2Leiden University, Leiden, The Netherlands

{mhzhu,shizhl}@mail.sdu.edu.cn
z.ren@liacs.leidenuniv.nl, chenzhumin@sdu.edu.cn

Abstract

The advancement of large language models
(LLMs) has enabled the construction of multi-
agent systems to solve complex tasks by divid-
ing responsibilities among specialized agents,
such as a planning agent for subgoal gener-
ation and a grounding agent for executing
tool-use actions. Most existing methods typi-
cally fine-tune these agents independently, lead-
ing to capability gaps among them with poor
coordination. To address this, we propose
MOAT, a Multi-Agent Joint Alignment Tuning
framework that improves agents collaboration
through iterative alignment. MOAT alternates
between two key stages: (1) Planning Agent
Alignment, which optimizes the planning agent
to generate subgoal sequences that better guide
the grounding agent; and (2) Grounding Agent
Improving, which fine-tunes the grounding
agent using diverse subgoal-action pairs gener-
ated by the agent itself to enhance its general-
ization capability. Theoretical analysis proves
that MOAT ensures a non-decreasing and pro-
gressively convergent training process. Experi-
ments across six benchmarks demonstrate that
MOAT outperforms state-of-the-art baselines,
achieving average improvements of 3.1% on
held-in tasks and 4.4% on held-out tasks. 1

1 Introduction

The rapid advancement of large language models
(LLMs) has significantly transformed the devel-
opment of intelligent agents capable of reason-
ing, decision-making, and interacting with com-
plex environments (Sumers et al., 2024; Song et al.,
2023a; Chase, 2022). Previous work typically in-
volves prompting or fine-tuning a single founda-
tion model on a specific dataset, training the LLMs
how to use external search engines for informa-
tion retrieval or call Web APIs for tasks like travel

*Equal contributions
†Corresponding authors
1Code is available on https://github.com/ZMingHang/

MOAT/tree/master.

Grounding
Agent

Planning
Agent

Planning Agent Alignment

Low
Perplexity

User Task Answer

Grounding
Understand

Grounding Agent Improving

(b) Our Joint Alignment Tuning Method

User Task Grounding
Agent

(a) Previous Independent Training Method

Dataset Dataset

Planning
Agent

Subgoals
Answer

Actions

High
Perplexity

Grounding
Uncertainty

 Capability
Gap

 Independent Tuning

Training Inference

Figure 1: Comparison between (a) previous indepen-
dent training method and (b) our joint alignment tuning
method MOAT. The MOAT performs iterative joint tun-
ing to align agent capabilities and improve coordination.

planning (Qin et al., 2024; Xie et al., 2024; Song
et al., 2023b). Recently, to enable LLM-based
agents to handle more real-world and multi-step
tasks, more and more research has increasingly fo-
cused on multi-agent systems (Yin et al., 2024a;
Wang et al., 2025; Shen et al., 2024a; Wang et al.,
2024; Chen et al., 2025a), which aim to synergize
functionality-specialized agents. Figure 1 illus-
trates a commonly-used pipeline, where a multi-
agent system typically includes a planning agent
that decomposes the task into subgoals, followed
by a grounding agent that executes these subgoals
by invoking appropriate tools, ultimately producing
the final solution.

Despite the progress made by existing multi-
agent systems, effectively aligning different agents
toward holistic performance remains an active re-
search challenge. Most existing methods construct
specific training data for each agent and train each
agent independently. While this decomposition can
enhance overall performance, it does not guaran-

21846

https://github.com/ZMingHang/MOAT/tree/master
https://github.com/ZMingHang/MOAT/tree/master

tee effective collaboration among agents. As illus-
trated in Figure 1(a), independently trained agents
often exhibit varying levels of proficiency, leading
to capability mismatches. For example, a planning
agent might generate high-level subgoals that are
difficult for a weaker grounding agent to under-
stand and execute. Conversely, a strong grounding
agent might struggle with subgoals generated by a
weaker planning agent, leading to errors or ineffi-
cient task execution. Without explicit mechanisms
for adapting to each other’s behaviors, these agents
struggle to collaborate effectively, resulting in mis-
aligned interactions and coordination failures. In
this work, we focus on this plan-ground-execute
paradigm since it has been widely adopted in most
multi-agent frameworks (Yin et al., 2024a; Shen
et al., 2024b; Shi et al., 2024a), serving as a general
and foundational pipeline.

To address the above challenges, we propose
MOAT, a Multi-agent Joint Alignment Tuning
framework that iteratively alternates between two
key stages to achieve alignment in a multi-agent
system: (i) Planning Agent Alignment, and (ii)
Grounding Agent Improving. Unlike prior works
that train each agent independently, MOAT per-
forms multi-agent joint alignment tuning by iter-
atively and coordinately optimizing the planning
and grounding agents.

Specifically, in the Planning Agent Alignment
stage, MOAT optimizes the planning agent to gener-
ate subgoals that better guide the grounding agent
in producing correct tool-calling actions. Given
an input task, we first sample multiple candidate
sequences of subgoals from the planning agent.
For each subgoal sequence, we then evaluate its
effectiveness by measuring the perplexity of the
grounding agent in generating correct tool calls
conditioned on each sequence. Perplexity reflects
how well the grounding agent can follow a sub-
goal, where lower perplexity indicates higher suit-
ability (Gao et al., 2024). Using this as a reward
signal, we apply the direct preference optimization
(DPO) algorithm (Rafailov et al., 2024) to train the
planning agent to align with the grounding agent’s
preferences. In the Grounding Agent Improving
stage, we aim to enhance the grounding agent’s
ability to interpret and act upon subgoals produced
by the planning agent. Specifically, we reuse the
subgoal sequences from the planning agent in the
first stage as training data, exposing the grounding
agent to realistic settings. For each input task, we
use the subgoal–action pairs to train the grounding

agent via standard language modeling loss. Com-
paring with relying on ground truth or handcrafted
input subgoals, this allows the grounding agent
to adapt to the distribution of subgoals produced
by the planning agent at practical inference time,
thereby improving its robustness and execution ac-
curacy.

Through theoretical analysis, we demonstrate
that the holistic performance of the multi-agent
system is improved progressively by alternating
the above two stages. We apply MOAT to several
open-source model families (Llama, Mistral, and
Qwen) and evaluate it on three types of tasks, i.e., :
Web, Math, and QA, across six benchmarks. The
results show that MOAT consistently outperforms
existing baselines, on both in-distribution training
sets and out-of-distribution test sets. These validate
the effectiveness of our joint alignment framework
and demonstrate its strong generalization ability.

Our main contributions are as follows: (i) We
introduce MOAT, a multi-agent joint alignment tun-
ing framework to jointly optimize interconnected
agents, bridging the capability gap between them;
(ii) We provide formal analysis proving that the
alternating optimization of planning and grounding
agents guarantees non-decreasing performance and
convergence; and (iii) Extensive experiments on
both held-in and held-out settings across six bench-
marks demonstrate that MOAT achieves the best
performance with 4.4% improvement.

2 Related work

LLM-based multi-agent system. Large lan-
guage models (LLMs) have enabled the devel-
opment of autonomous agents capable of reason-
ing, planning, tool use, and memory retention to
solve specific goals through self-directed interac-
tion and decision-making (Liu et al., 2024; Madaan
et al., 2024; Lyu et al., 2024a). These agents
have demonstrated strong capabilities across var-
ious complex tasks, such as web navigation (Yao
et al., 2022; Zhou et al., 2023), task planning
(Zhang et al., 2024b), and tool learning (Shi et al.,
2024a). While single-agent frameworks like Au-
toGPT (Yang et al., 2023), XAgent (Team, 2023),
and LangChain (Chase, 2022) address such tasks
by equipping a single LLM agent with external
tools and functions, recent work has explored multi-
agent systems that improve problem-solving ef-
ficiency through collaborative interaction among
multiple agents. For example, CAMEL (Li et al.,

21847

2023), AutoGen (Wu et al., 2024), MetaGPT (Hong
et al., 2024), and ChatEval (Chan et al., 2024) em-
ploy role-playing and structured dialogues to im-
prove task-solving efficiency. However, these sys-
tems typically rely on closed-source models, limit-
ing their transparency and practical deployment in
privacy scenarios.

Agent tuning. Agent tuning improves a model’s
ability to perform downstream tasks by fine-tuning
open-source LLMs using trajectories distilled from
stronger models (Song et al., 2024; Chen et al.,
2023; Lyu et al., 2024b; Chen et al., 2025b). For
example, approaches such as AgentTuning (Zeng
et al., 2024), and AgentOhana (Zhang et al., 2024a)
fine-tune smaller models on datasets generated
by GPT-series LLMs. While these improve in-
struction following and reasoning, single-agent
tuning remains limited for complex tasks requir-
ing long-term planning and execution (Liu et al.,
2024). To overcome these limitations, frameworks
like Lumos (Yin et al., 2024a) and α-UMi (Shen
et al., 2024a) propose multi-agent training meth-
ods that enable collaboration across functionality-
specialized agents. More recent work like Au-
toACT (Qiao et al., 2024) further advances this di-
rection by introducing a self-training process where
each agent is trained on a dataset generated by it-
self. However, existing methods often train agents
independently, lacking joint optimization to ensure
effective coordination. In contrast, our work per-
forms iterative joint tuning to align agents’ capabil-
ities for improved cooperation.

3 Task Preliminary

A multi-agent system typically consists of three
components: (1) a planning agent that breaks down
tasks into subgoals, (2) a grounding agent that con-
verts subgoals into executable actions, and (3) an
execution module that carries out the actions to
get the final answer. Given a complex task x, the
planning agent, denoted as πp is tasked to decom-
pose it to a sequence of subgoals, formulated as
s = πp(x) = {si | i ∈ [|s|]}. Each si represents a
subgoal like ”Calculate the total number of
units in the entire building”, contributing
to solving the overall task x. Next, the grounding
agent, denoted as πg, takes the task x, the set of
available tools I as well as the decomposed sub-
goals s as input to generates a sequence of tool
calls a = πg(x, I, s) = {ai | i ∈ [|a|]}. Each
ai ∈ I represents an individual tool invocation

required to complete the subgoal si, such as “R1
= Calculator(15 * 8)”. Finally, the execution
module is responsible for executing the generated
tool-call sequence a to accomplish the user task x.

4 Multi-agent Joint Alignment Tuning

The proposed multi-agent joint alignment tun-
ing (MOAT) framework aims to iteratively align
the planning and grounding agents, enhancing the
overall performance and coordination of the multi-
agent system. As illustrated in Figure 2, MOAT
alternates between two stages: (1) Planning Agent
Alignment, where the planning agent explores di-
verse subgoal sequences to guide the grounding
agent more effectively, and (2) Grounding Agent
Improving, where we reuse the generated sub-goal
sequences, improving the grounding agent to better
understand them and generate correct actions.

Through this iterative process, both agents pro-
gressively adapt to each other, resulting in more
coherent subgoal generation, and more accurate
tool calling, towards holistic improvement.

4.1 Planning Agent Alignment
As illustrated by previous work (Sun et al., 2023;
Shi et al., 2024b; Hou et al., 2025), LLMs have en-
coded strong knowledge and reasoning abilities in
their parameter space, which enables them to gen-
erate diverse and meaningful subgoal sequences
through sampling. However, not all sampled sub-
goal sequences are equally effective—some bet-
ter guide the grounding agent to generate correct
tool-use actions. To exploit this potential, we sam-
ple multiple subgoal candidates and optimize the
planning agent to prefer those that lead to better
grounding outcomes.

Given a task x, we sample K candidate subgoal
sequences from the planning agent as s = πp(x)
and obtain a set S = {sj | j ∈ [|K|]}. For each
s ∈ S, we calculate its perplexity (PPL) with re-
spect to the grounding agent, where a lower per-
plexity indicates that the subgoal sequence is more
helpful to the grounding agent, facilitating the gen-
eration of correct responses. Therefore, the PPL
can directly reflect how s is useful to the end-to-end
task performance, which is formulated as follows:

PPLπg (a | x, I, s) :=

exp
{
− 1

|a|

|a|∑

i=1

logPπg (s | a<i, x, I, s)
}
.

To align the planning agent with holistic task-
solving performance, we train the planning agent

21848

Planning
Agent

Grounding
Agent

Ground-truth

Task
Input

Critic
Model

1. K-Times Sampling

6. Supervised
 Fine-tuning

2. Action Generation

5. Action Refinement

Stage 2：Grounding
Agent Improving

Stage 1: Planning Agent Alignment

3. Perplexity as Rewards

Action Sequences

4. DPO Training

Corrected Action Sequences

Subgoal Sequences

Figure 2: The proposed MOAT framework iteratively alternates between two stages: (1) Planning Agent Alignment:
The planning agent samples K candidate subgoal sequences, and the grounding agent generates corresponding
tool-calling actions. Subgoal sequences are ranked by PPL, and the planning agent is optimized via DPO; (2)
Grounding Agent Improving: The subgoal-action pairs generated are corrected using a critic model, and the
grounding agent is fine-tuned on the corrected dataset to enhance generalization.

to generate subgoal sequences with lower PPL, as
desirable behaviors, while penalizing undesirable
ones, i.e., subgoal sequences with high PPL. Specif-
ically, we adopt the Direct Preference Optimization
(DPO) algorithm (Rafailov et al., 2024), which al-
lows us to align the model by learning from pref-
erence pairs. Specifically, we construct preference
pairs (sw, sl) from the sampled candidates in S,
where sw yields the lowest perplexity (strongest
grounding guidance) and sl the highest.

Formally, the loss function is calculated as:

LDPO = −E(t,(sw,sl))∼D[
log σ

(
β log

πp(sw|x)
πref(sw|x)

− β log
πp(sl|x)
πref(sl|x)

)]
.

Here πref represents the reference model, which
is initialized as the original πp before optimiza-
tion. And σ denotes the sigmoid function, β is a
hyperparameter.

4.2 Grounding Agent Improving
This stage aims to enhance the generalization ca-
pability of the grounding agent and improve its
adaptability to the diverse subgoal sequences gen-
erated by the planning agent. To achieve this, we
reuse the diverse subgoal sequences sampled from
the first stage as inputs, and prompt the grounding

agent to generate outputs to fine-tune itself. Specif-
ically, given a task x, for each subgoal sequence
s from the sampled set S = {sj | j ∈ [|K|]}, the
grounding agent πg generates the corresponding
tool-calling actions as aj = πg(x, I, sj).

However, since these action sequences are
model-generated, they may contain errors. Directly
using such noisy data for fine-tuning can lead to
performance degradation or even training collapse,
as highlighted in prior work (Dohmatob et al., 2024;
Shumailov et al., 2024). To address this issue, we
introduce a validation mechanism that filters out
incorrect outputs before using them for training.
In particular, we employ a more powerful LLM
as a critic model to evaluate whether each gener-
ated sequence a successfully solves the task, given
the input (x, I, s). If the critic determines that the
sequence fails to complete the task, it provides a
corrected version â by referencing the ground-truth
outcome ã. This filtering and correction process
ensures that only reliable supervision signals are
used during grounding agent training. The full pro-
cedure is summarized in Algorithm 1, and the critic
prompting strategy is detailed in Appendix A.3.

The overall MOAT alternates between the first
and second stages described above. During this

21849

Algorithm 1: Dataset Construction

1 Initialize SFT dataset Dg ← ∅;
2 for each task x and s ∈ S do
3 Generate a← πg(x, I, s);
4 if Critic(⟨x, I, s⟩,a, ã) = False then
5 â = Critic(⟨x, I, s⟩,a, ã);
6 Dg ← Dg ∪ {(x, I, s), â};
7 end
8 else
9 Dg ← Dg ∪ {(x, I, s),a};

10 end
11 end
12 return SFT dataset Dg;

process, the planning agent gradually adapts to the
grounding agent by generating subgoal sequences
that better align with its inference process; the
grounding agent, in turns, improves its general-
ization capability to understand the subgoals of the
planning agent. This formulates a loop for a con-
sistent improvement. We also provide a detailed
pseudo algorithm in Algorithm 2 to further clarify
our joint training process.

4.3 Cold Start
Before applying our joint alignment strategy, we
perform cold start training to equip both agents
with basic task-solving capabilities, following pre-
vious work (Yuan et al., 2024; Zhu et al., 2024; Su
et al., 2025). We first conduct an initial tuning using
the supervised fine-tuning (SFT) dataset collected
in previous work (Yin et al., 2024a). Specifically,
the planning agent is trained to generate the correct
subgoals s for an input task x, formulated as:

Lp = −
∑|s|

i=1
logPπp(si | s<i, x), (1)

The grounding agent is optimized to ground the
subgoals s to the corresponding tool-calling actions
a, formulated as:

Lg = −
∑|a|

i=1
logPπg(ai | a<i;x, I, s), (2)

where I is the list of external tools. The final an-
swer is obtained by executing the tool-callings a.

5 Theoretical analysis

In our framework, the planning agent and ground-
ing agent are optimized iteratively. In this section,
we provide a theoretical analysis to demonstrate

that each optimization step leads to non-decreasing
improvements and ultimately ensures the conver-
gence. We start by defining the expected perfor-
mance of the overall multi-agent system as:

E[R] = Es∼πp(x)

[
Ea∼πg(s)[R(s,a)]

]
. (3)

Here the reward function R(s,a) evaluate the qual-
ity of tool-calling action a given sub-goal sequence
s. And x indicates the input task. Below, we can
state the following two lemmas.

Lemma 5.1. Optimizing the planning agent while
keeping the grounding agent fixed leads to a non-
decreasing expected reward.

The planning agent is optimized using DPO,
with PPL as the reward signal. The optimization
objective can be formalized as:

maxπp Ea∼πp(x) [−PPL(a;πg)] . (4)

Since PPL is negatively correlated with the true
reward R(s,a), this is equivalent to maximizing
the expected reward:

maxπp Es∼πp(x) [R(s,a)] . (5)

The DPO algorithm guarantees that updates to πp
lead to non-decreasing expected rewards when the
grounding agent is fixed. Thus, we have:

E[R](t+1) ≥ E[R](t). (6)

This inequality holds because the optimization pro-
cess aligns the planning agent with sub-goal se-
quences that facilitate better performance in the
grounding agent.

Lemma 5.2. Optimizing the grounding agent while
keeping the planning agent fixed leads to a non-
decreasing expected reward.

The grounding agent is optimized through super-
vised fine-tuning using pairs (s,a) generated by
the planning agent. The corresponding optimiza-
tion objective is:

minπg E(s,a)∼S [L(πg(a | s))] , (7)

where L denotes the loss function (i.e., cross-
entropy loss). Minimizing this loss is equivalent to
maximizing the log-likelihood of the correct tool
invocation sequences:

maxπg E(s,a)∼S [log πg(a|s)] . (8)

21850

Task Skill Dim. #Inst. Metric

Held-in Tasks

StrategyQA (Yang et al., 2018) QA 300 Exact Match
GSM8K (Cobbe et al., 2021) Math 1300 Accuracy
Mind2Web (Deng et al., 2023) Web 200 Step Success Rate

Held-out Tasks

HotpotQA (Geva et al., 2021) QA 100 Exact Match
SVAMP (Patel et al., 2021) Math 1000 Accuracy
WebShop (Yao et al., 2022) Web 500 Avg. Reward

Table 1: The held-in and held-out tasks used to evaluate
the agent capabilities of different LLMs.

Since improved log-likelihood corresponds to
reduced PPL and, consequently, higher re-
ward (Singh et al., 2023), it follows that:

E[R](t+1) ≥ E[R](t). (9)

Hence, optimizing the grounding agent improves or
maintains the expected reward when the planning
agent is fixed.

From Lemma 5.1 and Lemma 5.2, we establish
that both optimization steps ensure non-decreasing
expected rewards, i.e., E[R](t+1) ≥ E[R](t). Ad-
ditionally, the expected reward E[R] is upper-
bounded due to the following reasons: (i) The re-
ward function R(s,a) is bounded in practical sce-
narios; and (ii) The PPL has a lower bound. Based
on the Monotone Convergence Theorem (Bibby,
1974), the non-decreasing and upper-bounded na-
ture of {E[R](t)}∞t=1 ensures this sequence con-
verges to a finite limit. Thus, we derive the conver-
gence of overall training process.

6 Experimental Setup

6.1 Benchmarks and Evaluation Metrics

Following prior work (Song et al., 2024; Chen et al.,
2024), we evaluate MOAT under both held-in and
held-out settings to evaluate its performance and
generalization across diverse task types. We con-
sider a wide range of tasks, including mathematical
reasoning, web interaction, and question answering.
As listed in Table 1, the held-in setting includes
three tasks that are used during training: GSM8K,
StrategyQA, and Mind2Web; the held-out setting
evaluates generalization on unseen tasks: SVAMP,
WebShop, and HotpotQA. Evaluation metrics for
each task are also reported in Table 1. Following
the recipe of baselins (Yin et al., 2024a), we define
a set of action instructions (i.e., tool set I), cover-
ing common actions required for each task. Details
are provided in Appendix A.4.

6.2 Baselines

We compare our MOAT with widely-used agent
tuning methods, including: (i) Agent Tuning (Zeng
et al., 2024), a multi-task tuning approach train-
ing LLMs on synthetic datasets comprising six
tasks; (ii) Agent-FLAN (Chen et al., 2024) employs
a modular architecture that trains distinct single-
agent capabilities through specialized parameter
groups; and (iii) Agent Lumos (Yin et al., 2024a),
a multi-agent training framework that separately
fine-tunes models on datasets to obtain specialized
agents. Furthermore, we included GPT-3.5-Turbo
and GPT-4 (Achiam et al., 2023) as strong single-
agent baselines for comparison.

6.3 Implementation Details

To ensure a fair comparison with prior work,
we adopt Llama2-7b-hf as the backbone LLM
for both MOAT and baseline methods, following
the official implementation of previous methods
(Zeng et al., 2024; Yin et al., 2024a). To com-
prehensively evaluate our method across different
LLMs, we additionally apply MOAT to two differ-
ent model series with varying parameter scales:
Mistral-7B-Instruct-v0.2 and Qwen2.5-14B.
During the alignment process, we set the number
of sampled subgoal sequences K to 15 and the
number of training iterations to 2. The sampling
temperature is set to 1.0 to encourage diversity in
the generated subgoals.

We employ DeepSeek-R1-Distill-Qwen-32B
as the critic model (denoted as DS-Qwen-32B) for
verifying and correcting the generated tool-use ac-
tion sequences. We further analyze the impact of
using different critic models in Section 7.5. More
details are provided in Appendix A.1.

7 Experiment results

7.1 Overall Performance

Held-in Tasks. Table 2 presents the evaluation
results. Compared with single-agent systems and
independently trained multi-agent baselines, the
MOAT achieves superior performance across three
held-in tasks across different base models. The
MOAT with Llama-7B demonstrates an average
improvement of 15.6% compared to AgentTun-
ing with Llama-13B. These improvements validate
the effectiveness of our joint training framework,
which tightly interconnects specialized agents to
enhance overall task-solving performance.

21851

Method Base Model Held-in Tasks Held-out Tasks

GSK8K Mind2Web StrategyQA Avg. SVAMP WebShop HotpotQA Avg.

API-Based Agents

GPT-4 - 87.0 22.6 71.0 60.2 90.5 58.6 52.1 67.1
GPT-3.5-Turbo - 65.0 21.7 58.0 48.2 81.0 62.4 24.0 55.8

Llama Model Agents

Llama-2-7B-Chat Llama-2-7B 15.0 11.9 5.0 10.6 20.7 15.8 3.0 13.2
Agent Tuning Llama-2-7B 14.0 10.6 49.0 24.5 35.3 59.8 10.0 35.0
Agent Tuning Llama-2-13B 22.3 11.1 52.0 28.5 56.9 65.0 24.0 48.6
Agent-FLAN Llama-2-7B 28.5 16.9 48.0 31.1 39.2 55.9 12.0 35.7
Agent Lumos Llama-2-7B 46.6 29.9 46.7 41.1 65.5 58.3 25.0 49.6
MOAT Llama-2-7B 47.4 33.0 52.0 44.1 69.2 60.6 27.0 52.3

Mistral Model Agents

Agent Lumos Mistral-7B-v0.2 46.4 33.8 49.3 43.2 61.9 58.7 27.0 49.2
MOAT Mistral-7B-v0.2 48.2 34.7 56.0 46.3 73.7 59.0 28.0 53.6

Qwen Model Agents

Agent Lumos Qwen2.5-14B 81.7 31.8 49.3 54.3 85.5 64.7 27.0 59.1
MOAT Qwen2.5-14B 82.4 32.6 55.3 56.8 87.4 65.8 28.0 60.4

Table 2: Evaluation results of MOAT and baselines on both held-in and held-out tasks. The best results in each
group are highlighted in bold.

Method Mind2Web WebShop Avg. ∆

Llama-2-7B
Vanilla MOAT 32.96 60.63 46.80
-w/o stage 1 29.58↓3.38 58.76↓1.87 44.17↓2.63
-w/o stage 2 32.19↓0.77 60.29↓0.34 46.24 ↓0.56
-w/o critic 31.80↓1.16 59.79↓0.84 45.80 ↓1.00

Table 3: Ablation study on two web datasets.

Held-out Tasks. We further investigate the general-
izability of our method in solving unseen tasks. As
illustrated in Table 2, our method achieves the high-
est performance compared to open-source base-
lines. For example, the MOAT with Mistral-7B
outperforms Lumos with an average performance
improvement of 4.4%. An explanation for this
improvement is that through iterative alignment
in MOAT, the subgoals generated by the plan-
ning model align better with the preferences of
the grounding models, and the grounding models
also achieve a more accurate understanding of the
generated subgoals. This mutual understanding en-
hances the generalizability of the overall system
when facing unseen tasks.

Comparison with Closed-source Agents. Al-
though our method is trained on 7B models like
Llama-7B, it achieves about a 50% performance
improvement over GPT-4 on the Mind2Web task.
This further validates the superiority of the MOAT
in synergizing smaller open-source models to
achieve competitive performance.

GSM8K StrategyQA Mind2Web
30

40

50

60 Performance

46.4
49.3

33.8

45.3

51.0

33.4

47.6

55.0

34.6

48.2

56.0

34.7

SFT Baseline
K=5
K=10
K=15

Figure 3: Results of MOAT on three held-in tasks under
different numbers of sampled subgoal sequences.

7.2 Ablation Study

To further analyze the contribution of each compo-
nent in MOAT, we conduct an ablation study by re-
moving individual components, including planning
alignment (w/o stage 1), grounding improvement
(w/o stage 2), and the critic model (w/o critic), re-
spectively. As shown in Table 3, all variants exhibit
substantial performance degradation, confirming
the effectiveness of each component in our joint
alignment framework.

Besides, we highlight two key points: (1) the
largest performance drop occurs in w/o stage 1,
highlighting the critical role of aligning the plan-
ning agent to generate coherent subgoals; and (2)
removing the critic model (w/o critic) results in the
second-largest performance drop, even lower than
that caused by removing the grounding improve-
ment (w/o stage 2). This suggests that, without
external feedback from the critic model, the sys-

21852

Task Agent Lumos MOAT Reduction (↓%)

Mistral-7B
Math 3.53 2.56 ↓ 27.48%
QA 1.41 1.40 ↓ 0.71%
Web 5.71 5.02 ↓ 12.08%

Table 4: The perplexity comparison of the grounding
agent across three tasks.

tem may suffer from significant negative updates,
thereby validating the importance and rationality
of incorporating a critic model.

7.3 Analysis of the Capability Gap
To quantitatively validate our core hypothesis of
a capability gap, we measured the perplexity of
the grounding agent when generating correct ac-
tions. In this context, lower perplexity indicates
better alignment, suggesting that the subgoals are
more easily understood by the grounding agent.
As shown in Table 4, the results provide direct
evidence of this gap. The grounding agent consis-
tently exhibits lower perplexity when processing
subgoals from the planning agent in MOAT. In con-
trast, subgoals generated by the baseline without
alignment result in higher perplexity, reflecting a
distribution mismatch. The reduction in perplexity
demonstrates that our joint alignment process ef-
fectively harmonizes the agents, directly bridging
this capability gap.

7.4 Hyperparameter Analysis
Analysis of Different Sample Numbers. In our
main experiments, we set the number of sampled
responses K to 15. To explore the impact of the
sampling number K on model performance, we
further vary K from 5 to 15 during the training of
Mistral-7B at 2th iteration. As shown in Figure
3, we observe a positive correlation between the
sampling number and the overall performance. We
also identify a performance drop on the GSM8K
and Mind2Web benchmarks when K=5. An expla-
nation is that a smaller number of samples may
fail to include high-quality subgoal sequences that
align well with the grounding agent. In such cases,
even the subgoal sequence with the highest reward
may still be suboptimal or incorrect, thus negatively
affecting training performance.
Analysis of Iteration Count. We further inves-
tigate how the iteration count impacts model per-
formance using Mistral-7B with set K to 15. As
shown in Figure 4, the model’s performance im-
proves gradually with the increasing number of

GSM8K StrategyQA Mind2Web
30

40

50

60 Performance

46.4
49.3

33.8

44.0

53.0

34.0

48.2

56.0

34.7

48.5

57.0

34.7

SFT Baseline
Iteration 1
Iteration 2
Iteration 3

Figure 4: Performance trends of MOAT (K=15) on held-
in tasks as iterations increase. We use Accuracy / Exact
Match / Step Success Rate as evaluation metrics for
GSM8K / StrategyQA / Mind2Web datasets, respec-
tively.

Model Mind2Web WebShop Avg.

Llama-2-7B
MOAT w/ DS-Qwen-32B 32.96 60.63 46.80
MOAT w/ GPT-4o 34.45↑4.52% 60.78↑0.25% 47.62↑1.75%
MOAT w/ DS-Qwen-14B 31.80↓3.52% 60.45↓0.30% 46.13↓1.43%

Table 5: Model Performance on Mind2Web and Web-
Shop benchmarks using different critic models.

iterations. However, by the third iteration, the per-
formance gains become marginal. We suspect this
is because, after several iterations, the planning and
grounding agents gradually converge and reach a
performance equilibrium, as discussed in Section 5.

7.5 Impact of Different Critic Model.

We use DeepSeek-R1-Distill-Qwen-32B as the
default critic model in our framework to validate
and refine the tool-use action sequences generated
by the grounding agent. To investigate the effect
of the critic model’s capability, we conduct a com-
parative study using a stronger critic (GPT-4o) and
a weaker one (DeepSeek-R1-Distill-Qwen-14B).
As shown in Table 5, the results demonstrate an
upward trend in task performance as the ability
of the critic model increases. However, we also
observe that using a smaller, open-source model
like Qwen-14B still yields competitive results, sur-
passing existing baselines by a notable margin. We
attribute this to the relatively simple nature of the
critic’s task, i.e., verifying whether the predicted
action sequence achieves the same effect as the
ground-truth. Since both the prediction and ref-
erence are provided to the context of the critic
model, this task requires less complex reasoning
with simplified difficulty. Therefore, while stronger
critic models can further enhance performance, our
framework remains robust and effective even when
using smaller, fully open-source critics.

21853

Initial Iteration 1 Iteration 2 Iteration 3
54

56

58

60

62 Performance

MOAT
Lumos Agent

Figure 5: Performance comparison on WebShop be-
tween MOAT and Lumos under equal training time. We
use the Avg. Reward as evaluation metric.

7.6 Training Iteration Control Analysis

A potential concern is that the observed perfor-
mance gains from our iterative training strategy
may stem merely from additional training epochs,
rather than from the collaborative optimization of
planning and grounding agents. To investigate this,
we compare our approach with a baseline trained
independently for the same total number of epochs.
Starting from a model trained for 2 epochs, we
apply our iterative method for 1, 2, and 3 itera-
tions, equivalent to 3, 4, and 5 total epochs. We
compare with the Lumos Agent baseline trained
independently for the same number of epochs with-
out inter-agent interaction. As shown in Figure 5,
the baseline struggles to consistently improve and
even suffers from degradation due to overfitting.
In contrast, our method shows consistent improve-
ments, indicating that the gains stem from iterative
co-training rather than extended training iterations.

7.7 Case Study

We manually analyze the outputs of both the plan-
ning and grounding agents after training in MOAT.
The results show that our MOAT effectively en-
hances the specialized expertise of both agents, as
well as their adaptability. Concrete examples and
detailed analysis are provided in Appendix A.2.

8 Conclusion
In this work, we present MOAT, a novel Joint
Alignment Tuning framework designed to har-
monize the collaboration between planning and
grounding agents in LLM-based multi-agent sys-
tems. By iteratively optimizing the planning agent
to generate subgoals that align with the ground-
ing agent’s capabilities and enhancing the ground-
ing agent’s adaptability to diverse subgoal se-
quences, MOAT effectively bridges the capability

gap caused by independent training. Both theo-
retical analysis and extensive experimental results
demonstrate the superiority of MOAT. We suggest
that future work can explore the integration of vi-
sual models to expand the capability boundary of
agents, as well as integrate more specialized agents,
such as tool retrieval and reflection modules, to ex-
pand the versatility and efficiency of the system.

Limitations

Our framework is currently developed and
evaluated exclusively on text-based scenarios,
without exploring multimodal learning settings.
While modern open-source language models (e.g.,
LLaVA, Qwen-VL) have demonstrated emerging
capabilities in processing multimodal inputs, our
current architecture lacks explicit mechanisms for
cross-modal alignment during collaborative train-
ing. In future work, we plan to incorporate multi-
modal information into our framework.

Ethics Statement

This research strictly adheres to the ethical princi-
ples outlined in the ACM Code of Ethics, with rig-
orous implementation of transparency and account-
ability measures. All datasets, tools, and language
models (including Llama-2, Mistral and Qwen) are
sourced from publicly available platforms under
compliant licenses, ensuring ethical alignment and
reproducibility. The complete code and evaluation
protocols are open-sourced.

Acknowledgements

This work was supported by the National Natu-
ral Science Foundation of China under Grant No.
62372275 and 62472261, the Technology Inno-
vation Guidance Program of Shandong Province
under Grant No. YDZX2024088, the Provincial
Key R&D Program of Shandong Province under
Grant No. 2024CXGC010108.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

John Bibby. 1974. Axiomatisations of the average and a
further generalisation of monotonic sequences. Glas-
gow Mathematical Journal.

21854

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2024. Chateval: Towards better LLM-based evalu-
ators through multi-agent debate. In International
Conference on Learning Representations: ICLR.

Harrison Chase. 2022. LangChain.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:
Toward language agent fine-tuning. arXiv preprint
arXiv:2310.05915.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Nuo Chen, Yicheng Tong, Jiaying Wu, Minh Duc
Duong, Qian Wang, Qingyun Zou, Bryan Hooi,
and Bingsheng He. 2025a. Beyond brainstorm-
ing: What drives high-quality scientific ideas?
lessons from multi-agent collaboration. Preprint,
arXiv:2508.04575.

Nuo Chen, GUOJUN XIONG, and Bingsheng He.
2025b. MPAW: Multi-preference alignment through
weak model collaboration for efficient and flexible
LLM decoding. In Scaling Self-Improving Founda-
tion Models without Human Supervision: SSI-FM.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024. Agent-FLAN: Designing data and
methods of effective agent tuning for large language
models. In Findings of the Association for Computa-
tional Linguistics: ACL 2024, pages 9354–9366.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2023.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems:
NeurIPS, 36:28091–28114.

Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. 2024.
Model collapse demystified: The case of regression.
In Advances in Neural Information Processing Sys-
tems: NeurIPS.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang,
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and
Zhaochun Ren. 2024. Confucius: Iterative tool learn-
ing from introspection feedback by easy-to-difficult
curriculum. In Proceedings of the AAAI Conference
on Artificial Intelligence: AAAI, volume 38, pages
18030–18038.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did Aristotle
Use a Laptop? A Question Answering Benchmark
with Implicit Reasoning Strategies. Transactions
of the Association for Computational Linguistics:
TACL.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
2024. Metagpt: Meta programming for a multi-agent
collaborative framework. In International Confer-
ence on Learning Representations: ICLR.

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang
Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao Dong.
2025. Advancing language model reasoning through
reinforcement learning and inference scaling. arXiv
preprint arXiv:2501.11651.

Vladimir Karpukhin, Barlas Oguz, Sewon Min,
Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. 2020. Dense passage re-
trieval for open-domain question answering. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: EMNLP, pages
6769–6781.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems: NeurIPS, 36:51991–
52008.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, et al. 2024. Agentbench: Evalu-
ating llms as agents. In International Conference on
Learning Representations: ICLR.

Yougang Lyu, Lingyong Yan, Shuaiqiang Wang, Haibo
Shi, Dawei Yin, Pengjie Ren, Zhumin Chen, Maarten
de Rijke, and Zhaochun Ren. 2024a. Knowtun-
ing: Knowledge-aware fine-tuning for large language
models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing:
EMNLP, pages 14535–14556.

Yougang Lyu, Lingyong Yan, Zihan Wang, Dawei Yin,
Pengjie Ren, Maarten de Rijke, and Zhaochun Ren.
2024b. Macpo: weak-to-strong alignment via multi-
agent contrastive preference optimization. arXiv
preprint arXiv:2410.07672.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems: NeurIPS, 36.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the

21855

https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2508.04575
https://arxiv.org/abs/2508.04575
https://arxiv.org/abs/2508.04575

Association for Computational Linguistics: NAACL,
pages 2080–2094.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Huajun
Chen, et al. 2024. Autoact: Automatic agent learning
from scratch for qa via self-planning. In ICLR 2024
Workshop on Large Language Model (LLM) Agents.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In International Conference on
Learning Representations: ICLR.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems: NeurIPS, 36.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei
Huang. 2024a. Small LLMs are weak tool learners:
A multi-LLM agent. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing: EMNLP, pages 16658–16680.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei
Huang. 2024b. Small llms are weak tool learners:
A multi-llm agent. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing: EMNLP, pages 16658–16680.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,
Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren,
Suzan Verberne, and Zhaochun Ren. 2024a. Learn-
ing to use tools via cooperative and interactive agents.
In Findings of the Association for Computational
Linguistics: EMNLP 2024.

Zhengliang Shi, Shuo Zhang, Weiwei Sun, Shen Gao,
Pengjie Ren, Zhumin Chen, and Zhaochun Ren.
2024b. Generate-then-ground in retrieval-augmented
generation for multi-hop question answering. In Pro-
ceedings of the 62st Annual Meeting of the Asso-
ciation for Computational Linguistics: ACL, pages
7339–7353.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas
Papernot, Ross Anderson, and Yarin Gal. 2024. Ai
models collapse when trained on recursively gener-
ated data. Nature, 631(8022):755–759.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Xavier Garcia, Peter J Liu,
James Harrison, Jaehoon Lee, Kelvin Xu, et al.
2023. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv
preprint arXiv:2312.06585.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023a.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision: ICCV, pages 2998–3009.

Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu,
Wenhao Wu, Ke Wang, Cheng Li, Wei Peng, and Su-
jian Li. 2024. Agentbank: Towards generalized llm
agents via fine-tuning on 50000+ interaction trajec-
tories. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 2124–2141.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, et al. 2023b. Restgpt: Con-
necting large language models with real-world restful
apis. arXiv preprint arXiv:2306.06624.

Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo
Hao, Zhengyuan Yang, Jun Zhang, Guanjie Chen,
Jiawei Gu, Juntao Li, Xiaoye Qu, et al. 2025. Open-
thinkimg: Learning to think with images via vi-
sual tool reinforcement learning. arXiv preprint
arXiv:2505.08617.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas Griffiths. 2024. Cognitive architectures
for language agents. Transactions on Machine Learn-
ing Research: TMLR.

Weiwei Sun, Zhengliang Shi, Shen Gao, Pengjie Ren,
Maarten de Rijke, and Zhaochun Ren. 2023. Con-
trastive learning reduces hallucination in conversa-
tions. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence: AAAI, volume 37, pages 13618–
13626.

XAgent Team. 2023. Xagent: An autonomous agent for
complex task solving. XAgent blog.

Yiying Wang, Xiaojing Li, Binzhu Wang, Yueyang
Zhou, Yingru Lin, Han Ji, Hong Chen, Jinshi
Zhang, Fei Yu, Zewei Zhao, et al. 2024. Peer: Ex-
pertizing domain-specific tasks with a multi-agent
framework and tuning methods. arXiv preprint
arXiv:2407.06985.

Zihan Wang, Ziqi Zhao, Yougang Lyu, Zhumin Chen,
Maarten de Rijke, and Zhaochun Ren. 2025. A coop-
erative multi-agent framework for zero-shot named
entity recognition. In Proceedings of the ACM on
Web Conference: WWW, pages 4183–4195.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,
Ryen W White, Doug Burger, and Chi Wang. 2024.
Autogen: Enabling next-gen LLM applications via
multi-agent conversation. In ICLR 2024 Workshop
on Large Language Model (LLM) Agents.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,
Renze Lou, Yuandong Tian, Yanghua Xiao, and

21856

Yu Su. 2024. Travelplanner: A benchmark for real-
world planning with language agents. arXiv preprint
arXiv:2402.01622.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models. arXiv preprint
arXiv:2305.18323.

Hui Yang, Sifu Yue, and Yunzhong He. 2023. Auto-gpt
for online decision making: Benchmarks and addi-
tional opinions. arXiv preprint arXiv:2306.02224.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: EMNLP,
pages 2369–2380.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems:
NeurIPS, 35:20744–20757.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024a. Agent lumos: Unified and
modular training for open-source language agents. In
Proceedings of the 62st Annual Meeting of the Asso-
ciation for Computational Linguistics: ACL, pages
12380–12403.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024b. Agent lumos: Unified and
modular training for open-source language agents. In
Proceedings of the 62st Annual Meeting of the Asso-
ciation for Computational Linguistics: ACL, pages
12380–12403.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-
son Weston. 2024. Self-rewarding language models.
In International Conference on Machine Learning:
ICML, pages 57905–57923.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2024. AgentTuning:
Enabling generalized agent abilities for LLMs. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 3053–3077.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu,
Weiran Yao, Ming Zhu, Juntao Tan, Thai Hoang,
Zuxin Liu, Liangwei Yang, et al. 2024a. Agentohana:
Design unified data and training pipeline for effective
agent learning. arXiv preprint arXiv:2402.15506.

Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu,
Bryan Hooi, and Shumin Deng. 2024b. Exploring
collaboration mechanisms for LLM agents: A social

psychology view. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics: ACL, pages 14544–14607.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, et al. 2023. We-
barena: A realistic web environment for building au-
tonomous agents. arXiv preprint arXiv:2307.13854.

Junda Zhu, Lingyong Yan, Haibo Shi, Dawei Yin, and
Lei Sha. 2024. Atm: Adversarial tuning multi-agent
system makes a robust retrieval-augmented generator.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: EMNLP,
pages 10902–10919.

21857

A Appendix

A.1 Implementation Details

We show more training details about our experi-
ments. All our experiments are conducted on 6 ×
NVIDIA A800 (80GB) GPUs.

For the initial fine-tuning stage, we use the
public datasets provided by Lumos (Yin et al.,
2024a) and train two epochs with a learning rate
of 2× 10−5. And we set the maximum sequence
length to 1024 and the batch size to 128. We also
apply linear warmup for 3% of the total training
steps to adjust the learning rate.

For DPO training, we fine-tuned the model using
the accelerate framework with DeepSpeed for
optimized distributed training. We set batch size
to 4 and gradient accumulation to 8. The learning
rate is set to 4× 10−7 with a cosine learning rate
scheduler. And We set the maximum sequence
length to 1024. Additionally, we leveraged the TRL
library 2 to facilitate the training of reinforcement
learning-based models. Meanwhile, we filter out
data samples where the reward difference between
sw and sl is less than 0.1 for stability during DPO
training.

For grounding agent improving training, we im-
plement training over two epochs with a learning
rate of 2×10−5 and a batch size 128 the same with
initial tuning. At the same time, we mix these with
the initial data in a 1:1 ratio to prevent the model
from forgetting prior knowledge.

A.2 Case Study

As illustrated in Table A.2, the case studies evalu-
ate the responses generated by our MOAT and the
independent training method. Our findings show
that through joint alignment tuning, the models
are able to align their capabilities. Specifically,
for the given case, we observe that the indepen-
dently trained method struggles with subgoal de-
composition in planning agent, making it difficult
for grounding agent to resolve, leading to a fail-
ure in solving the task. However, after the joint
alignment training, the capability gap is addressed,
allowing the planning agent to generate subgoals
that are easier for the grounding agent to under-
stand. Consequently, the grounding agent success-
fully produced the correct action sequence.

2https://github.com/huggingface/trl

Algorithm 2: The proposed multi-agent
joint optimization, which iteratively aligns
the planning and grounding agents, improv-
ing the holistic task-solving performance.

Input: The number of iterations Nr, the
number of samples K, the tasks set
D, the set of available tools I , the
critic model CRITIC , planning agent
πp , grounding agent πg.

1 for iteration t = 1... N do
2 # Initialize the training dataset
3 Dp ← ϕ,Dg ← ϕR ← ϕ

4 # Planning Agent Optimization
5 for each task xi ∈ D do
6 # sample K response
7 for j ← 1 to K do
8 si,j ∼ πt−1

p (xi)

9 # ãi,j denotes correct actions
10 ri,j ←

PPLπt−1
g

(ãi,j |xi, I, si,j)
11 Dp,i ← Dp,i ∪ si,j
12 Rp,i ← Rp,i ∪ ri,j
13 end
14 end

15 Swin ← Dp[argmin(R, axis = 1)]
16 Slose ← Dp[argmax(R, axis = 1)]

17 πt
p ← πt−1

p −∇πpLDPO(D,Swin,Sloss)
18 # Grounding Agent Optimization
19 for each task xi ∈ D do
20 for each si,j ∈ Dp do
21 ai,j ∼ πr−1

g (ai,j |xi, I, si,j)
22 âi,j ← Critic(ai,j , ãi,j)
23 Dg ← Dg ∪ (x, I, si,j , âi,j)

24 end
25 end
26 πt

g ← πt−1
g −∇πgLSFT(Dg)

27 end
Output: πN

p , πN
g

A.3 Prompts

We provide our prompts used in the multi-agent
system. The prompt of the planning agent to gener-
ate the subgoal sequences is in Table 7. The prompt
of the grounding agent to generate the action se-
quences is in Table 8. The prompt of the critic
model to correct the action sequences generated by
grounding agents is in Table 9.

21858

https://github.com/huggingface/trl

Case Study

Question:
Richard lives in an apartment building with 15 floors. Each floor contains 8 units, and 3/4 of the building is occupied. What’s the
total number of unoccupied units In the building?

MOAT:

Subgoals:
Subgoal 1: Calculate the total number of units in the entire building.;
Subgoal 2: Calculate the number of floors that are occupied.;
Subgoal 3: Calculate the total number of units that are occupied.;
Subgoal 4: Calculate the total number of unoccupied units in the building.

Actions:
R1 = Calculator(15 * 8);
R2 = Calculator(15 * 3/4);
R3 = Calculator(R2 * 8);
R4 = Calculator(R1 - R3)

Answer:
30

Independent Training Method:

Subgoals:
Subgoal 1: Calculate the total number of units in the building.;
Subgoal 2: Calculate the number of units that are unoccupied.;
Subgoal 3: Calculate the total number of unoccupied units in the building.

Actions:
R1 = Calculator(15 * 8);
R2 = Calculator(R1 * 3/4);
R3 = Calculator(R2 * 2)

Answer:
180

Table 6: A case study in the GSM8K test dataset.

Prompt to generate subgoal sequences

Please provide a reasonable subgoal-based plan to solve the given task.

Task:{TASK}

Table 7: The prompt of planning agent to generate subgoal sequences.

Prompt to generate action sequences

Please ground the given subgoal to corresponding executable actions for solving the given task. The grounded actions must be
the one in available action list.

The available action list is:{ACTION_LIST}

Task:{TASK}

Subgoals to be grounded:{SUBGOALS}

Table 8: The prompt of grounding agent to generate action sequences.

21859

Prompt to correct action sequences

Given a task and a corresponding series of subgoals and their corresponding actions that may be incomplete, your task is to
judge whether the subgoals and actions can reached a final answer or conclusion for the problem.
The grounded actions must be the one in available action list.The available action list is {ACTION_LIST}
If the actions can reached a final answer, you should directly output "Final answer reached". Otherwise, you should give
corrections to the original subgoals and their corresponding actions. It is not necessary to be similar to the original subgoals and
actions.

Task:{TASK}
Reference subgoals: {REF_SUBGOALS}
Reference actions: {REF_ACTIONS}
Judged subgoals: {SUBGOALS}
Judged actions: {ACTIONS}

Your output should follow the format:
If can reached a final answer, directly output "Final answer reached". Else, output corrected subgoals and actions following this
format:
Corrected Subgoals: <series of subgoals to complete the task in one line, Each Subgoal begins with Subgoal idx>
Corrected Actions: <corresponding actions in one line>

Table 9: The prompt of critic model to correct action sequences.

A.4 Action Interfaces and Execution Tools for
Complex Interactive Tasks

For each defined action in the action interfaces, a
corresponding backend execution tool is provided
to enable the implementation of that action. Our
setup follows the approach described in Yin et al.
(2024b). We have adopted the same configura-
tion to ensure comparability between our work and
theirs.

As shown in Table 10a, for QA tasks, we
use Wikipedia and Google Search APIs to
find relevant knowledge about entities. Addi-
tionally, we use a semantic matching model,
dpr-reader-multiset-base3, employed in
Dense Passage Retrieval (DPR) (Karpukhin
et al., 2020), to retrieve paragraphs based on the
query. Following the approach from ReWOO (Xu
et al., 2023), we also utilize GPT-series models
as a straightforward QA tool to respond to
queries based on the retrieved knowledge or prior
interactions.

In Table 10b, web tasks involve real mouse and
keyboard operations such as typing, clicking, and
selecting HTML tags. To identify the appropri-
ate HTML tags to operate on, we use a DeBERTa
model4 that ranks and retrieves relevant tags based
on the current action, as seen in the AgentBench
evaluation.

3https://huggingface.co/facebook/
dpr-reader-multiset-base.

4https://huggingface.co/osunlp/MindAct_
CandidateGeneration_deberta-v3-base.

As illustrated in Table 10c, WolframAlpha API 5

serves as the main tool for mathematical tasks, as
it is capable of executing a wide range of math-
ematical functions, including formula computa-
tion and equation solving. For more advanced
math operations like sorting, we leverage OpenAI
Codex (Chen et al., 2021) to generate short code
snippets for execution.

For the unseen task WebShop, the actions
include Search, FeatureRetrieve, Pick, and
Click. The Search and Click actions are
implemented using the embedded features pro-
vided in the official WebShop virtual environ-
ment6 following (Liu et al., 2024). Mean-
while, FeatureRetrieve and Pick rely on the
dpr-reader-multiset-base, which helps select
the most relevant items and their features based on
the query.

5https://www.wolframalpha.com/.
6https://github.com/princeton-nlp/WebShop.

21860

https://huggingface.co/facebook/dpr-reader-multiset-base
https://huggingface.co/facebook/dpr-reader-multiset-base
https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base
https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base
https://www.wolframalpha.com/
https://github.com/princeton-nlp/WebShop

Task Type Action Types Function Descriptions Tools

QA

KnowledgeQuery(Entity) -> Knowledge Query the entity knowledge Wikipedia, Google Search

ParagraphRetrieval(Knowledge, Query)
-> Paragraphs

Retrieve relevant paragraphs
based on the query

dpr-reader-multiset-base

QA(Context, Query) -> Answer
Answer the query based on

the provided context
GPT-series/open LLMs

Calculator(Expression) -> Value Calculate given mathematical expressions WolframAlpha

(a) Actions used in complex QA tasks.

Task Type Action Types Function Descriptions Implementation

Web

Click(Env, Query) -> Tag Locate the tag to be clicked based on the query

HTML Simulator
Type(Env, Query, Text) -> Tag, Text

Locate the relevant tag based on the query
and output the typed text

Select(Env, Query, Text) -> Tag, Text
Locate the relevant tag based on the query

and output the selected option

(b) Actions used in web tasks.

Task Type Action Types Function Descriptions Implementation

Math

Calculator(Expression) -> Value Calculate mathematical expressions

WolframAlpha
SetEquation(Expression) -> Equation Set equations based on the given expression

SolveEquation(Equation) -> Solutions Solve the system of equations

Define(Variable) -> Variable Define a variable

SolveInequality(Inequality) -> Solutions Solve the inequality

Code(Function_Description) -> Code Generate code for mathematical functions gpt-3.5-turbo

Count(List) -> Number Count the number of elements in a list Python

(c) Actions used in math tasks.

Table 10: Action interfaces and execution module implementations for complex interactive tasks.

21861

