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Abstract
Domain generalization person re-identification
(DG ReID) aims to train models on source
domains and generalize to unseen target do-
mains. While patch-based Vision Transform-
ers have achieved success in capturing fine-
grained visual features, they often overlook
global semantic structure and suffer from
feature entanglement, leading to overfitting
across domains. Meanwhile, natural language
provides high-level semantic abstraction but
lacks spatial precision for fine-grained align-
ment. We propose PVTNL (Prompting Vi-
sion Transformers with Natural Language),
a novel framework for generalizable person
re-identification. PVTNL leverages the pre-
trained vision-language model BLIP to ex-
tract aligned visual and textual embeddings.
Specifically, we utilize body-part cues to seg-
ment images into semantically coherent regions
and align them with corresponding natural lan-
guage descriptions. These region-level tex-
tual prompts are encoded and injected as soft
prompts into the Vision Transformer to guide
localized feature learning. Notably, our lan-
guage module is retained during inference, en-
abling persistent semantic grounding that en-
hances cross-domain generalization. Extensive
experiments on standard DG ReID benchmarks
demonstrate that PVTNL achieves state-of-the-
art performance. Ablation studies further con-
firm the effectiveness of body-part-level align-
ment, soft language prompting, and the benefit
of preserving language guidance at inference.

1 Introduction

Person Re-Identification (ReID) aims to retrieve in-
dividuals with the same identity across a database,
where the images are captured under different cam-
eras, timestamps, and spatial locations (Zheng
et al., 2015, 2017; Chen et al., 2019a; Zhu et al.,
2020; Dou et al., 2022). As a crucial task in com-
puter vision, ReID has been widely applied in video
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Figure 1: Demonstration of our model. We segment
the image into body-part-based local regions and align
each region with its corresponding natural language
description. The textual descriptions are encoded and
injected as prompts to assist local feature extraction
within each region.

surveillance (Wang et al., 2021) and security sys-
tems (Jiang and Ye, 2023). With the rapid devel-
opment of convolutional neural networks (CNNs)
(Krizhevsky et al., 2012; Tan and Le Q V, 1905),
ReID has achieved impressive progress (Li et al.,
2023a; Lian et al., 2023; Luo et al., 2019). How-
ever, when the deployment scenario differs sig-
nificantly from the training domain, performance
degrades dramatically due to domain overfitting
(Carlucci et al., 2019). To tackle this challenge,
Domain Generalization Person Re-Identification
(DG ReID) has been proposed to assess the model’s
robustness under domain shifts without accessing
target domain data during training (Yi et al., 2014;
Jia et al., 2019; Li et al., 2020; Dai et al., 2021; Gu
et al., 2023).

Existing DG ReID methods have explored vari-
ous directions, including domain-invariant feature
learning (Yuan et al., 2020; Zhang et al., 2022c),
domain disentanglement (Jin et al., 2020), domain
alignment (Choi et al., 2021; Han et al., 2023; Jiao
et al., 2022), and meta-learning (Ni et al., 2022;
Zhao et al., 2021; Zhang et al., 2023). While these
techniques have shown promising results, they of-
ten rely on distribution similarity between domains
and may yield unstable generalization performance
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(Robinson et al., 2021; Nichol et al., 2018; Rang-
wani et al., 2022).

Meanwhile, Vision Transformers (ViTs)
(Vaswani et al., 2017) have demonstrated stronger
robustness to distribution shifts compared to
CNNs. Several works have leveraged ViTs in DG
ReID (Zhang et al., 2022a; He et al., 2021; Li and
Gong, 2025; Cho et al., 2024), achieving enhanced
generalization. However, pure visual models often
struggle to distinguish fine-grained semantics
under complex conditions such as varying poses or
accessories.

To address this limitation, we propose PVTNL
(Prompting Vision Transformers with Natural Lan-
guage), a novel framework that introduces natural
language prompts into ViTs for region-aware fea-
ture learning, as shown in Fig. 1. Specifically,
we first use body-part cues to segment each image
into semantically consistent regions and align them
with corresponding textual descriptions. These
region-level texts are encoded and injected into
the Vision Transformer as soft prompts, guiding
the network to attend to meaningful local features.
Additionally, we employ a cross-attention mecha-
nism to fuse local features, further enhancing the
model’s representational capacity. Unlike prior
works, our method retains the natural language
module during inference, providing persistent se-
mantic grounding that improves cross-domain gen-
eralization. PVTNL achieves state-of-the-art per-
formance on several DG ReID benchmarks, offer-
ing a new perspective on incorporating language as
a generalization prior in vision tasks.

The key contributions of this paper are summa-
rized as follows:

a) We propose PVTNL, a novel framework
that integrates natural language prompts into Vi-
sion Transformers, achieving persistent semantic
grounding and improved domain generalization.

b) We introduce a region-level alignment mecha-
nism based on body-part cues and natural language
descriptions, enhancing the model’s ability to cap-
ture high-level semantic features.

c) Extensive experiments on multiple benchmark
datasets demonstrate that PVTNL achieves state-
of-the-art performance on DG ReID tasks.

2 Related Work

2.1 Person Re-identification

Person Re-Identification (ReID) aims to re-
trieve individuals across camera views from non-

overlapping locations (Zheng et al., 2016; Sun
et al., 2018; Chen et al., 2019b; Ye et al., 2021;
Li et al., 2021). Early approaches (Farenzena et al.,
2010; Ding et al., 2015) focused on designing hand-
crafted or learned features to match pedestrian im-
ages. With the rise of deep learning frameworks
such as PyTorch (Paszke et al., 2019), convolu-
tional neural networks (CNNs) have become the
dominant paradigm for ReID, owing to their pow-
erful feature extraction capabilities. For example,
(Xiang et al., 2020) proposed a metric-learning-
based framework using CNNs to extract robust fea-
tures, while (Chen et al., 2017) introduced a local
feature approach with enhanced receptive fields
via multi-scale downsampling. Additionally, (Gu
et al., 2022) presented a clothing-invariant adversar-
ial loss to extract identity-consistent features from
RGB images. Although these CNN-based methods
achieve impressive performance on common bench-
marks, their generalization capability degrades sig-
nificantly when exposed to domain shifts, such as
changes in environment, camera style, or clothing.

2.2 Domain Generalization Person ReID

Domain Generalization Person ReID (DGReID)
(Zheng et al., 2016; Song et al., 2019; Ye et al.,
2021; Qi et al., 2022; Xie et al., 2024) focuses on
improving a model’s ability to generalize to un-
seen target domains without accessing target data
during training. Given that real-world deployment
scenarios are diverse and not covered by any sin-
gle dataset, DGReID holds high practical value.
First introduced by (Yi et al., 2014), subsequent
works such as (Choi et al., 2021; Song et al., 2019)
have explored learning domain-invariant represen-
tations through adversarial training. Others, like
(Xu et al., 2022), proposed normalization-based
alignment strategies to mitigate domain gaps, while
(Zhao et al., 2021) employed meta-learning to sim-
ulate domain shifts during training. Despite their
progress, most of these methods rely heavily on
discriminative or contrastive learning (Dou et al.,
2023; Jin et al., 2020), making them sensitive to the
distribution similarity between source and target
domains. When a significant domain gap exists,
these approaches tend to fail to generalize effec-
tively, thus limiting further improvements.

2.3 Vision Transformer for Person ReID

The Vision Transformer (ViT) (Dosovitskiy et al.,
2020) introduced the Transformer architecture
(Vaswani et al., 2017) into computer vision by
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replacing convolutions with self-attention mech-
anisms. ViTs naturally model long-range depen-
dencies and exhibit stronger generalization capa-
bilities under distributional shifts. (He et al., 2021)
was the first to adapt ViT to the ReID task. Fol-
lowing this, (Liao and Shao, 2021) replaced stan-
dard self-attention with cross-attention to better
capture pairwise feature similarities. However, de-
spite these advances, most ViT-based methods rely
on rigid patch-based partitioning and focus predom-
inantly on low-level visual patterns. As a result,
they struggle to handle perspective variations and
fine-grained semantic ambiguities, such as subtle
differences in clothing or pose (Ni et al., 2023).

2.4 Vision-Language Models and
Prompt-based Methods

Vision-Language Models (VLMs) aim to jointly
process visual and textual information, and have
shown remarkable potential in tasks such as image
captioning, cross-modal retrieval, and multimodal
reasoning. Recent works such as LLaVA (Li et al.)
and Qwen-VL (Bai et al., 2023) focus on real-world
visual understanding, while models like CLIP (Rad-
ford et al., 2021), BLIP (Li et al., 2022, 2023b),
and MiniGPT (Zhu et al., 2023; Chen et al., 2023)
learn strong cross-modal alignment by contrastive
or generative training.

Prompt-based methods have also been intro-
duced into person ReID. For instance, CLIP-ReID
(Li et al., 2023c) leverages CLIP to align textual
and visual features, and ReFID (Peng et al., 2024)
applies prompt tuning to adapt VLMs for cross-
domain ReID. Other recent approaches such as
PAT (Ni et al., 2023) and Prompt-CLIP (Cui et al.,
2025) explore domain generalization by injecting
textual prompts. While effective, these methods
typically operate at the global image level and over-
look fine-grained body-part semantics.

Our work differs from these prior approaches
in three key aspects. First, unlike generic prompt
strategies, we leverage structured human pose pri-
ors to construct body-part-level prompts that pro-
vide fine-grained semantic grounding. Second, in
contrast to existing vision–language alignment and
segmentation methods, we explicitly couple pose-
guided segmentation with language prompts to im-
prove domain robustness. Finally, unlike prompt-
based models in other domains such as scene graph
generation (SGG) (Li et al., 2024), which focus
on logical or relational alignment, our method is
specifically optimized for DG-ReID, targeting im-

proved interpretability and performance under do-
main shifts.

3 Methodology

In this section, we introduce PVTNL (Prompt-
ing Vision Transformers with Natural Language),
a novel framework designed for person re-
identification by integrating local vision prompts
with structured natural language. As shown in Fig.
2, PVTNL consists of four main modules: i) image
segmentation and language-guided alignment; ii)
prompt injection; iii) local features fusion; and iv)
the overall training loss design. We describe each
component in detail below.

3.1 Image Segmentation and
Language-Guided Alignment

Image Segmentation. Since our model focuses
on region-level features, to enable fine-grained rea-
soning at the part level, we first segment each
person image into semantically consistent body
regions. Given an input image x ∈ RH×W×C

and its 18 annotated pose landmarks P =
{(x1, y1), (x2, y2), ..., (x18, y18)} ∈ R18×2, we
define four body part regions PRi, i ∈ {1, 2, 3, 4}:
head, upper torso, lower body, and feet. The body
keypoints are obtained using the HRNet pose es-
timation model trained on the COCO keypoint
dataset (Sun et al., 2019).

• Head Region (PR1): Includes nose, neck,
eyes, ears, and shoulders.

• Upper Torso (PR2): Includes shoulders, el-
bows, wrists, and hips.

• Lower Body (PR3): Includes hips, knees,
and ankles.

• Feet Region (PR4): Includes ankles and feet.

To transform the discrete keypoints into contin-
uous bounding boxes, we compute the maximum
and minimum coordinates of the keypoints within
each region and expand them by a margin c:

PRi = [xmin−c, xmax+c, ymin−c, ymax+c] (1)

The cropped sub-image corresponding to region
PRi is denoted as xPRi .
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Figure 2: Overview of PVTNL. We leverage body-part keypoints to segment the input image into semantically
consistent regions. Each region is aligned with corresponding natural language descriptions extracted from the
image. These textual descriptions are then encoded as prompts and injected into the Vision Transformer to guide
local region-specific feature learning.

Language-Guided Alignment. We adopt a
BLIP-based vision-language pre-trained model to
generate image captions. Since cropped regions
lose contextual semantics, we generate a full image-
level caption D using the original image x. Then,
we extract region-specific descriptions RDi by
matching pre-defined keyword sets RDKi:

RDK1 = {Hair, Hat}
RDK2 = {Cloth, Top, Vest, Bag}
RDK3 = {Pants, Skirt}
RDK4 = {Shoes, Boots}

Based on these keywords, we parse D into
structured region-level descriptions RDi, where
i ∈ {1, 2, 3, 4}.

3.2 Prompt Injection
Patch Embedding of Part Regions. Each region
image xPRi is divided into M non-overlapping
patches, and embedded as:

Ei = [xclsi , xi1 , xi2 , ..., xiM ] + P (2)

where xclsi is a learnable class token and P de-
notes position embeddings.

Textual Prompt Extraction. We use the BLIP
text encoder to extract region prompt embeddings
from RDi. The textual prompt is projected to the
same dimension as the visual patch embeddings:

Prompti = TextEncoder(RDi) (3)

Prompt Injection and Feature Extraction. We
inject the textual prompt into the part image repre-
sentation via early fusion. Specifically, the fused
sequence is:

Zi = [Ei,Prompti] (4)

We compute attention parameters from Zi:

Qi = ZiWQ = [qclsi , qi1 , ..., qiM , qpi ] (5)

Ki = ZiWK = [kclsi , ki1 , ..., kiM , kpi ] (6)

Vi = ZiWV = [vclsi , vi1 , ..., viM , vpi ] (7)

where WQ, WK , and WV are learnable linear pro-
jections. The attention is computed as:

Attention(Qi,Ki, Vi) = Softmax
(
QiK

⊤
i√

dk

)
Vi

(8)
The resulting fused local feature is f(PRi).
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Computational Cost. Our method introduces
negligible additional computational overhead. For
an input image of size 256× 128 with a patch size
of 16, the ViT-B backbone produces 128 visual to-
kens. We concatenate 20 textual tokens (each of
dimension 768) as prompts. This results in an addi-
tional ∼51M FLOPs compared to the baseline ViT-
B (17.6G FLOPs), corresponding to only ∼0.29%
overhead, which is practically insignificant.

3.3 Contrastive Learning Loss

To encourage local part representations to be dis-
criminative, we adopt a contrastive loss. Let f(xij)
be the i-th part region feature of the j-th image.
We retrieve k nearest positive samples D+

ij from a
memory dictionary, and define the loss as:

Lcontrast
ij = − log

exp
(
f(xij)

⊤D+
ij/τ

)

∑
d∈Dij

exp (f(xij)⊤d/τ)
(9)

where τ is a temperature hyperparameter.

3.4 Fusion of Local Features

After obtaining the region-level features, we fuse
them to derive a global representation using cross-
attention across regions. For part regions i and j,
we compute:

CrossAttention(Qi,Kj , Vj) = Softmax

(
QiK

⊤
j√

dk

)
Vj

(10)

By aggregating all pairwise cross-attention, we
obtain the global feature g(xj) for the j-th image.

3.5 Overall Training Loss Function

In addition to the contrastive loss, we use the triplet
loss to enforce ranking constraints between positive
and negative samples:

Ltri = max (0, da,p − da,n +m) (11)

where da,p and da,n denote the distances be-
tween anchor-positive and anchor-negative, respec-
tively, and m is a margin hyperparameter.

The total loss is a weighted combination:

Ltotal = λ1

∑

i,j

Lcontrast
ij + λ2Ltri (12)

Table 1: Statistics of public Re-ID datasets.

Dataset #ID #Image #Camera
Market-1501 (Zheng et al., 2015) 1,501 32,217 6

MSMT17 (Wei et al., 2018) 4,101 126,441 15
CUHK02 (Li and Wang, 2013) 1,816 7,264 10

CUHK03 (Li et al., 2014) 1,467 14,096 2
CUHK-SYSU (Xiao et al., 2017) 11,934 34,574 1

PRID (Hirzer et al., 2011) 200 1,134 2
GRID (Loy et al., 2009) 250 1,275 8

VIPeR (Gray and Tao, 2008) 632 1,264 2
iLIDs (Wang et al., 2014) 119 476 2

4 Experiments

4.1 Datasets and Evaluation Metrics

We conducted experiments on the following
datasets: Market-1501 (Zheng et al., 2015),
MSMT17 (Wei et al., 2018), CUHK02 (Li and
Wang, 2013), CUHK03 (Li et al., 2014), CUHK-
SYSU (Xiao et al., 2017), PRID (Hirzer et al.,
2011), GRID (Loy et al., 2009), VIPeR (Gray
and Tao, 2008), and iLIDs (Wang et al., 2014).
The statistics of the datasets are shown in Table
1. To simplify the notation, we use M to represent
Market-1501, MS to represent MSMT17, C2 to
represent CUHK02, C3 to represent CUHK03 and
CS to represent CUHK-SYSU.

To evaluate domain generalization (DG) ReID,
we follow two common protocols:

• Protocol 1: Train on M, C2, C3, and CS; test
on PRID, GRID, VIPeR, and iLIDs.

• Protocol 2: Train on M, MS, C3, and CS, us-
ing a leave-one-out strategy where one dataset
is used for testing and the others for training.

The evaluation metrics used are the widely recog-
nized Cumulative Matching Characteristics (CMC)
at Rank-1 and the mean average precision (mAP).

4.2 Implementation Details

We implemented our model in PyTorch (Paszke
et al., 1912) and conducted training on an RTX-
3090 GPU. For the backbone, we utilized the pre-
trained ViT-B16 (Dosovitskiy et al., 2020) with
a patch size of 16. The batch size for training
samples was set to 64, and the input images were
resized to 256× 128. For vision-language process-
ing, we utilize a BLIP-based vision-language pre-
trained model (Li et al., 2022) for both image cap-
tion generation and text encoding. We applied stan-
dard data augmentation techniques, including ran-
dom flipping, cropping, and color jittering (Gong,
2021).
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Table 2: Comparison with state-of-the-art. We use bold to indicate the best result and underline to indicate the
second-best result. The methods marked by "*" are unsupervised.

Method Reference
Protocol 1

PRID GRID VIPeR iLIDS Average
mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

MoCo* CVPR2020 10.9 6.5 6.9 2.8 7.5 4.0 46.4 38.8 17.9 13.0
LUP* CVPR2021 3.7 1.5 4.0 1.2 5.0 1.4 43.0 36.7 13.9 10.2

LUPnl* CVPR2022 12.2 8.1 7.4 3.1 9.2 4.6 49.8 43.3 19.7 14.8
CrossGrad arXiv2018 28.2 18.8 16.0 9.0 30.4 20.9 61.3 49.7 34.0 24.6

MLDG AAAI2018 35.4 24.0 23.6 15.8 33.5 23.5 65.2 53.8 39.4 29.3
PPA CVPR2018 45.3 31.9 38.0 26.9 54.5 45.1 72.7 64.5 52.6 42.1

DIMN CVPR2019 52.0 39.2 41.1 29.3 60.1 51.2 78.4 70.2 57.9 47.5
SNR CVPR2020 66.5 52.1 47.7 40.2 61.3 52.9 89.9 84.1 66.4 57.3

QAConv ECCV2020 62.2 52.3 57.4 48.6 66.3 57.0 81.9 75.0 67.0 58.2
DML CVPR2021 60.4 47.3 49.0 39.4 58.0 49.2 84.0 77.3 62.9 53.3
M3L CVPR2021 65.3 55.0 50.5 40.0 68.2 60.8 74.3 65.0 64.6 55.2

ViT-B ICLR2021 63.8 52.0 56.0 44.8 74.8 65.8 76.2 65.0 67.7 56.9
Trans ICCV2021 68.1 59.0 60.8 49.6 69.5 60.1 79.8 68.3 69.6 59.3

MetaBIN CVPR2021 70.8 61.2 57.9 50.2 64.3 55.9 82.7 74.7 68.9 60.5
DDAN AAAI2021 67.5 62.9 50.9 46.2 60.8 56.5 81.2 78.0 65.1 60.9
RaMoE CVPR2021 67.3 57.7 54.2 46.8 64.6 56.6 90.2 85.0 69.1 61.5
MDA CVPR2022 - - 62.9 61.2 71.7 63.5 84.4 80.4 - -
META ECCV2022 71.7 61.9 60.1 52.4 68.4 61.5 83.5 79.2 70.9 63.8
ACL ECCV2022 73.4 63.0 65.7 55.2 75.1 66.4 86.5 81.8 75.2 66.6
PAT ICCV2023 57.9 46.0 54.5 45.6 67.8 60.1 78.1 66.7 64.6 54.6
CLIP AAAI2023 68.3 57.0 58.2 48.8 69.3 60.1 83.4 75.0 69.8 60.2

ReFID TOMM2024 71.3 63.2 59.8 56.1 68.7 60.9 84.6 81.0 71.1 65.3
GMN TCSVT2024 75.4 66.0 64.8 54.4 77.7 69.0 - - - -

Ours(PVTNL) This Paper 78.7 71.2 75.3 67.0 82.2 74.7 91.3 89.6 81.9 75.6

The optimizer used for the model was SGD with
an initial learning rate of 1× 10−3, which decayed
gradually during the training process. The temper-
ature hyperparameter τ is set to 0.3, and the region
margin c is defined as 10% of the region’s width
and height. We adopt a two-stage training strategy:
first, we freeze the BLIP encoder and optimize
the image encoder using contrastive loss; then, we
freeze both encoders and fine-tune the fusion layers
using triplet loss.

4.3 Comparison with State-of-the-Arts

To validate our method, we compare our model
with state-of-the-art (SOTA) methods, including
MoCo (He et al., 2020), LUP (Fu et al., 2021),
LUPnl (Fu et al., 2022), CrossGrad (Shankar et al.,
2018), MLDG (Li et al., 2018), PPA (Qiao et al.,
2018), DIMN (Song et al., 2019), SNR (Jin et al.,
2020), QAConv (Liao and Shao, 2020), DML (Dai
et al., 2021), M3L (Zhao et al., 2021), ViT-B
(Dosovitskiy et al., 2020), Trans (He et al., 2021),
MetaBIN (Choi et al., 2021), DDAN (Chen et al.,

2021), RaMoE (Dai et al., 2021), MDA (Ni et al.,
2022), META (Xu et al., 2022), ACL (Zhang et al.,
2022b), PAT (Ni et al., 2023), CLIP (Li et al.,
2023c), ReFID (Peng et al., 2024), GMN (Qi et al.,
2024), and CycAs (Wang et al., 2020). As shown
in Table 2 and Table 3, our model achieves the best
results under both protocols. This demonstrates
that our model effectively accomplishes the DG
ReID task.

Under protocol 1, our method achieve the best
performance, as shown in Table 2. In particular,
on the PRID dataset, we achieved mAP of 78.7%
and R1 of 71.2%, surpassing the performance of
GMN by 3.3% on mAP and 5.2% on R1. On the
GRID, VIPeR and iLIDS datasets, our method out-
performs these models with mAP of 75.3%, 82.2%
and 91.3%. The average performance on all four
datasets of our method is 81.9% on mAP and 75.6%
on R1, surpassing the performance of ACL by 6.7%
on mAP and 9.0% on R1.

Under protocol 2, we also conducted extensive
experiments to validate our model. The results are
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Table 3: Comparison with state-of-the-art. We use bold to indicate the best result and underline to indicate the
second-best result. The methods marked by "*" are unsupervised.

Method Reference
Protocol 2

Market1501 MSMT17 CUHK03 Average
mAP R1 mAP R1 mAP R1 mAP R1

LUP* CVPR2021 1.0 3.3 0.1 0.3 0.5 0.1 0.5 1.2
MoCo* CVPR2020 2.6 10.5 0.2 0.5 0.7 0.3 1.2 3.8
LUPnl* CVPR2022 3.8 13.8 0.2 0.6 0.8 0.4 1.6 4.9
CycAs* arXiv2022 57.5 80.3 20.2 43.9 26.5 25.8 34.7 50
QAConv ECCV2020 63.1 83.7 16.4 45.3 25.4 24.8 35.0 51.3

DML CVPR2021 49.9 75.4 9.9 24.5 32.6 32.9 30.8 44.3
MetaBIN CVPR2021 57.9 80.1 17.8 40.2 28.8 28.1 34.8 49.5
RaMoE CVPR2021 56.5 82.0 13.5 34.1 35.5 36.6 35.2 50.9

M3L CVPR2021 61.5 82.3 16.7 37.5 34.2 34.4 37.5 51.4
ViT-B ICLR2021 59.2 78.3 20.5 42.7 36.5 35.8 38.7 52.3
Trans ICCV2021 59.9 79.8 23.2 46.3 36.5 36.1 39.9 54.1
META ECCV2022 67.5 86.1 22.5 49.9 36.3 35.1 42.1 57.0
ACL ECCV2022 74.3 89.3 20.4 45.9 41.2 41.8 45.3 59.0
CLIP AAAI2023 68.8 84.4 26.6 53.1 42.1 41.9 45.8 59.8

ReFID TOMM2024 67.6 85.3 18.3 39.8 33.3 34.8 39.7 53.3
GMN TCSVT2024 72.3 87.1 24.4 50.9 43.2 42.1 46.6 60.0

Ours(PVTNL) This Paper 76.8 90.4 30.3 58.1 47.2 46.5 51.4 65.0

Table 4: Ablation studies of our method. Where the "V"
represents ViT-B; "S" represents Image Segmentation;
"P" represents Prompt Injection; "F" represents Feature
Fusion.

Method Protocol 1 Protocol 2
mAP R1 mAP R1

V (w/o S,P,F) 67.7 56.9 38.7 52.3
V+S (w/o P,F) 73.4 62.8 45.6 58.1
V+S+P (w/o F) 78.2 69.8 48.4 63.4

V+S+P+F 81.9 75.6 51.4 65.0

shown in Table 3. Although some latest works,
such as GMN and CLIP, have achieved good per-
formances, where the average performances are
46.6% on mAP and 60.0% on R1 for GMN and
45.8% on mAP and 59.8% on R1 for CLIP, our
method surpasses them and achieves the best re-
sults. The average performance on all three datasets
of our method is 51.4% on mAp and 65.0% on R1,
surpassing the performance of GMN by 4.8% on
mAP and 5.0% on R1.

4.4 Ablation Studies

Our model consists of three key components: Im-
age Segmentation, Prompt Injection, and Feature

Fusion. To evaluate their individual contributions,
we conduct ablation studies under both Protocol
1 and Protocol 2. Specifically, we consider the
following settings:

1. Replace the Image Segmentation module with
a vanilla ViT-B model using full images.

2. Remove the Prompt Injection component, re-
taining only segmentation and part region ex-
traction.

3. Replace the Feature Fusion module with sim-
ple feature concatenation.

As shown in Table 4, each component con-
tributes significantly to the model’s performance.
The segmentation module effectively partitions re-
gions with consistent semantics, prompt injection
provides textual guidance, and feature fusion in-
tegrates fine-grained local features into a global
representation. When combined, our full PVTNL
model achieves 81.9% mAP and 75.6% Rank-1 in
Protocol 1, and 51.4% mAP and 65.0% Rank-1 in
Protocol 2.
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Table 5: Hyperparameter experiments for part regions.

Number of part regions Protocol 1 Protocol 2
mAP R1 mAP R1

2 (head & torso, legs & feet) 77.6 68.9 47.5 61.2
3 (head, torso, lower body) 80.6 73.4 48.7 63.3
4 (head, upper, lower, feet) 81.9 75.6 51.4 65.0

4.5 Hyperparameter Experiments

We further explore how the number of segmented
regions affects performance. As shown in Table
5, increasing the number of part regions from 2
(e.g., head & torso, legs & feet), to 3 (head, torso,
lower body), and finally to 4 (head, upper, lower,
feet), improves the model’s accuracy. This is be-
cause finer segmentation allows the model to ex-
tract more discriminative features, enhancing its
ability to distinguish between identities.

5 Conclusion

In this paper, we propose PVTNL (Prompting
Vision Transformers with Natural Language), a
novel framework that integrates natural language
prompts into Vision Transformers for region-aware
feature learning in domain generalizable person re-
identification (DG ReID). We use body-part cues
to segment each image into semantically consis-
tent regions and align them with corresponding
textual descriptions. We encode textual descrip-
tions into prompts, inject them into the Vision
Transformer for local feature extraction, and em-
ploy cross-attention to fuse local features for en-
hanced representation learning. Experimental re-
sults across multiple datasets and different evalua-
tion protocols demonstrate that our model achieves
state-of-the-art performance in DG-ReID.

In future work, we will extend PVTNL to
cross-modal scenarios (e.g., visible–infrared per-
son ReID) and explore its deployment under ethical
guidelines to ensure responsible use.

6 Limitations

Our model relies on body-part keypoints to align lo-
cal image regions with textual descriptions. When
the keypoints are inaccurately detected, it can cause
misalignment between regions and text features, de-
grading performance. To mitigate this, we apply
a fallback mechanism that excludes regions with
low-confidence keypoints, and we adopt a spatial
expansion strategy to improve robustness against
moderate pose estimation noise.

In addition, because we utilize BLIP as the im-
age captioning model, the generated textual descrip-
tions may sometimes exceed the semantic scope
of the predefined region-specific keywords. This
discrepancy can make it difficult to retrieve the
correct regional textual features, further affecting
alignment quality.

Although our benchmarks already span diverse
domains (e.g., indoor vs. outdoor, varying light-
ing and camera styles), extending our approach
to cross-modal scenarios such as visible–infrared
person ReID remains a valuable future direction.

Finally, person ReID is a high-risk application
that raises potential ethical concerns, such as pri-
vacy invasion, surveillance misuse, and bias ampli-
fication. We emphasize that our method is intended
for research purposes, and its deployment should
be carefully governed by ethical guidelines and
legal regulations to ensure responsible use.
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