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Abstract

In dialogue intent detection, the challenge
of acquiring sufficient corpora and the high
cost of manual annotation often lead to in-
correctly labeled or unrepresentative samples,
which can hinder the generalization ability
of classification models. Additionally, as us-
ing large language models for generating syn-
thetic samples for data augmentation becomes
more common, these synthetic samples may
exacerbate the problem by introducing addi-
tional noise due to the models’ limited prior
knowledge. To address this challenge, this
paper proposes an interpretable Sample Filter
by Topic Modeling (SFTM) framework. By
evaluating the diversity and authenticity of the
samples, SFTM effectively reduces the quan-
tity of real and synthetic samples while im-
proving the performance of the classification
models. Our codes are publicly available at
https://github.com/gumbouh/SFTM.

1 Introduction

Intent detection is a fundamental and crucial task
in dialogue systems, including utterance-level and
dialogue-level intent detection. The typical ap-
proach involves converting spoken language into
text through automatic speech recognition (ASR),
followed by feeding the transcribed text into a
model to obtain the corresponding intent label.
This process is essential for ensuring that dialogue
systems can accurately understand and respond to
user intents.

Research in intent detection tasks generally fol-
lows two primary directions. The first direction in-
volves fine-tuning large pre-trained language mod-
els (PLMs), such as the BERT (Devlin et al., 2019)
encoder or auto-regressive models like Llama (Tou-
vron et al., 2023), leveraging their strong semantic
capabilities for downstream intent detection. The
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Sample

Can you explain why my payment is still pending?
Manual Label: Actual Label:

pending_card_payment
A: 请讲。B: 哎你好我想查一下这个月的那个(地名)呢啊对(小区)可以安咱们有线吗? A: 我可以帮助您反映首先让工作人
员给您查线路看一下能不能安装给您回电话。B: 嗯。 A: 现在什么小区借牌(Noise)是吗? B: 嗯孕婴里(Noise)对在路敬
业呢(Noise)十九栋。 A: 电孕婴是孕正常(Noise)的第一个月然后一二零零(Noise)对吗？ B: 具体谈英里(Noise)。 A: 就
一二大写的数字的就大写幺是英国的英就壹英吗经理的呢(Noise)？ B: 对对对,....

pending_transfer

[Translation] A: Please speak. B: Hello, I want to check the (place name) this month. Yes, (community). Can
we install our wired? A: I can help you. ... B:Um. A: what community is it now? B: Well, in the pregnancy
and baby care center (Noise), on the road, it’s dedicated to work (Noise), building 19. A: Is the first month of
pregnancy normal and then 1200 (Noise) right? B: To be specific, the mile (Noise). A:The capital number is
capital. If it is the British pound, it is 1 pound. The manager's(Noise). B: yes, yes, yes,...

Figure 1: Two examples of low-quality samples are pro-
vided. The first mislabeled sample is from the Banking-
77 dataset, and the second, noisy and unrepresentative
sample is from the CMCC-34. Note that the CMCC-34
is a dialogue-level dataset, and the version shown in the
figure is a dialogue fragment with speakers A and B.

second direction focuses on specialized modeling
approaches tailored to dialogue-specific challenges.
For instance, models like AP-HAN (Xu et al., 2022)
optimize based on dialogue turns, while HLDIC
(Huang et al., 2024b) explores hierarchical struc-
tures within dialogue intents.

While these studies emphasize model develop-
ment, there has been comparatively less focus on
improving the quality and characteristics of dia-
logue utterances.

Due to the challenges associated with collecting
dialogue data, as well as the costs, quality issues,
and errors introduced by both manual annotation
and ASR, some of the dialogue datasets used for
training may lack representativeness and be misla-
beled. As shown in Fig. 1, one sample is misla-
beled and the other is unrepresentative, both pre-
senting as low-quality. Recent efforts (Lin et al.,
2023a; Tang et al., 2023; Gao et al., 2023) have
focused on using large language models (LLMs) to
generate new samples for data augmentation, aim-
ing to enrich the dataset. However, these LLMs are
limited by their inherent prior knowledge and pa-
rameter constraints, which often result in synthetic
dialogue data that lacks human-like diversity (Sahu
et al., 2022; Li et al., 2023). Furthermore, the use of
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such generated data can introduce additional noise,
potentially undermining the model’s performance.
Although recent studies have explored LLM-as-a-
Judge (Li et al., 2024), where LLMs are provided
with predefined evaluation metrics to score and as-
sess data quality, such black-box methods often
lack interpretability and controllability, limiting
their practical utility in ensuring robust data cura-
tion.

To address this problem, we propose Sample Fil-
ter by Topic Modeling (SFTM), an interpretable
dual-criteria framework for quality-aware data cu-
ration that systematically evaluates both real and
synthetic samples through Distribution Diversity
and Sample Authenticity metrics. SFTM is based
on the Neural Topic Modeling (NTM) framework,
specifically the NVDM-GSM (Miao et al., 2017),
which leverages a Variational Autoencoder (VAE)
(Kingma and Welling, 2014) to optimize and learn
an approximate sample distribution, while also
incorporating a supervised classification module.
Consequently, SFTM can evaluate the quality of
both real and synthetic samples from two inter-
pretable dimensions: Distribution Diversity and
Sample Authenticity, allowing it to comprehen-
sively assess the samples from different perspec-
tives.

This careful curation of both real and synthetic
samples ensures that the augmented dataset not
only remains representative but also supports the
model in achieving better performance in intent
detection tasks.

Our contributions are as follows:

• We propose Sample Filter by Topic Modeling
(SFTM), an interpretable filtering mechanism
that innovatively refines classical architectures
to select high-quality samples for downstream
intent detection.

• We introduce a unified filtering strategy for
both real and synthetic samples by leveraging
distribution diversity based on KL divergence
and sample authenticity based on logits.

• The effectiveness of SFTM is validated
through sample quality assessments and down-
stream intent detection experiments in both
full-shot and few-shot settings. The filtered
high-quality samples enhance model fitting
and improve classification performance.

2 Related Work

2.1 Intent Detection

Intent detection has evolved from traditional fea-
ture engineering approaches to modern deep learn-
ing paradigms. Early methods relied on manual
feature extraction combined with classifiers like
Recurrent Neural Networks (RNNs) (Elman, 1990;
Hochreiter and Schmidhuber, 1997). With the ad-
vent of pre-trained language models (PLMs), fine-
tuning BERT (Devlin et al., 2019) and its variants
has become a dominant approach due to their supe-
rior semantic representation capabilities (Liu et al.,
2019; Henderson et al., 2020). Recent studies fur-
ther explore dialogue-specific scenarios, and re-
searchers have proposed hierarchical architectures
to model multi-turn interactions. AP-HAN (Xu
et al., 2022) employs hierarchical attention net-
works to capture turn-level dependencies, while
HLDIC (Huang et al., 2024b) conducts hierarchi-
cal modeling based on the structure of intent labels.

As model architectures increasingly converge
to the Transformer-like family, researchers have
turned to data-level techniques for data augmen-
tation. LRSL (Huang et al., 2024a) reranks the
classification logits of hard samples by leveraging
label semantic information, aiming to improve the
classification performance of hard samples. More
studies focus on synthesizing a large number of
similar samples from LLMs. During training, these
synthetic samples, along with real training sam-
ples, are added to enhance the model’s fitting abil-
ity. Our method also enhances the accuracy of in-
tent detection by synthesizing samples from LLMs.
However, considering the noise and uneven quality
of the samples synthesized by large models (Sahu
et al., 2022; Li et al., 2023), we employ a sam-
ple filter to obtain high-quality samples, thereby
improving the classification performance of down-
stream intent detection tasks.

2.2 Data synthesis

Early edit-based methods, such as Easy Data Aug-
mentation (Wei and Zou, 2019), relied on rule-
based transformations to generate new samples
from existing ones. Another popular approach,
back-translation (Sennrich et al., 2016), leverages
the semantic drift introduced by translating the text
into another language and then back to the orig-
inal language to create novel samples. However,
these methods often fail to produce sentences that
are sufficiently challenging or semantically diverse,
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Figure 2: The overall framework of SFTM. The input samples are represented in two colors: green denotes
high-quality samples, while red indicates low-quality samples. The filtering strategy leverages both the mean KL
divergence and logits of seed samples to jointly evaluate and select high-quality samples.

which are critical for improving the robustness of
downstream models.

Recently, there has been a growing trend in uti-
lizing LLMs for data synthesis (Gupta et al., 2023;
Choenni et al., 2023; Wang et al., 2024). These
LLMs, due to their powerful learning capabilities,
can perform few-shot learning by mimicking sam-
ple generation when provided with seed examples
and corresponding labels. Despite these advan-
tages, LLM-generated samples may suffer from
noise (e.g., mislabeled data) and overfitting to the
given seed samples, leading to a lack of diversity.
This limitation arises from the inherent constraints
of LLM parameters and the absence of domain-
specific knowledge in their prior training.

To mitigate these issues, several studies have
proposed filtering mechanisms to improve sample
quality. For instance, ICDA (Lin et al., 2023b)
employs Pointwise V-Information to evaluate and
filter out low-quality samples. Another approach
uses a small set of labeled data to fine-tune PLMs,
which then serve as evaluators to score and filter
synthetic data.

In this paper, we propose a modified VAE-based
Neural Topic Model to comprehensively assess

sample quality. Our model leverages the VAE
framework to learn the latent distribution of the
data while simultaneously scoring samples based
on their authenticity. This dual-dimensional eval-
uation offers a robust mechanism for filtering syn-
thetic data, ensuring higher quality and greater di-
versity in the resulting dataset.

3 Method

As shown in Fig. 2, our proposed method SFTM
for filtering real and synthetic samples in intent
detection consists of four interconnected compo-
nents: the Neural Topic Modeling Module, the Dis-
tribution Diversity Evaluation Module, the Sample
Authenticity Evaluation Module, and the Sample
Filtering Strategy. The following sections detail
the design and functionality of each module.

3.1 Neural Topic Modeling Module

The core of our model is the NTM module, which
leverages a VAE enhanced by PLMs to capture the
latent semantic structure of input samples. We uti-
lize the semantic capabilities of PLM embeddings
(Reimers and Gurevych, 2019) as the foundation
for topic modeling.
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Given an input sample, the NTM module em-
ploys the BERT to project the input data X into
a latent space, producing a mean vector µ and a
variance vector σ, which parameterize a Gaussian
distribution:

z ∼ N (µ, σ2), (1)

where z represents the latent variable, which is
challenging to sample directly.

Therefore, we need to use reparameterization,
which reformulates the sampling operation of the
random variable ẑ by combining µ, σ and a noise
term ϵ drawn from a standard normal distribution.
The formula is as follows:

ẑ = µ+ σ · ϵ, ϵ ∼ N (0, 1). (2)

This approach makes the sampling process dif-
ferentiable, enabling the optimization of model pa-
rameters through backpropagation.

Following prior research (Miao et al., 2017),
the latent representation ẑ is fed into a decoder,
a simple multilayer perceptron (MLP) for input
reconstruction. This design allows the model to
capture both the intrinsic structure of samples and
their topic distributions in a low-dimensional latent
space.

3.2 Distribution Diversity Evaluation Module
The Distribution Diversity Evaluation Module aims
to assess and preserve the diversity of the input sam-
ples, which evaluates the diversity of the sample
distribution using two metrics: Kullback-Leibler
(KL) divergence (Kullback and Leibler, 1951) and
reconstruction loss.
KL Divergence. This metric quantifies the dif-
ference between the approximate posterior distri-
bution q(z|X), inferred by the encoder, and the
prior distribution p(z), which is typically a stan-
dard Gaussian. The KL divergence term encour-
ages the learned latent space to align with the prior
distribution, ensuring that the representations re-
main diverse and regularized, which helps prevent
overfitting and mode collapse. By doing so, it pro-
motes the exploration of a broad range of possible
latent codes. The KL divergence is computed as
follows:

KL(q(z|X)∥p(z)) = −1

2

N∑

i=1

[
1+log(σ2

i )−µ2
i−σ2

i

]
,

(3)
where µi is the i-th element of the posterior mean
vector µ generated after BERT projects the input

data X into the latent space; σ2
i corresponds to

the variance component capturing distribution dis-
persion around µi; N is the dimensionality of the
latent topic space.
Reconstruction Loss. This loss measures the dis-
crepancy between the original input and its recon-
struction by the decoder. A lower reconstruction
loss indicates that the latent representation z effec-
tively captures the essential features of the input
sample. Reconstruction loss is typically calculated
using the Mean Squared Error (MSE) between the
reconstructed output R and the original input O:

MSE(R,O) =
1

N

N∑

i=1

(Ri − Oi)
2 , (4)

where O represents the original input sample, and
R represents the output after reconstruction by the
decoder.

By optimizing these two metrics, the Distribu-
tion Diversity Evaluation Module can assess the
distributional differences between samples, thereby
providing an evaluation metric for sample diversity.

3.3 Sample Authenticity Evaluation Module
Given that the samples are labeled, it is essential
to assess their authenticity by examining the rela-
tionship between the labels and the samples them-
selves. To address this, we incorporate a supervised
classification task. Specifically, we employ R for
classification, enabling us to evaluate how well
the reconstructed samples align with their corre-
sponding labels. We employ a single linear layer
to classify, resulting in logits:

Logits = Classifier(R), (5)

where Classifier denotes a MLP used to classify
the corresponding label. These logits are then used
to evaluate the authenticity of the samples.

3.4 Sample Filtering by Seed Samples
Based on the evaluation metrics of Distribution Di-
versity and Sample Authenticity, SFTM adaptively
applies distinct filtering strategies to different types
of samples by introducing seed samples as dynamic
evaluation thresholds. To ensure consistency and
eliminate biases from seed samples, we select them
from the training sets to minimize potential errors
arising from manual selection.
KL-based Distribution Diversity. SFTM employs
KL divergence to measure the discrepancy between
the latent distribution of samples and a Gaussian
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prior. Lower KL values indicate distributions closer
to the prior, often signifying samples that are overly
simplistic, uninformative, or unrepresentative. Re-
taining such samples may cause two key issues: 1)
The model may overfit to these uninformative or
noisy samples, negatively impacting its generaliza-
tion ability. 2) Simpler samples may overshadow
complex examples, limiting the model’s capacity
to learn diverse features. By filtering these samples,
SFTM enhances training efficiency by prioritizing
high-information data, thereby improving model
performance.

The KL-based thresholding mechanism for dis-
tribution diversity filtering is formally defined in
Algorithm 1, where class-specific thresholds dy-
namically adapt to seed sample distributions, en-
suring representative diversity characteristics are
preserved.
Logits-based Sample Authenticity. Logits quan-
tify the alignment between samples and their as-
signed labels. High logits value from SFTM indi-
cate samples that are easily classifiable, suggesting
they are simplistic and offer limited training value.
Conversely, if the logits are particularly low, it sug-
gests potential label errors, as these samples may
be incorrectly labeled, which could interfere with
the model’s training process.

As shown in Algorithm 2, the Sample Authentic-
ity filtering strategy defines a range as p̂±β (where
p̂ is the mean logits of seed samples) and retains
samples within this interval.

4 Experimental Setup

4.1 Datasets

Banking-771: The dataset provides a very fine-
grained set of intents in a banking domain. It com-
prises 13,083 customer service queries labeled with
77 intents. It focuses on fine-grained single-domain
intent detection (Mehri et al., 2020).
CMCC-342: This is a long-text, dialogue-level
intent detection dataset for Chinese multi-turn cus-
tomer service interactions, transcribed from record-
ings between users and service representatives.
This dataset contains significant amounts of noise
due to being transcribed from speech. It is con-
sidered a relatively realistic dataset in the field of
intent detection. Details are shown in Appendix A.

1https://huggingface.co/datasets/banking77
2http://www.cips-cl.org/static/CCL2018/call-

evaluation.html

Algorithm 1 KL-based Distribution Diversity Fil-
tering

Require: Seed sample {Sj}mj=1, synthetic sample
{X̃j}mj=1

1: for each class j ∈ {1, 2, . . . ,m} do
2: Compute KL

(seed)
j via Eq.3

3: for each sample x̃k ∈ X̃j do
4: Calculate KL(synth)

k via Eq.3
5: if KL(synth)

k > γ ·KL
(seed)
j then

6: Add x̃k to Fj

7: end if
8: end for
9: end for

Ensure: Filtered sample {Fj}mj=1

Algorithm 2 Logits-based Sample Authenticity Fil-
tering

Require: Seed samples {Sj}mj=1, synthetic sam-
ples {X̃j}mj=1, margin β

1: for each class j ∈ {1, . . . ,m} do
2: Compute mean logits: p̂j via Eq.5
3: for each x̃k ∈ X̃j do
4: Compute logits: pk via Eq.5
5: if pk ∈ [p̂j − β, p̂j + β] then
6: Gj ← Gj ∪ {x̃k}
7: end if
8: end for
9: end for

Ensure: Filtered samples {Gj}mj=1

4.2 Experiment Settings

4.2.1 Synthetic Sample Settings
The dataset used in our experiments comprises the
full set of real training samples as well as syn-
thetic samples generated by GPT-4o-mini (OpenAI,
2023), with 100 synthetic samples per class. The
prompt is shown in Appendix B.

4.2.2 Filtering Settings
For seed sample selection, we used the 5-shot train-
ing set as seed samples for full-shot experiments,
with 5 samples per class. In few-shot settings, re-
spective real-sample training sets served as seed
samples. We chose 0.2 as the value of β in the
Sample Authenticity filtering strategy.

4.2.3 Downstream Training Settings.
We train the SFTM to filter the samples, result-
ing in a set of filtered real and synthetic sam-
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Figure 3: The relationship between the topic distribution of samples and their labeled classes, visualized using
t-SNE.

ples. Subsequently, we conduct intent detection
experiments using representative PLMs: BERT-
base (Devlin et al., 2019), RoBERTa-Large (Liu
et al., 2019), and Qwen-2.5-7B-Instruct (Qwen)
(Hui et al., 2024). BERT and RoBERTa undergo
full fine-tuning, while Qwen is fine-tuned using the
LoRA (Hu et al., 2022) for efficient adaptation. For
SFTM and BERT, the batch size is set to 24, and
early stopping is employed with a patience strat-
egy of 3. To prevent overfitting, a dropout with a
probability of 0.1 is applied. The parameters are
updated using the Adam algorithm, with the learn-
ing rate initialized to 2e-5. For LoRA, we configure
the LoRA rank (r) to 8 and the LoRA alpha to 32.
The Qwen is trained with a batch size of 8 over 3
epochs.

For comprehensive evaluation, we establish ex-
perimental comparisons under both full-shot and
few-shot learning paradigms.

Full-shot Experiments. In the case of real sam-
ples, we filter out 5% of low-quality samples from
both the CMCC-34 and Banking-77 datasets. Re-
garding synthetic samples, SFTM demonstrates
significant filtering effectiveness. In the CMCC-34
dataset, it removes 80% of low-quality data, leav-
ing 20% (680 high-quality synthetic samples). For
the Banking-77 dataset, 68.2% of synthetic sam-
ples are filtered out, resulting in 2,448 high-quality
samples.

Few-shot Experiments. When using SFTM to fil-
ter synthetic samples, notable results are obtained.
In the Banking-77 dataset, 86.29% of relatively
low-quality synthetic samples are eliminated, leav-

ing 1,056 high-quality samples. As for the CMCC-
34 dataset, 27.24% of low-quality samples are re-
moved, leaving 2,474 high-quality samples.

4.3 Baselines

4.3.1 Baselines for full-shot experiments.

We benchmark against three representative
baselines: LRSL: (Huang et al., 2024a): A
semantic label-guided data augmentation approach.
DA-GPT: Direct augmentation using GPT-4o-
mini generated synthetic samples. DA-Judge:
Black-box data curation with systematic evaluation
metrics, employing GPT-4o as the scoring model.
More details are shown in Appendix C.

4.3.2 Baselines for few-shot experiments

Following standard practice for previous methods
(Lin et al., 2023b), we employ RoBERTa-Large
and Qwen as the PLMs for few-shot experiments.
We compare the following methods: DA-GPT and
DA-Judge as above. ICDA (Lin et al., 2023b):
Current state-of-the-art few-shot intent detection
method.

5 Results and Discussion

5.1 Sample Quality Assessment

To quantitatively assess sample quality, we analyze
the distribution patterns of high- and low-quality
filtered samples using t-SNE (Van der Maaten and
Hinton, 2008) visualization, as presented in Fig. 3.

21741



Low-Quality Synthesis Sample

Origin Label:

Actual Label:

Handle
replacement
card

Consultation
(including inquiry)
handling methods

A:您好，感谢您来电。B:你好，我想知道如何办理手机卡的换卡服。A:好的，您可以前往最近的营业厅办理换卡服务。B:那我
需要携带哪些材料呢？A:您需要携带身份证和目前使用的手机卡。B:明白了，那换卡需要多久时间？A:一般情况下，换卡过程
大约需要15分钟。B:那么换完卡后，原来的卡就不能用了是吗？A:是的，新的卡会立即生效，原卡会被注销。B:谢谢你，了
解了！A:不客气，随时欢迎您咨询再见！

A: Hello, thank you for calling. B: Hi, I would like to know how to apply for a SIM card replacement service. A: Sure, you can 
visit the nearest service center to apply for the SIM card replacement. B: What materials do I need to bring? A: You need to 
bring your ID card and the currently used SIM card. B: Got it. How long does the replacement process take? A: Generally, 
the replacement process takes about 15 minutes. B: So, after the replacement, the old card won’t work anymore, right? A: 
Yes, the new card will be activated immediately, and the old card will be deactivated. B: Thank you, I understand now! A: 
You’re welcome. Feel free to contact us anytime. Goodbye!

Mislabeled Sample

Unrepresentative Sample

A:您好，很高兴为您服务。B:你好，我刚刚购买了一个新手机，想问一下如何激活? A:没问题，您可以告诉我手机的型号吗? B:是华为P40。A:好
的，您可以打开手机，按照屏幕提示选择语言，然后连接Wi-F。B:好的，连接之后呢? A:连接后会自动弹出激活界面，您只需输入您的手机号码和
验证码即可。B: 明白了，谢谢您的帮助。A:不客气，还有其他问题需要咨询吗? B:没有了。A:祝您一天愉快再见。

A: Hello, I'm very happy to assist you. B: Hi, I just bought a new phone and wanted to ask how to activate it. A: No problem, could you tell me 
the model of your phone? B: It's a Huawei P40. A: Alright, you can turn on the phone, follow the on-screen prompts to select the language, and 
then connect to Wi-Fi. B: Okay, what should I do after connecting? A: After connecting, the activation interface will automatically pop up. You 
just need to enter your phone number and verification code. B: Got it, thank you for your help. A: You're welcome. Is there anything else you 
need assistance with? B: No, that's all. A: Have a great day. Goodbye!

The conversation with the telecommunications operator has become a consultation conversation on mobile phone usage

Figure 4: Two representative cases of LLM-generated low-quality samples from the CMCC-34 dataset. The figure
presents dialogue fragments with interactions between speakers A and B.

5.1.1 Real Samples Analysis

High-quality samples from both datasets form dis-
tinct, tight clusters with well-separated class bound-
aries, indicating their strong representational capac-
ity for downstream classification. In contrast, low-
quality CMCC-34 samples exhibit disordered dis-
persion patterns, confirming the substantial noise
mentioned in Fig. 1 - a manifestation of unrepre-
sentative samples effectively identified by SFTM.
While Banking-77’s low-quality samples retain par-
tial cluster structures, significant inter-cluster over-
lap reveals label confusion issues, corresponding
to Fig. 1’s mislabeled samples.

5.1.2 Synthetic Samples Analysis

Synthetic samples exhibit fundamentally inferior
quality compared to real samples, necessitating
rigorous filtering. SFTM filtered high-quality
synthetic samples demonstrate clearer separation
boundaries than their low-quality counterparts,
which show exacerbated dispersion and overlap ex-
ceeding real samples’ noise levels. This confirms
SFTM’s superior effectiveness in synthetic data cu-
ration - it successfully identifies relatively higher-
quality candidates from predominantly mediocre
synthetic samples, thereby amplifying data aug-
mentation benefits while mitigating adverse effects
from low-quality instances.

5.1.3 Case Study
We conduct a case study on two representative low-
quality samples from CMCC-34 filtered by SFTM
to elucidate LLM-generated samples, as visualized
in Fig. 4.
Case 1: Mislabeled Sample. The first case
demonstrates intent hallucination despite few-shot
prompting: A sample annotated as Consultation
(including inquiry) handing methods actually ex-
presses Handle replacement card intent. This re-
veals LLMs’ tendency to generate semantically in-
consistent samples even when provided with clear
intent definitions and demonstrations, highlighting
the necessity of post-generation verification.
Case 2: Unrepresentative Sample. The second
case exhibits domain deviation: While instructed
to generate customer service dialogues for tele-
com operators, the LLM produces samples about
smartphone activation - a divergent theme lacking
domain relevance. Such samples introduce dis-
tributional shifts that degrade model performance,
constituting precisely the noise SFTM aims to elim-
inate.

5.1.4 Key Insight
The visualization quantitatively validates SFTM’s
dual capability in 1) preserving semantically coher-
ent samples with discriminative cluster structures,
and 2) eliminating noisy instances that disrupt class
separability - a crucial mechanism for enhancing
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model generalization.

5.2 Downstream Full-shot Experiments

As shown in Table 1, our method demonstrates
significant performance improvements across two
representative datasets and distinct model archi-
tectures. Specifically, SFTM achieves maximum
gains of 1.5% on sentence-level Banking-77 and
3.59% on dialogue-level CMCC-34. The empirical
results suggest that SFTM exhibits stronger effec-
tiveness in dialogue-level scenarios, where it ef-
fectively selects higher-quality samples that enable
downstream models to better fit data distributions
and enhance classification performance.
Less is More. Compared with DA-GPT’s data aug-
mentation approach using synthetic samples (em-
ploying 7,700 samples for Banking-77 and 3,400
for CMCC-34), SFTM achieves superior perfor-
mance with substantially fewer samples (2,448 for
Banking-77 and 680 for CMCC-34). This demon-
strates that for intent detection tasks, model per-
formance depends more critically on sample qual-
ity than quantity. The quality of LLM-generated
samples is inherently constrained by model param-
eters and domain-specific prior knowledge, making
systematic filtering imperative. As an efficient and
interpretable filtering method, SFTM employs dual-
dimensional evaluation to effectively select high-
quality samples for performance enhancement.
Synthetic Samples Outperform Feature Aug-
mentation. In contrast to LRSL of leveraging text
embeddings to enhance classification confidence
for hard samples, SFTM adopts a more fundamen-
tal strategy through meticulous data curation. This
simple method achieves superior results without
modifying the classification paradigm, presenting
a more generalizable and efficient solution.
Ablation Study. To further investigate SFTM’s
effectiveness, we conduct ablation studies in Ta-
ble 2. For Real Samples, applying SFTM filters
out a portion of the dataset, consistently improving
performance compared to using the full training
set, with gains of up to 1%. This demonstrates
that SFTM effectively removes low-quality real
samples, thereby enhancing the representativeness
of the remaining data. For Synthetic Samples,
the improvements after applying SFTM are sim-
ilarly significant. Compared to using the full set
of synthetic data, the performance gain after fil-
tering reaches up to 2.09%. Additionally, when
compared to using only the full set of real training
data without synthetic samples, the performance

Model
Dataset

Banking-77 CMCC-34

BERT-base 92.22 56.53
+ DA-GPT 92.65 57.21
+ DA-Judge 93.42 58.82
+ LRSL 93.66 59.44
+ SFTM(ours) 93.72 60.12

Qwen2.5-7B-LoRA 91.92 58.70
+ DA-GPT 92.42 59.55
+ DA-Judge 92.72 60.25
+ LRSL 92.32 60.40
+ SFTM (ours) 93.07 61.01

Table 1: Full-shot experimental results on Banking-77
and CMCC-34. Accuracy (%) is used as the evaluation
metric, with bold indicating the best performance and
underlined values denoting the second-best results.

Model
Dataset

Banking-77 CMCC-34

BERT-base + All Synthetic 92.65 57.21
BERT-base 92.22 56.53
− Filtered Real 92.81 57.40
+ Filtered Synthetic 93.30 59.30
− Filtered Real + Filtered Synthetic 93.72 60.12

Qwen2.5-7B-LoRA + All Synthetic 92.42 59.55
Qwen2.5-7B-LoRA 91.92 58.70
− Filtered Real 92.92 59.58
+ Filtered Synthetic 93.02 60.65
− Filtered Real + Filtered Synthetic 93.07 61.01

Table 2: Ablation Study on Full-shot settings.

improvement can be as high as 2.77%. Moreover,
combining the filtered real samples with the filtered
synthetic samples results in even more pronounced
performance gains, with an improvement of 3.59%.
This shows that fewer, higher quality samples out-
perform unfiltered ones, even when the latter have
larger quantities, as noise in the unfiltered data can
degrade the model’s performance.

5.3 Downstream Few-shot Experiments

Enhanced Verification of SFTM’s Filtering Ef-
ficacy. To rigorously validate SFTM’s effective-
ness in filtering LLM-generated samples, we con-
duct few-shot intent detection experiments where
all augmented data originates from synthetic sam-
ples. The experimental results presented in Table
3 demonstrate that under few-shot settings, our
filtered samples consistently achieve superior per-
formance in downstream tasks. Specifically, our
method surpasses the previous SOTA approach
ICDA on Banking-77 under equivalent configura-
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Model
Dataset

Banking-77 CMCC-34
5-shot 10-shot 5-shot 10-shot

RoBERTa-Large 76.36 86.17 19.43 29.53
+ ICDA* 81.95 87.37 - -
+ DA-GPT 83.60 86.75 29.48 32.08
+ DA-Judge 82.42 87.25 29.72 32.58
+ SFTM(ours) 83.77 87.69 30.45 33.60

Qwen2.5-7B-LoRA 73.05 84.90 17.75 24.65
+ DA-GPT 80.71 86.70 26.90 33.38
+ DA-Judge 79.15 86.24 27.42 33.98
+ SFTM(ours) 81.68 86.72 32.50 35.35

Table 3: Few-shot experimental results. Due to the non-
released implementation of ICDA*, we adopt ICDA-S
from the original paper for comparison, as its synthetic
sample size (1,540) closely aligns with ours (1,056)
under identical experimental settings.

tions, while showing significant improvements over
DA-Judge on CMCC-34, with a maximum gain of
5.08%. DA-Judge, as a widely used black-box
data curation method, demonstrates negative ef-
fects on Banking-77 in few-shot settings compared
to DA-GPT. In contrast, SFTM, as a white-box
interpretable method, consistently achieves stable
and effective performance across both datasets.
Counterintuitive LLM Behavior Analysis. No-
tably, in dialogue-level CMCC-34 scenarios, we ob-
serve the unexpected phenomenon where Qwen2.5-
7B’s few-shot performance initially underperforms
RoBERTa-Large - a counterintuitive finding given
LLMs’ renowned generalization capabilities. We
attribute this to the substantial noise present in
CMCC-34’s original samples, including frequent
misspellings that induce semantic misinterpretation.
Crucially, when employing SFTM-filtered sam-
ples for data augmentation, Qwen2.5-7B achieves
greater performance gains than RoBERTa-Large.
This suggests that high-quality filtered samples can
significantly enhance LLMs’ generalization poten-
tial by mitigating noise-induced learning biases.

6 Conclusion

We propose SFTM, an interpretable framework for
filtering both real and synthetic samples using two
key metrics: Distribution Diversity and Sample Au-
thenticity. Extensive experiments show that SFTM
effectively filters out low-quality samples, result-
ing in significant performance improvements in
classification models.
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Limitations

This work primarily focuses on data augmentation
for intent detection tasks, while the exploration
of this paradigm for other Natural Language Un-
derstanding or Generation tasks remains an open
research direction. We conduct comparative stud-
ies against commonly used baseline methods to
validate the effectiveness of our approach. Addi-
tionally, alternative methods may exist to evaluate
the quality of samples, which could be investigated
in future work.
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A Details of Datasets

Dataset Type Split of train/dev/test Average Token Label

CMCC-34 Dialogue Level 12799 / 3200 / 4000 379 34
Banking-77 Utterance Level 8011 / 2006 / 3084 14 77

Table 4: Details of CMCC-34, and Banking-77 datasets.

In this section, we provide detailed information
about the datasets used in our experiments. The
datasets include CMCC-34, and Banking-77. The
following table 4 summarizes the split of the train,
development (dev), and test sets, along with the
type, the average token length and the number of
intents for each dataset.

B Prompt for Synthesizing Samples from
LLM

To generate synthetic samples that closely resem-
ble real data from the outset, we employ few-shot
prompting, where the LLM learns to mimic pat-
terns by being provided with a small number of
authentic examples. As illustrated in Fig. 5, this
few-shot prompting approach is widely adopted
due to its effectiveness in guiding LLMs to pro-
duce higher-quality synthetic samples. Specifi-
cally, the provided real samples serve as contex-
tual anchors, enabling the model to better capture
domain-specific linguistic patterns and intent repre-
sentations, thereby reducing the generation of low-
quality or irrelevant outputs. This method strikes a
balance between sample diversity and authenticity,

[Task Description]

This is a dataset for intent detection, 
and the following utterance samples all belong to 
the same label intent: #{label}#. 
You need to generate 5 similar conversation samples based on
these samples. 

[utterance samples]
{Few-Shot true samples}

[Generation format, length and style should be similar to the
original sample]
1: {{new_utterance1}}

Synthetic Samples From LLM

Figure 5: The prompt of generating samples from LLM.

[Task Description]

This is a dataset for intent detection, and the following
utterance sample belong to the same label intent: #{label}#. 
You will assume the role of a judge, evaluating the given
samples based on the provided assessment criteria and
assigning appropriate scores, along with a reasonable
explanation.

[Evaluation Criteria]
Distribution Diversity:1: The sample lacks diversity. 3: The
sample demonstrates moderate diversity. 5: The sample richly
represents the diversity of this intent category.

Sample Authenticity: 1: The sample exhibits clear authenticity
issues, potentially mismatching the intent label. 3: The sample
authentically represents this category. 5: The sample is highly
authentic and clearly belongs to this intent label.

input:{{sample}}
output:

LLM-as-a-Judge

Figure 6: The prompt of judging samples by LLM.

making it a practical choice for data augmentation
tasks.

C Prompt for DA-Judge

We adopt the LLM-as-a-Judge paradigm (DA-
Judge), where the LLM evaluates samples based
on predefined, well-designed metrics. As shown
in Fig.6, we utilize the same two criteria as
SFTM—Distribution Diversity and Sample Au-
thenticity—to ensure a fair and consistent com-
parison.

21746

https://doi.org/10.48550/ARXIV.2410.12896
https://doi.org/10.48550/ARXIV.2410.12896
https://doi.org/10.48550/ARXIV.2410.12896
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.1109/ICASSP43922.2022.9746537
https://doi.org/10.1109/ICASSP43922.2022.9746537
https://doi.org/10.1109/ICASSP43922.2022.9746537

