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Abstract

Object detection is a core challenge in com-
puter vision. Traditional methods primarily rely
on intermediate modalities such as text, speech,
or visual cues to interpret user intent, leading
to inefficient and potentially distorted expres-
sions of intent. Brain signals, particularly fMRI
signals, emerge as a novel modality that can
directly reflect user intent, eliminating ambi-
guities introduced during modality conversion.
However, brain signal-based object detection
still faces challenges in accuracy and robust-
ness. To address these challenges, we present
BrainLoc, a lightweight object detection model
guided by fMRI signals. First, we employ a
multi-modal alignment strategy that enhances
fMRI signal feature extraction by incorporat-
ing various modalities including images and
text. Second, we propose a cross-domain fu-
sion module that promotes interaction between
fMRI features and category features, improving
the representation of category information in
fMRI signals. Extensive experiments demon-
strate that BrainLoc achieves state-of-the-art
performance in brain signal-based object detec-
tion tasks, showing significant advantages in
both accuracy and convenience.

1 Introduction

Current intelligent systems typically rely on inter-
mediate modalities such as speech (Shi et al., 2022;
Fu et al., 2024; Cheng et al., 2025), text (Radford
et al., 2021; Yan et al., 2025), and images (Yang
et al., 2024b; Yan et al., 2024) to understand hu-
man intent, but these modalities are merely indi-
rect channels and abstract expressions of conscious-
ness.

This indirectness is particularly evident in ob-
ject detection tasks within computer vision. While
traditional text-based detection systems (such as
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Grounding DINO (Liu et al., 2023)) have achieved
high accuracy, they face significant limitations in
practical applications: users need to describe tex-
ture and spatial information through text, a process
that requires careful thinking and manual input,
resulting in high cognitive costs. Moreover, the
modality conversion process may lead to distortion
and ambiguity of user intent.

To address these challenges, functional Magnetic
Resonance Imaging (fMRI) (Belliveau et al., 1991)
signals demonstrate unique advantages. fMRI is a
non-invasive brain imaging technique that records
neural activity patterns under visual stimulation
by measuring blood oxygen level-dependent signal
changes. This type of signal can directly reflect
user intent, offering a promising pathway toward
more natural and intuitive human-computer inter-
action. Compared to Electroencephalogram (EEG)
(Craik et al., 2019; Zhao et al., 2024a), fMRI pos-
sesses a higher information entropy, enabling it to
capture richer semantic and visual details. This
advantage makes fMRI particularly well-suited for
supporting tasks such as object detection.

Imagine a future where people wear smart
glasses that can capture current scenes in real-time
and, based on the user’s brain responses, quickly
and accurately locate target objects, highlighting
them on the display. This technology has signif-
icant applications not only in daily life scenarios
but also in military target detection, industrial au-
tomation, and medical assistance.

To this end, we combine the advantages of tra-
ditional object detection systems and brain signals
to propose BrainLoc. As shown in Fig. 1, even in
complex scenes containing multiple similar targets
(such as multiple apples), our system can accurately
identify and locate the specific target (such as a red
apple) that the user has in mind. The key idea is to
build a lightweight feature extractor that enhances
fMRI signal comprehension through multi-modal
alignment strategies, enabling it to capture fine-
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Figure 1: The main ability of our model. Our model takes fMRI signal and a visual scene as input, allowing for
the detection of the desired object. Traditional models, relying on text descriptions, might identify a green apple
because it stands out more. In contrast, our system incorporates brainwave information, enabling it to locate the

specific red apple we want.

grained visual information from user intent. Ad-
ditionally, we design a Cross-domain fusion mod-
ule that organically combines visual information
(such as color) from fMRI features with semantic
information through attention mechanisms, thereby
improving localization accuracy. Experimental re-
sults demonstrate that BrainLLoc not only achieves
state-of-the-art performance in localization accu-
racy but also shows unique advantages in handling
complex scenes and fine-grained recognition tasks.
Our main contributions are as follows:

* We propose a lightweight object detection
framework for fMRI signals. This frame-
work directly extracts localization features
from fMRI signals, avoiding image genera-
tion processes and reducing model parameters
to 1/10.

* We ues a multi-modal alignment strategy. By
simultaneously aligning fMRI signals with im-
age features and dual-level text features in the
CLIP feature space, we significantly enhance
feature extraction effectiveness.

* We introduce an efficient cross-domain fusion
module. This module integrates visual domain
fMRI features and semantic domain category
features through attention mechanisms, lever-
aging the complementary advantages of both
domains to improve object detection accuracy.

2 Related Work

2.1 Brain Signal Comprehension

Recently, visual models based on brain signals
(Lin et al., 2022; Scotti et al., 2024; Yang et al.,

2025a,b, 2024a) have made remarkable progress.
Early methods were based on image generation.
Mindreader (Lin et al., 2022) projected fMRI data
into the CLIP space that embeds images and cap-
tions and then used the LAFITE (Zhou et al., 2022)
model adjusted with the unconditional StyleGAN2
(Karras et al., 2020) framework to perform im-
age reconstruction. Brain-Diffuser (Ozcelik and
VanRullen, 2023a) leverages pretrained diffusion
models (Rombach et al., 2022) to generate high-
resolution images from fMRI signals, ensuring se-
mantic consistency. MindEye (Scotti et al., 2024),
on the other hand, employs a dual-pathway model
to separately handle fine-grained details and global
semantics extracted from fMRI signals. By align-
ing multi-level features, it achieves high-quality
visual reconstruction. However, these generative
methods often require complex image reconstruc-
tion processes. Therefore, methods that directly
encode fMRI signals have begun to attract atten-
tion. MinD-Vis (Chen et al., 2023c) uses a masked
autoencoder to extract features directly from fMRI
signals. Brainformer (Nguyen et al., 2025) aligns
visual features and brain cognitive features through
contrastive learning and has been successfully ap-
plied to object detection tasks. UMBRE (Xia
et al., 2024) focuses on building a shared embed-
ding space connecting fMRI signals with multi-
modal data like images and text, utilizing unsuper-
vised learning approaches. This approach seeks to
improve the robustness and generalization perfor-
mance in decoding neural signals. These works
have demonstrated that it is feasible to extract fea-
tures directly from fMRI signals for downstream
visual tasks without going through an image gener-
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Figure 2: An overview of the BrainLoc. BrainLoc consists of three main components: a feature extraction module
that transforms fMRI signals into embeddings, a fusion module that performs cross-domain feature integration and
category prediction, and a localization module that combines the background image with fused features to generate
final detection results. During inference, the model requires only fMRI signals and the background image as input.

ation step.

2.2 Object Detection

Carion introduced the DETR (Carion et al., 2020)
detection model, which was subsequently improved
by Chen (Chen et al., 2023b; Dai et al., 2021;
Gao et al., 2021; Jia et al., 2023; Meng et al.,
2021; Wang et al., 2022; Zhu et al., 2020; Yang
et al., 2024c¢) through various enhancements, in-
cluding the Group DETR (Chen et al., 2023b)
and Deformable DETR models (Zhu et al., 2020).
However, these models primarily operate within
a closed set of predefined categories, making it
challenging to extend their application to new cat-
egories. This limitation has prompted research
into open-set object detection, which utilizes ex-
isting bounding box annotations for training and
employs language generalization to achieve the de-
tection of arbitrary categories. OV-DETR (Zareian
et al., 2021) employs image and text embeddings
encoded by the CLIP model as query requests to
decode specific class boxes within the DETR frame-
work (Carion et al., 2020). ViLD (Gu et al., 2021)
extracts knowledge from a CLIP teacher model
and transfers it to an R-CNN-like detector, allow-
ing the learned region embeddings of the detector
to incorporate text and images inferred from the
teacher model. Shikra (Chen et al., 2023a) takes
advantage of pretrained models (Rombach et al.,
2022) to perform language-driven visual localiza-
tion, accurately identifying and pinpointing specific
objects or regions described in natural language.
Grounding DINO (Liu et al., 2023) merges self-
supervised visual features similar to DINO with
the DETR detection architecture, while incorpo-
rating textual cues in an end-to-end manner. This
approach achieves exceptional open-set object de-

tection, enabling it to detect items defined by any
textual description.

3 Method

As shown in Fig. 2, we introduce the BrainLoc,
which can detect objects in people’s minds with
only images and fMRI signals as input. First, we
employ a multi-modal alignment strategy to train
a lightweight feature extractor that converts fMRI
signals into features (see Sec. 3.1). Second, we
design a Cross-domain fusion module that deeply
integrates fMRI features with category features and
predicts the category of the detected object (see Sec.
3.2). Finally, we read the background image and
combine it with previously obtained information to
output the localization result (see Sec. 3.3).

3.1 fMRI Feature Extraction

We design a lightweight feature extractor to pro-
cess high-dimensional fMRI signals derived from
cortical tissue. The extractor begins with a Reduc-
tion Module built upon convolutional layers, which
effectively compresses feature dimensions to facil-
itate subsequent high-level semantic information
extraction. Considering the temporal characteris-
tics of fMRI data, we construct a Temporal Module
using Residual and Transformer architectures to
capture long-term dependencies within the signals.
Finally, we develop a Mapping Module based on
Qformer to achieve cross-modal alignment, map-
ping fMRI signals into a unified feature space.
This extractor maps the flattened spatial pat-
terns of fMRI signals into the image embedding
latent space of a pretrained CLIP model. To en-
hance the comprehensiveness and robustness of
feature extraction, we adopt a multi-modal align-
ment strategy that simultaneously achieves align-
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Figure 3: We introduce a variety of modality data and
design a variety of loss functions to train the extractor.

ment of fMRI, image, and dual-level text modal-
ities (both sentence-level and word-level) in the
CLIP feature space. Compared to existing methods,
our approach eliminates computationally intensive
image generation processes, significantly reducing
model complexity with parameters only 1/10 of
(Scotti et al., 2024).

As shown in Fig. 3, we design a series of
loss functions to guide the training of the extrac-
tor.Taking a batch as an example, we denote the
obtained fMRI features as fj;g; » Where i repre-
sents the index of the feature in the batch.

fMRI-Cat Loss Let the encoded result of the text
for each category be f<,,, where ¢ € R, with C
representing the number of categories. For each

image in the dataset, the encoded resultis f; g We

calculate the matrix STM € RV*¢ through:

c 7
cat * Jimg 1 )

sim(i,c) =

||fccat||2 ’ ’ 'ngH

Taking the maximum value across columns,
¢ = argmax(SIM) € RV, then ¢; is designated
as the main category for the i-th image. Then the
alignment loss between fMRI and the main cate-
gory can be expressed as:

fear - | }MRJ

fMRI-Img Loss The fMRI features and image
features are aligned in L1 space. Define 7 as a
temperature ratio, which is a hyperparameter that
weights the degree of fMRI-image alignment. Then
the L fprrr—img can be expressed as:

ffmg”l '7_) (3)

2

LiyvRI—cat = ‘

cat zmg H

Lintri-img = F (1 ffaerr —

where F is a mapping function. L ¢pysri—img fo-
cuses the model on the information concerning
image, restoring the features such as color.

fMRI-Cap Loss Contrastive learning is an effec-
tive representation learning method that learns rep-
resentations across multi-modal data by maximiz-
ing the cosine similarity of positive sample pairs
and minimizing the similarity of negative sample
pairs. Previous research suggests that combining
contrastive learning with neural data can yield sig-
nificant benefits (Défossez et al.; Schneider et al.,
2023). CLIP is an example of a multi-modal con-
trastive model that maps images and text captions
to a shared embedding space. BrainLoc is designed
to incorporate fMRI as an additional modality into
the embedding space of a pretrained CLIP model,
while keeping the CLIP image space fixed, similar
to the approach used in locked-image text tuning
(LiT). We utilize the CLIP loss as our contrastive
objective. Let the embedding representation of the
caption after processing by CLIP be denoted as
feap- Then, L¢prrr—cqp can be expressed as:

frvrr - fay

S = 4
T
eSii eSii

== 5

N ©
N

LfMRIfcap - Z )\ log T'z 1 )‘) log(cz)]
B (6)

where 7 is a temperature hyperparameter, and A
controls the degree of contrastive learning in two
directions.

Then the loss of the extract can be expressed as:

Liotat = M - LipRI—cat + A2 - LnviRI—img
+A3 - LivRi—cap (7)

Through the experiment, we set A; to 0.5, and
A2 and A3 to 0.25. This configuration effectively
integrates the information from different modali-
ties while avoiding the excessive dominance of a
specific loss term.

3.2 Cross-domain Fusion

After projecting fMRI signals into the CLIP space,
we observe that the visual domain (fMRI features)
and semantic domain (category features) share the
same latent space, with each domain exhibiting
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distinct advantages: semantic domain features pos-
sess higher semantic purity, while visual domain
fMRI features contain richer perceptual informa-
tion. For instance, fMRI features not only encode
visual details of targets (such as the color of an ap-
ple) but also preserve spatial layout and perceptual
information. However, due to limitations in current
feature extraction techniques, the semantic infor-
mation may exhibit some ambiguity. Therefore, we
propose a cross-domain feature fusion strategy to
achieve mutual enhancement of visual perception
and semantic understanding.

Specifically, in the semantic domain, we first use
CLIP to encode text from common categories into
feature vectors fS, € RN*P and store them in
the cache, where N represents the total number of
categories and D represents the feature dimension.
Subsequently, we compute the similarity between
visual domain fMRI features and semantic domain
category features:

fer = avgmax(fiapr - o) @)

Through this cross-domain matching, we obtain
precise category information of target objects (such
as "cat") and use it along with the original image
as input to the localization module. To fully utilize
the complementary information from both domains,
we employ a cross-attention mechanism for feature
fusion, using the semantic domain category vector
fi.: as key and value, and the visual domain fMRI

C
feature f} MR as query, ensuring that the gener-

ated feature vector f}uswn effectively integrates
the advantageous information from both domains.
The f}u sion 18 then fed into the localization module
for subsequent object localization tasks.

3.3 Localization Module

Our localization module takes the image and cate-
gory signals generated from fMRI as input, which
are initially processed through Grounding DINO.
Specifically, we use the hidden layer outputs from
Grounding DINO as queries, and the previously
obtained f}uswn as keys and values, integrating
features through a cross-attention mechanism. Sub-
sequently, we reconnect Grounding DINO’s predic-
tion head to generate target boxes. We denote the
candidate boxes of an image as {Q; }_,, where n is
the number of candidate boxes and (); is composed
of (x,y,width, height). The ground truth boxes
for the image are denoted as {G;}" ;, where m is
the number of ground truth boxes. We optimize the

model’s multi-object detection capability directly
to improve its performance. First, we maintain a
cost matriX L,esric. TO ensure accurate matching,
we apply the Hungarian algorithm (Kuhn, 2004) to
calculate the total loss based on L,etric. The cost
matrix Ly,eirie cOnsists of two components: the
classification loss L.j,ss, Which measures the dif-
ference between the predicted and true categories,
and the IoU loss L., which evaluates the over-
lap between the predicted and ground truth boxes
to improve the model’s localization accuracy. By
combining these two loss components, the model
can simultaneously optimize both the target’s cate-
gory prediction and location matching.

Classification Loss In object localization tasks,
the first priority is to ensure that the model correctly
classifies the objects in the candidate boxes. To
achieve this, we use the cross-entropy loss function
to measure the difference between the predicted
and true categories. The classification loss between
the i-th candidate box and the j-th ground truth box
can be expressed as:

C
Llcjlass = Z Yje log(ﬁiyc) ©)
c=1

where ¢ represents the class, and y; . indicates
whether the j-th ground truth box belongs to class c,
with y; . = 1 if it does. Similarly, p; . denotes the
probability that the i-th candidate box is predicted
to belong to class c.

IoU Loss In addition to ensuring that the pre-
dicted candidate boxes match the ground truth
boxes in terms of classification, it is also impor-
tant to accurately localize the objects. For this, we
introduce the IoU loss. The formula for calculating
the IoU between the i-th candidate box (); and the
j-th ground truth box G; in target region Area is:

Ly =1 Gedl@08) )
Area(Q; U G5)
The total loss matrix is expressed as:
L:gzetm'c =a- ch%ass +6- LZIJOU (1)

We set a to 5 and [ to 2 following the DETR.

By applying the Hungarian Algorithm in the Ap-
pendix, the minimum total loss can be achieved.
This approach ensures a globally optimal solution
rather than a local optimum.
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4 Experiment

4.1 Dataset

This study primarily utilizes two datasets: the Nat-
ural Scenes Dataset (NSD (Allen et al., 2022)) and
the Generic Object Decoding (GOD (Horikawa
and Kamitani, 2017)) dataset. The NSD contains
fMRI data collected from 8 subjects while viewing
10,000 natural scene images. The GOD dataset
comprises fMRI data from 5 subjects viewing im-
ages of 200 object categories.

Through studies of human visual cognitive mech-
anisms, we observe that people tend to mentally fo-
cus on the target object rather than the entire scene
during object search. Based on this observation,
we analyzed the characteristics of two datasets:
The NSD dataset, derived from COCO (Lin et al.,
2014), better represents real-world scenarios but
contains multiple object categories within each im-
age, resulting in higher noise levels in fMRI signals.
In contrast, the GOD dataset (based on ImageNet
(Deng et al., 2009)) contains single-object images,
producing fMRI signals that better align with tar-
geted object search patterns.

Therefore, we designed a two-stage training
strategy to leverage the advantages of both datasets:
In the first stage, we train the feature extractor us-
ing the NSD dataset.In the second stage, based on
freezing the parameters of the feature extractor, the
fMRI signals from the GOD dataset were paired
with the images from the NSD dataset that con-
tained the corresponding objects. According to the
default division of the GOD dataset, the training
and testing data were obtained, which were used
for subsequent training and evaluation of the fusion
and localization modules.

4.2 Experimental Setup

Implement Details. The architecture of our fMRI
feature extractor consists of one ConvBlock (Alaed-
dine and Jihene, 2021), three ResidualBlocks (Go-
ceri, 2019), three TransformerBlocks (Min et al.,
2022)(each containing four layers), one Qformer
(Zhang et al., 2024), and several MLP layers, to-
taling 130M trainable parameters. The model was
trained for 1,000 epochs on four A800 GPUs. For
learning rate scheduling, we employ a LambdalLR
(Paszke et al., 2019) with a warm-up period of 100
iterations, where the learning rate starts at zero and
increases linearly to the maximum value of le-4
during warm-up, then decreases from 1e-4 to a min-
imum of le-7 using cosine annealing over 1,000

iterations. For feature extraction from other modal-
ities, we utilize the ViT/b-32 architecture from the
CLIP model.

Baseline. Considering the limited number of
end-to-end object detection models based on brain
signals, we refer to UMBRAE (Xia et al., 2024) and
adapt several advanced brain-signal-based image
reconstruction methods (Ozcelik and VanRullen,
2023a; Scotti et al., 2024; Xia et al., 2024), as ob-
ject detection baselines. Specifically, the adaptation
procedure consists of two steps: first, reconstruct-
ing images from brain signals using these mod-
els; second, feeding the reconstructed images into
the Shikra model, accompanied by the instruction
"Please interpret this image and provide
coordinates [x1,y1,x2,y2] foreach object
you mention” to extract object bounding boxes. In
addition, we also conduct comparisons with purely
text-driven localization models (Liu et al., 2023;
Chen et al., 2023a).

Metrics. The evaluation of baseline model per-
formance primarily relies on two metrics: accu-
racy(acc@m) and Intersection over Union (IoU).
Acc@m quantifies the percentage of correctly local-
ized predictions where the IoU between predicted
and ground-truth bounding boxes exceeds a prede-
fined threshold m; consistently, we select acc@0.5
throughout our experiments, as it serves as an ef-
fective indicator of localization reliability. Concur-
rently, IoU directly measures the degree of over-
lap between predicted and ground-truth bounding
boxes. To facilitate an in-depth analysis, we adopt
a categorization scheme inspired by UMBRAE
(Xia et al., 2024), dividing the 80 classes of the
COCO dataset into two main groups—"Salient"
and "Inconspicuous"—based on their prominence
in natural scenes. The "Salient" category is further
subdivided into "Salient Creatures” (e.g., humans,
animals) and "Salient Objects" (e.g., cars, beds, ta-
bles), while the "Inconspicuous" category includes
items such as backpacks, knives, and toothbrushes.
This extensive evaluation approach seeks to ver-
ify the robustness and real-world applicability of
BrainLoc across diverse object detection scenarios.

4.3 Experimental Results

Tab. 1 summarizes the detection results of each
model across categories including "All," "Salient,"
and "Inconspicuous.” Among fMRI-based meth-
ods, BrainLoc consistently outperforms other base-
lines. We attribute this superiority primarily to
BrainLoc’s ability to avoid the inherent informa-
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Table 1: Comparison result. Text-based models refer to location systems that rely on textual input, offering high
accuracy but also incurring significant interaction costs. Brain-based models, on the other hand, achieve localization
through brain signals. UMBRAE-S refers to the model trained with a single subject only. Shikra-w/method provides
visual grounding results using images produced by reconstruction model based on brain signals.

Method All Salient Salient Creatures ~ Salient Objects  Inconspicuous
acc@0.5 IoU acc@0.5 IoU acc@05 IoU acc@0.5 IoU acc@0.5 IoU
Text-based
Grounding DINO (Liu et al., 2023) 80.16  48.66 8044 47.19 81.06 44.08 77.07 4450  78.63  42.47
Shikra (Chen et al., 2023a) 51.96 4722 6292 5644  66.71 59.34 58.79 5327 3829 3571
fMRI-based
Shikra-w/ Brain-Diffuser (Ozcelik and VanRullen, 2023b) ~ 17.49  19.34  27.18  27.46  38.71 34.63 14.62  19.66 5.39 9.20
Shikra-w/ MindEye (Scotti et al., 2024) 1534 1865 2383 2696  29.29 31.64 17.88  21.86 4.74 8.28
Shikra-w/ DREAM (Xia et al.) 16.21 18.65 2651 2735 3443 33.85 17.88  20.28 3.35 7.78
Shikra-w/ UMBRAE 16.83 18.69  27.10 2755 34.14 33.65 19.44 2092 4.00 7.64
UMBRAE-S 1372 1756 2152 25.14  26.00 29.06 16.64  20.88 4.00 8.08
UMBRAE (Xia et al., 2024) 1893 2128 3023  30.18  39.57 36.64 20.06  23.14 4.83 10.18
BrainLoc 64.13 67.08 67.18 67.79 70.11 68.65 61.94 62.69 61.79  63.92

motor cycle 093

‘g*

horse 0.91

Figure 4: The visualization of the BrainLoc. The numbers on the bounding box represent the confidence level of the
target detection within the range of (0, 1).

tion loss encountered in traditional fMRI-to-image 4.4 Ablation Study
reconstruction approaches and its cross-domain fu-
sion module that enables the integration of multi-
modal features. Compared with text-based meth-
ods, BrainLoc achieves higher IoU scores than
Grounding DINO, though it slightly trails behind
in terms of acc@0.5. This discrepancy likely arises
due to the distribution characteristics of Grounding
DINO’s (Liu et al., 2023) predictions around the
IoU threshold of 0.5, where a higher acc@0.5 may
mask its lower average localization accuracy. Ad-
ditionally, text-only localization approaches face
inherent challenges in fine-grained discrimination
tasks, such as distinguishing between differently
colored apples, thus potentially constraining their
IoU scores.

To evaluate the individual contributions of each
component in the BrainL.oc model, we conducted a
series of ablation studies, with results summarized
in the table. These experiments primarily focused
on variations involving the following three core
modules:

Feature Extraction Module: We explored the
effects of three variations: removing multi-modal
alignment, eliminating main category optimization,
and replacing contrastive learning with a cosine
loss. Results consistently indicate performance
deterioration across these modifications. Particu-
larly, removal of main category optimization sig-
nificantly reduced performance in the "Salient" cat-
egory, highlighting the essential contribution of
these components and strategies.

Fusion Module: We evaluated this module’s
role by removing it entirely, thus forcing the lo-
calization module to rely solely on category-level
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The visualization results in Fig. 4 further val-
idate the effectiveness of BrainLoc, highlighting
its ability to accurately identify and localize the
positions of objects.



Table 2: Ablation study. w/o Fusion Module indicates that only the Category is provided; w/o Multi-modal
Alignment refers to using a refined structure of (Scotti et al., 2024) to extract features; w/o Main Category refers to
the absence of main category optimization; and w/ Shikra means using Shikra as the localization module.

Method All Salient Salient Creatures Salient Objects  Inconspicuous

acc@0.5 IoU acc@0.5 acc@0.5 IoU acc@0.5 IoU acc@0.5 IoU

w/o Multimodal Alignment  63.52  65.89  66.59 6638  69.45 67.69 61.37 6177 62.11 64.21
w/o Main Category 60.97 6325 6392 6372  66.67 64.98 5891 5929 59.62 61.64
w/o Contrastive Learning 6224 6457 6525 6505 68.06 66.33 60.14  60.53 60.86 62.92
w/o Fusion Module 60.92 6372  63.82 64.4 66.60 65.21 58.84 5955 5870  60.72

w/ Shikra 44.16  40.13 5348 4797  56.70 50.43 4997 4527 3254 3035
BrainLoc 64.13 67.08 67.18 6779  70.11 68.65 6194 62.69 61.79 63.92

information for predictions. The considerable drop
in performance, as shown in the "w/o Fusion Mod-
ule" row of the table, confirms the module’s pivotal
role in effectively integrating multi-source informa-
tion for accurate object localization.

Localization Module: To investigate how the
choice of the foundational localization model af-
fects BrainLoc’s overall performance and its com-
patibility with other models, we replaced the origi-
nal localization module with Shikra ("w/ Shikra").
This replacement led to a decline in performance,
indicating that BrainLoc’s overall efficacy is par-
tially dependent on the capabilities of its underlying
localization model. Nonetheless, it underscores the
modular flexibility of the BrainLoc architecture,
suggesting potential adaptability for future model
improvements and iterative upgrades.

In general, these experiments confirm the ratio-
nality of BrainLoc’s current design and the neces-
sity of each module. Given that the effectiveness
of the related fundamental techniques (Défossez
et al., 2023) has already been extensively validated
in prior studies [(Xia et al., 2024; Lin et al., 2022;
Scotti et al., 2024)], we refrain from redundant
discussions here.

4.5 Discussion

Why choose this combination of loss functions?
If both L ¢prrr—img and Ly Rr—cap €mploy con-
trastive learning, the model collapses, and train-
ing fails. When both L ¢/ g7 —img and LfpR1—cap
employ L; loss, the performance is inferior to us-
ing contrastive learning for L/ ry—cqp- Because
the CLIP model employs contrastive learning to
align text and image modalities, we also adopt con-
trastive learning to map fMRI signals into the CLIP
space. We choose cosine similarity for L sy rr—cat

because the downstream retrieval tasks are also
based on cosine similarity.

In Fig. 1, both ‘green apple’ and ‘red apple’
are labeled simply as ‘apple.” So, why can our
model distinguish between them during localiza-
tion while text-based models cannot? We first
align brain signals with image and other modalities,
thus assuming they capture the visual information,
including color details. The brain signals and tex-
tual signals are then fused through an attention
mechanism and fed into the localization network.
This process embeds color information into the
model, enabling the model to locate the items ex-
actly as the user intended, rather than just the cate-
gories. By contrast, text-based models trained on
datasets like COCO have coarser label granularity,
distinguishing only ‘apple’ as a category without
further specifying details like color.

5 Conclusion

In this paper, we presented BrainLoc, a novel
lightweight brain-based object detection model that
leverages fMRI signals to identify and locate target
objects in complex scenes. Experimental results
demonstrate that BrainLoc achieves SOTA perfor-
mance in brain-based localization tasks, combin-
ing the precision of traditional systems with the
convenience of brain-based approaches. This sig-
nificant advancement highlights the potential of
brain-computer interface (BCI) technologies (Zhao
et al., 2024b) in various applications, including as-
sistive technologies, military target detection, and
industrial automation. Given that fMRI data typi-
cally contain less signal noise compared to EEG,
our research primarily focused on fMRI. In future
work, we plan to shift our efforts toward EEG to
enhance real-time applications. overall, BrainLoc
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represents a significant step forward in brain-based
object detection, offering high accuracy and porta-
bility, and is expected to inspire further research
and development in the field of BCL.

Limitations

Although our work has shown promising results in
brain signal-based object detection, several limita-
tions remain. The performance of our model heav-
ily depends on the quality and quantity of brain
signal data. While fMRI signals can accurately
reflect brain activity, their high collection costs
make it difficult to obtain large-scale, high-quality
fMRI datasets. Meanwhile, significant individual
differences in brain activity patterns may affect the
model’s generalization ability across different sub-
jects. Additionally, the current datasets (NSD and
GOD) are collected in controlled laboratory set-
tings, which may not fully capture the complexity
and variability of real-world scenarios.
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A Appendix

A.1 Algorithm for Optimal Loss
Minimization

We introduce Alg. 1, which minimizes the total loss

matrix by balancing classification and IoU losses

to ensure a globally optimal solution for object

detection.

Algorithm 1 Hungarian Algorithm for Maximum
Matching Problem

1: Input: IoU matrix M € R™*"

2: Output: Optimal
(row_ind, col_ind)

3: Initialize M[i][j] = 0,

matching

Vieo,m—1],j¢€

[0,n — 1]

4: Compute IoU values: MTi][4] =
IoU(p;, gj), Yie[0,m—1],j€[0,n—1]

5: Row reduction: M'[i,j] + M][i,j] —
min(MT[i, :])

6: Column reduction: M"[i,j] «+ M'[i,j] —
min(M'[: /)

7. Mark zero elements and check if all zeros can
be covered by lines

8: if it is possible to cover all zeros with m lines
then

9: Matching is complete

10: else

11: Find the smallest uncovered element §

12: Adjust uncovered elements: M"[i, j] +
M"[i,j]+ 06

13: end if

14: Repeat marking zero elements and adjusting
the matrix until all zeros are covered by m
lines

15: Return the matched row and column indices
(row_ind, col_ind)
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