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Abstract

Large Language Models (LLMs) have signif-
icantly advanced natural language processing,
demonstrating strong capabilities in tasks such
as text generation, summarization, and reason-
ing. Recently, their potential for automating
precise text editing tasks across specialized do-
mains, such as programming code, LaTeX, and
structured database languages, has gained atten-
tion. However, current state-of-the-art LLMs
still struggle with executing precise, instruction-
driven edits, particularly when structural ac-
curacy and strict adherence to domain con-
ventions are required. To address these chal-
lenges, we introduce InstrEditBench, an au-
tomated benchmark dataset comprising over
30,000 structured editing tasks spanning di-
verse domains, including Wikipedia articles,
LaTeX documents, source code, and database
languages. Using this benchmark, we de-
velop FineEdit, a specialized editing model
explicitly trained for accurate, context-aware
text modifications. Experimental evaluations
demonstrate that FineEdit outperforms state-
of-the-art models, achieving improvements of
approximately 10% over Gemini models on
single-turn edits, up to 30% over Llama-3.2-
3B, and exceeding Mistral-7B-OpenOrca per-
formance by over 40% on direct editing tasks.
FineEdit also effectively generalizes to realis-
tic multi-turn editing scenarios, highlighting
its practical applicability. To facilitate further
research and reproducibility, we release Fi-
neEdit at https://github.com/StuRinDQB/
FineEdit and https://huggingface.co/
datasets/YimingZeng/FineEdit_bench.

1 Introduction

Large Language Models (LLMs) have brought
transformative progress to the field of natural lan-

*Equal contribution.
†Corresponding author.

guage processing, demonstrating remarkable ca-
pabilities in text generation, summarization, and
reasoning (Achiam et al., 2023; Chen et al., 2022,
2023, 2024; Li et al., 2025; Wu et al., 2024; Liang
et al., 2025). Recently, LLMs have received in-
creasing attention for their potential to automate
and enhance text editing across a variety of do-
mains (Celikyilmaz et al., 2020). Such editing ca-
pabilities is particularly needed under task-specific
application scenarios, e.g., code editing (Fan et al.,
2024; Lei et al., 2025), Wiki editing (Suri et al.,
2024), etc.

Despite this promise, current LLMs still face
notable limitations when applied to tasks that de-
mand direct editing, where the model must simulta-
neously understand the original text, follow the
instruction precisely, and generate semantically
aligned, high-quality edits. Even powerful pro-
prietary tools like ChatGPT often struggle to fully
understand user intent and reliably follow strict
editing instructions, especially in long-context sce-
narios (Castillo-González et al., 2022). Particularly,
LLMs’ general editing capabilities in task-specific
settings often fall short (Yao et al., 2023; Ma et al.,
2024). They tend to generate incorrect outputs and
stray from the given editing instructions.

To address these challenges, we propose a more
focused approach to editing with LLMs. Our key
insight is that narrowing the model’s attention to
two fundamental aspects, the exact location of the
edit and the content to be modified, can signifi-
cantly improve performance in direct editing tasks.
Per this intuition, we propose a dual approach con-
sisting of a dedicated benchmark (InstrEditBench)
for editing tasks and an editing-specific model (Fi-
neEdit). Specifically, we design an automated
workflow that focuses on accurately identifying
and evaluating structured text edits. This workflow
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identifies precise differences and ensures correct
edits through quality control. By reducing noise
and focusing on meaningful modifications, this pro-
cess produces a dedicated, high-quality benchmark.
It directly addresses limitations in existing meth-
ods and aligns better with the practical demands of
real-world editing tasks. Notably, our approach is
also generalized to multi-turn editing scenarios, a
much more realistic user scenario, where instruc-
tions arrive iteratively and allow the model to refine
its edits step by step.
Implementation and evaluation. We train the
FineEdit model on InstrEditBench benchmark, ex-
plicitly designed to optimize performance on di-
rect, instruction-driven text editing tasks. The
result shows that FineEdit achieves an improve-
ment of 10% over Gemini 1.5 Flash and Gemini
2.0 Flash (DeepMind, 2024) in single-turn editing
tasks, and up to 30% over Llama-3.2-3B (Meta AI,
2024) on diverse editing benchmarks, while outper-
forming Mistral-7B-OpenOrca (Lian et al., 2023;
Mukherjee et al., 2023; Longpre et al., 2023) over
40% on direct editing tasks.

The main contributions of this work include:

• A high-quality benchmark (InstrEdit-
Bench): We introduce the first systematically
constructed benchmark that spans four di-
verse domains and contains more than 30,000
single-turn and multi-turn structured editing
tasks, thereby establishing a unified and com-
prehensive evaluation standard for direct edit-
ing research.

• An innovative automated dataset genera-
tion workflow: We develop a comprehensive
workflow that ensures the benchmark’s qual-
ity by accurately identifying line numbers and
applying rigorous criteria to filter meaningful
and relevant edits.

• The FineEdit model: We present a special-
ized model designed for direct text editing,
demonstrating superior performance across
benchmarks compared with existing models.

2 Background

2.1 Problem Formulation

Each data point consists of an original structured
text, Torig, and an editing instruction, Iedit. The
objective is to generate an edited text, Tedit, that
incorporates the modifications specified by Iedit.

Formally, this process is defined as

Tedit = f
(
Torig, Iedit; θ

)
(1)

where θ represents learned parameters and f de-
notes a function instantiated by a LLM that maps
the original text Torig and editing instruction Iedit
to the edited text Tedit.

The parameters θ are learned from a dataset
consisting of triples {(T (i)

orig, I
(i)
edit, T

(i)
edit)}Ni=1 during

training, where the objective is to minimize the
discrepancy between the generated output and the
ground truth edited text.

Internally, f concatenates Torig and Iedit into a
single prompt and generates Tedit token by token in
an autoregressive manner. Specifically, if Tedit =
(y1, y2, . . . , yt), the probability of the edited text is
factorized as

p(Tedit | Torig, Iedit) =

t∏

i=1

p
(
yi | Torig, Iedit,

y1, y2, . . . , yi−1

) (2)

For finetuning on the editing task, the prompt
tokens (i.e., the original text and the editing instruc-
tion) are masked out in the loss function to ensure
that the model focuses only on predicting the cor-
rect edited tokens. At inference time, the model
processes the prompt and subsequently generates
Tedit.

The parameters θ are fine-tuned on labeled exam-
ples (Torig, Iedit, Tedit) by minimizing the negative
log-likelihood of the target tokens with the loss:

L(θ) = −
|Tedit|∑

t=1

logPθ(yt | Torig, Iedit, y1:t−1) (3)

over all training samples in the dataset.

2.2 LLM Editing Tasks

LLMs are increasingly recognized as versatile tools
for automating and enhancing editing tasks across
diverse domains. Previous studies have explored
LLMs for editing tasks in areas such as natural
language (e.g., wiki articles) and code. For in-
stance, CoEdIT (Raheja et al., 2023) employs task-
specific instruction tuning to achieve precise modi-
fications, while other works fine-tune models like
T5 (Raffel et al., 2020) on pairs of original and
edited texts (Faltings et al., 2021; Reid and Neubig,
2022; Mallinson et al., 2022; Du et al., 2022a,b;
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Kim et al., 2022). However, many of these ap-
proaches rely on specialized techniques or focus
narrowly on specific tasks, such as grammar cor-
rection (Mallinson et al., 2022; Fang et al., 2023),
text simplification (Štajner et al., 2022), paraphrase
generation (Chowdhury et al., 2022), or style trans-
fer (Reif et al., 2022), which limits their generaliz-
ability across a broader range of editing scenarios.
In the realm of code editing, Fan et al. (Fan et al.,
2024) examined LLMs for code change tasks and
identified weaknesses in generating accurate re-
views and commit messages. Beyond single-turn
editing, iterative or multi-turn editing can further
improve output quality by allowing incorporation
of progressive feedback, leading to more accurate
and context-aligned modifications (Madaan et al.,
2023; Schick et al., 2022). While these studies offer
valuable insights, they often fall short in providing
unified benchmarks and robust solutions to address
the full spectrum of editing challenges. Our work
addresses these gaps by introducing a comprehen-
sive, cross-scenario editing tasks benchmark that
covers Wiki, code, DSL, and LaTeX.

3 Method

3.1 Instruction categories

We leverage four data sources to cover a wide range
of representative text application scenarios: Wiki,
Code, DSL, and LaTeX. The details of each cate-
gories are described as follows:

• Wiki: Data is extracted from the WikiText lan-
guage modeling dataset (Merity et al., 2016),
which contains over 100 million tokens from
a dedicated subset of Wikipedia’s Good arti-
cles (Wikipedia, n.d.b) and Wikipedia’s Fea-
tured articles (Wikipedia, n.d.a). Specifically,
sections from these articles are extracted and
then contiguous segments are randomly se-
lected to provide data points with various
lengths.

• Code: Code samples are extracted from the
CodeSearchNet corpus (Husain et al., 2019),
which contains about two million pairs of com-
ments and code from GitHub projects. To
make the edit task more challenging, each
code sample in our benchmark is made up of
several instead of one code segment because
one single code segment is too short (about
10 lines).

• DSL: Database Domain Specific Language
(DSL) is also considered in our benchmark.
It consists of queries and schema defini-
tions from multiple public repositories (hive,
2024; b mc2, 2023; cassandra, 2024; Lerocha,
2024).

• LaTeX: LaTeX data is extracted from the La-
tex2Poster dataset (Latex2Poster, 2024) that
offers the LaTeX source code document of
research papers along with metadata. Specifi-
cally, each data point in our benchmark con-
sists of multiple subsections from each ex-
tracted document data.

3.2 Instruction Generation

Zero-shot instruction generation is efficient, but of-
ten lacks diversity. To address this limitation, we
build on the work of (Wang et al., 2022; Taori et al.,
2023) by leveraging ChatGPT-4o mini combined
with in-context learning (ICL) (Dong et al., 2024).
Our approach is designed to generate specific edit
requests tailored to the structural characteristics
of different data categories, as process ➀ in Fig-
ure 1. For Wiki, which primarily consists of clear
structural text elements like headings and subhead-
ings, we apply a zero-shot prompting strategy. In
contrast, for more complex domains such as La-
TeX, code, and DSL, we adopt ICL to improve the
diversity and nuance of generated instructions.

This category-specific strategy not only enriches
the instruction sets but also enhances their ability to
capture domain-specific editing challenges without
compromising on precision and efficiency. We will
describe prompt details in Appendix C.

3.3 Instruction filtering

After obtaining the edit instructions for each con-
tent, we apply them to the original text to produce
an edited version as process ➁ in Figure 1. How-
ever, ensuring the quality of the edited content re-
mains challenging. Although LLM generally fol-
lows the edit instructions, errors may occur—for
example, targeting incorrect line numbers or mis-
interpreting the intended semantics (Wang et al.,
2025; Cassano et al., 2024). To address this prob-
lem and improve data quality, we propose DiffEval
Pipeline, which integrates G-Eval (Liu et al., 2023)
and Git-Diff as an automatic filter to improve data
quality.

Besides adopting G-Eval for automated assess-
ment (Liu et al., 2023), the DiffEval Pipeline also
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Figure 1: Workflow of Generating High-quality InstrEditBench. The content difference is highlighted in blue.

relies on git (git, 2024), a widely used version
control system, to detect and classify textual mod-
ifications. Specifically, the command git diff
specifies differences between the original and mod-
ified texts as process ➂ in Figure 1, categorizing
changes into four types:

• Replacements: an original segment is
transformed into a new form, indicated as
[original_text -> modified_text]. This
captures cases where an existing text portion
is substituted with different content, which
may alter meaning or style.

• Deletions: a segment is removed entirely,
shown as [-original_text-]. Such re-
movals can simplify the text or eliminate irrel-
evant or erroneous sections.

• Insertions: new content is added, denoted as
[+modified_text+]. Insertions enrich the
text with extra details, clarifications, or elabo-
rations.

• Unchanged Text: labeled as equal:
unchanged_text. This indicates portions
that remain identical between the original and
modified versions, providing a reference for
what the model has chosen to retain.

By categorizing changes into these four types,
the DiffEval Pipeline offers a structured view of
how text is altered, enabling more precise evalua-
tions when paired with G-Eval.

Finally, process ➃ in Figure 1 demonstrates
that DiffEval carefully reviews the aggregated data
(marked with red arrows) alongside the edit request
to fully grasp the context, structure, and nuances
of the text. It identifies discrepancies between the
intended edits and the actual modifications, verify-
ing whether the changes faithfully implement the

edit instructions. By using the git diff output in-
stead of the complete edited content, DiffEval can
precisely locate modifications using supplementary
information such as line numbers and structured
differences. Moreover, git diff minimizes unnec-
essary noise and reduces computational overhead
by significantly lowering the token count compared
with the full edited content. Once all required data
is gathered, the G-Eval analysis process evaluates
the collected information to further enhance the
dataset quality.

Specifically, the analysis process begins by pars-
ing the structure of git diff outputs, categorizing
changes as replacements, deletions, insertions, or
unchanged segments. Next, it evaluates the seman-
tic meaning of both the original content and the
modifications to ensure that the changes are accu-
rate and complete. This involves a thorough review
of the original text, the edit request, and the result-
ing edits, applying predefined categorization rules,
and assessing overall coherence.

Based on this analysis process, the DiffEval can
assign a coherence score, G-Score, to the edited
content, reflecting the semantic integrity and log-
ical consistency of the modifications. This score
is used to filter out output that does not meet the
desired quality threshold α.

3.4 Generalize to Multi-turn Editing Task

Notably, our proposed framework is easily general-
ized to more practical multi-turn editing scenarios.
Specifically, given the initial content, we instruct
ChatGPT to generate a sequence of multiple dis-
tinct editing requests that are explicitly constrained
to be non-contradictory with each other. Each gen-
erated editing request targets different aspects or
details within the same content, ensuring that subse-
quent instructions complement rather than conflict
with previous edits. This setting reflects real-world
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editing workflows where users iteratively refine
content through consecutive instructions.

4 Experiment

4.1 Experimental Setup

In this section, we detail the experimental setups,
including dataset splits, model variants, baselines,
evaluation metrics, and implementation specifics.
Dataset and Model Variants. We evaluate Fi-
neEdit on our proposed InstrEditBench dataset us-
ing a 90/10 train-test split. Additionally, we in-
troduce three FineEdit variants, namely FineEdit-
L, FineEdit-XL, and FineEdit-Pro, which are fine-
tuned from the LLaMA-3.2-1B, LLaMA-3.2-3B,
and Qwen2.5-3B-Instruct base models respectively,
covering a broad spectrum of model architectures
and parameter scales.
Baselines. Our baselines include Gemini 1.5 Flash,
Gemini 2.0 Flash, LLaMA-3.2-1B, LLaMA-3.2-
3B, Qwen2.5-3B-Instruct, and Mistral-7B, span-
ning diverse architectures and sizes. We evaluate
both zero-shot and few-shot prompting on the Gem-
ini models, while open-source models are assessed
using zero-shot prompting.
Metrics. Following established approaches (Naka-
machi et al., 2020; Shen et al., 2017), we use BLEU
and ROUGE-L metrics to assess the vocabulary
and structural consistency between the edited and
reference texts.
Implementation details. Training details are pro-
vided in Appendix A.

4.2 Performance of Existing Models

We evaluated FineEdit against several state-of-the-
art baselines on the InstrEditBench dataset across
four data categories as presented in Table 3.
Comparison with Zero-shot Performance.
Among all baselines, Gemini 1.5 Flash achieved
the highest overall scores, while Mistral-7B-
OpenOrca recorded the lowest BLEU and
ROUGE-L values. Although model size is
typically a critical factor, Gemini 2.0 Flash
did not outperform Gemini 1.5 Flash in terms
of overall effectiveness. For example, despite
having more parameters than LLaMA-3.2-1B,
Mistral-7B-OpenOrca underperformed on both
metrics, highlighting the importance of model
architecture and training strategies. Additionally,
Gemini 2.0 Flash demonstrated superior semantic
understanding in the Wiki category, with a BLEU
score of 0.9133 and a ROUGE-L score of 0.9429,

yet its overall performance remained inferior to
that of Gemini 1.5 Flash.

FineEdit, and in particular its FineEdit-Pro vari-
ant, further outperforms all zero-shot baselines.
FineEdit-Pro achieves an overall BLEU score of
0.9245, representing improvements of approxi-
mately 11.6%, 57.7%, and 184.7% over Gem-
ini 1.5 Flash (0.8285), LLaMA-3.2-3B (0.5862),
and Mistral-7B-OpenOrca (0.3246), respectively.
These gains are consistently observed across in-
dividual data categories—for example, FineEdit-
Pro attains BLEU scores of 0.9521 and 0.9538 in
the DSL and Code domains, respectively. These
results underscore the effectiveness of FineEdit’s
targeted fine-tuning strategy, which focuses on pre-
cise editing of location and content to preserve both
structural and semantic integrity.
Comparison with Few-shot Performance. We
further evaluated few-shot learning on the Gemini
models. Although few-shot prompting notably im-
proved performance in some categories, such as the
LaTeX domain where Gemini 2.0 Flash achieved a
20% higher BLEU score compared to the zero-shot
setting, the overall few-shot results still remained
inferior to FineEdit. In certain cases, such as the
SQL category, few-shot learning provided mini-
mal improvement, achieving BLEU and ROUGE-
L scores of only 0.1600 and 0.1814, respectively.
These findings highlight the effectiveness and im-
portance of our curated benchmark in driving ad-
vancements in editing tasks.

4.3 FineEdit: Supervised Finetuning
Our FineEdit model is offered in three variants:
FineEdit-L, FineEdit-XL, and FineEdit-Pro. Un-
der zero-shot conditions, FineEdit-L consistently
outperforms all baseline models in BLEU and
ROUGE-L scores for LaTeX, DSL, Wiki, and
Code tasks. For example, compared to Gemini 1.5
Flash, FineEdit-L improves overall BLEU scores
by roughly 8%, with even larger gains observed in
specific categories. Notably, FineEdit-XL performs
similarly to FineEdit-L, suggesting that increasing
the parameter count from 1B to 3B using LLaMA
does not yield a significant performance boost.

By leveraging the superior instruction-following
capabilities of Qwen2.5-3B-Instruct, our final vari-
ant, FineEdit-Pro, further elevates performance.
FineEdit-Pro achieves an overall BLEU score of
0.9245, which represents improvements of approx-
imately 11.6% over Gemini 1.5 Flash, and gains
of around 14.7% and 11.7% in the DSL and Wiki

2197



Method Model Open-Source
LaTeX DSL Wiki Code Overall

BLEU RG-L BLEU RG-L BLEU RG-L BLEU RG-L BLEU RG-L

Zero-shot

Gemini 1.5 Flash ✗ 0.8665 0.9150 0.8297 0.8555 0.7626 0.8361 0.8551 0.9073 0.8285 0.8819
Gemini 2.0 Flash ✗ 0.7413 0.7951 0.4706 0.4964 0.9133 0.9429 0.1339 0.2737 0.5853 0.6519
Llama-3.2-1B ✓ 0.5088 0.6108 0.5564 0.6596 0.4413 0.5766 0.4742 0.6072 0.4867 0.6069
Llama-3.2-3B ✓ 0.5969 0.6925 0.5747 0.6821 0.5061 0.6384 0.6638 0.7727 0.5862 0.6976
Qwen2.5-3B-Instr ✓ 0.5467 0.6712 0.4107 0.4991 0.4170 0.5699 0.3967 0.5390 0.4492 0.5816
Mistral-7B-Orca ✓ 0.3782 0.5770 0.0361 0.1638 0.3608 0.5840 0.3763 0.6447 0.3246 0.5395

Few-shot
Gemini 1.5 Flash (2 shot) ✗ 0.8742 0.9324 0.0908 0.1190 0.8657 0.9139 0.7412 0.8302 0.7249 0.7845
Gemini 2.0 Flash (2 shot) ✗ 0.9464 0.9723 0.1600 0.1814 0.9380 0.9665 0.8327 0.8698 0.8011 0.8302

FineEdit
FineEdit-L ✓ 0.9311 0.9697 0.9334 0.9615 0.8077 0.9036 0.9296 0.9725 0.8957 0.9504
FineEdit-XL ✓ 0.8867 0.9502 0.9241 0.9552 0.8120 0.9056 0.9295 0.9720 0.8824 0.9441
FineEdit-Pro ✓ 0.9539 0.9821 0.9521 0.9710 0.8521 0.9185 0.9538 0.9836 0.9245 0.9628

Table 1: Comparison of LLMs on BLEU and ROUGE-L for LaTeX, DSL, Wiki, Code. Overall data displays
average performance among all data categories. The best results are highlighted in bold.

Method Model Open-Source
LaTeX DSL Wiki Code Overall

BLEU RG-L BLEU RG-L BLEU RG-L BLEU RG-L BLEU RG-L

Zero-shot

Gemini 1.5 Flash ✗ 0.1745 0.3067 0.9643 0.9787 0.7785 0.8908 0.3882 0.5291 0.5764 0.6763
Gemini 2.0 Flash ✗ 0.1304 0.2435 0.4243 0.4328 0.8624 0.9145 0.1426 0.2454 0.3899 0.4591
Llama-3.2-1B ✓ 0.3168 0.4371 0.2593 0.3466 0.2291 0.3584 0.1749 0.3196 0.2450 0.3654
Llama-3.2-3B ✓ 0.3101 0.4374 0.3274 0.4355 0.2871 0.4073 0.2988 0.4177 0.3059 0.4245
Qwen2.5-3B-Instr ✓ 0.5196 0.6344 0.2083 0.2603 0.2845 0.4261 0.3985 0.5138 0.3527 0.4587

Few-shot
Gemini 1.5 Flash (2 shot) ✗ 0.4811 0.5423 0.0511 0.1167 0.7511 0.8462 0.2388 0.3430 0.3805 0.4621
Gemini 2.0 Flash (2 shot) ✗ 0.9099 0.9247 0.0294 0.0406 0.9272 0.9740 0.4719 0.6266 0.5846 0.6415

FineEdit
FineEdit-L ✓ 0.6823 0.8531 0.8071 0.8730 0.4938 0.6588 0.6707 0.7773 0.6635 0.7906
FineEdit-XL ✓ 0.3230 0.4468 0.8050 0.8798 0.4522 0.6333 0.6806 0.7756 0.5652 0.6839
FineEdit-Pro ✓ 0.8461 0.8917 0.8123 0.8902 0.6975 0.8286 0.9499 0.9796 0.8265 0.8975

Table 2: Multi-turn editing results for LaTeX, DSL, Wiki and Code. Overall data displays average performance
among all data categories.

tasks, respectively. These consistent improvements
across multiple data categories underscore the ef-
fectiveness of our supervised fine-tuning strategy
and highlight the importance of a strong instruction-
tuned base model over merely increasing model
size.

We also compared our models with Gemini’s
few-shot prompting approach in real-world scenar-
ios. Although in-context learning (ICL) improves
Gemini’s performance in certain cases, such as an
8% increase in BLEU score on the Wiki dataset
for Gemini 2.0 Flash, the overall performance re-
mains inferior to FineEdit-Pro. This superior per-
formance highlights the effectiveness of our high-
quality, rigorously validated InstrEditBench dataset
in enabling more robust and generalizable solutions
for editing tasks.

4.4 Multi-turn Editing Evaluation

We also evaluated the extended benchmark on Fi-
neEdit in the multi-turn setting. In this extension,
each data instance contains multiple editing re-
quests. To simulate real multi-turn scenario, we

apply these instructions iteratively: each request is
executed on the output produced by the previous
one, ensuring that the edits are applied in a cumu-
lative manner. We then assess the final output to
determine whether it accurately reflects the cumu-
lative effect of all editing instructions after the full
sequence of modifications has been applied. To
assess the performance of multi-turn, we randomly
sample 100 multi-turn data for each category, and
test them on different models.

Results show that multi-turn editing leads to
consistent performance drops across all domains.
Specifically, BLEU scores for LaTeX drop from
0.9539 to 0.8461, DSL from 0.9521 to 0.8123,
Wiki from 0.8521 to 0.6975, and Code from 0.9538
to 0.9499. These results indicate that multi-turn
scenarios are substantially more challenging, espe-
cially for Wiki and DSL, while code exhibit strong
robustness under multi-turn edits. This indicates
that the decline is the accumulation of errors across
turns. Each instruction is applied to the output of
the previous one, which may already contain small
deviations. These deviations can propagate through
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Edit Request 1: Change the brackets in the code to semicolons.
Original: def test(options): options.data = [] ; def test2(options): options.data = []
Gemini (✗) def test(options): options.data = None ; def test2(options): options.data = None
FindEdit Pro (✓) def test(options): options.data = ; ; def test2(options): options.data = ;

Edit Request 2: Change \subsection{Strengths} to \subsection*{Strengths}.
Original: \subsection{Strengths} The topic of responsible AI is ...
Gemini (✓) \subsection*{Strengths} The topic of responsible AI is ...
FindEdit Pro (✗) latex{\subsection{Strengths}} The topic of responsible AI is ...

Edit Request 3: Replace “Falcon” with “Captain America”.
Original: In “Captain America: Brave New World,” Sam Wilson, formerly the Falcon, assumes ...
Gemini (✗) In “Captain America: Brave New World,” Sam Wilson, formerly known as the Falcon, assumes ...
FindEdit Pro (✓) In “Captain America: Brave New World,” Sam Wilson, formerly the Captain America, assumes ...

Edit Request 4: Add column created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP.
Original: CREATE TABLE worker_salaries (employee_id INT, ...)
Gemini (✗) ALTER TABLE community_gardens ADD COLUMN created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
FindEdit Pro (✓) CREATE TABLE community_gardens (..., created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP)

Table 3: Colour-coded comparison of Gemini and FindEdit Pro responses to four edit requests. (✗ = incorrect)
stands for incorrect editing, while (✓ = correct) stands for correct editing.

subsequent steps and lead to compounded errors in
the final output.

Despite the degradation in multi-turn settings,
FineEdit-Pro achieves an average BLEU of 0.8265,
substantially higher than Gemini 1.5 Flash (0.5764)
and Gemini 2.0 Flash (0.3899). This further demon-
strates the effectiveness of our dataset design and
its extensibility to diverse editing scenarios.

4.5 Qualitative Study

To qualitatively assess the performance of Find-
Edit on single-turn editing tasks, we conduct sev-
eral studies as shown in Table 3. This table il-
lustrates eight examples of how FineEdit-Pro and
Gemini respond to diverse editing requests. In
several cases, FineEdit-Pro accurately applies the
required changes. Specifically, it could correctly
add new columns in DSL or adjust environment
commands. However, Gemini often restates the
instruction without actually implementing the in-
tended modifications. Specifically, both Gemini
1.5 Flash and 2.0 Flash perform well on LaTeX
and Wiki tasks, yet they struggle with DSL and
Code tasks. For example, as shown in Table 3,
FineEdit-Pro correctly identifies the target table
and appends a new column named created_at
with the data type DEFAULT CURRENT_TIMESTAMP.
In contrast, Gemini misinterprets the instruction,
merely repeating the edit request rather than ap-
plying the intended change. These observations
highlight the qualitative strengths of our proposed
FineEdit approach.

Nonetheless, FineEdit is not without short-
comings. In the LaTeX example depicted
in Table 3, Gemini accurately locates the

subsection{Strengths} and updates it as speci-
fied. However, although FineEdit-Pro also identi-
fies and modifies the correct location, it generates
the correct response twice, which deviates from
the direct editing requirement. This discrepancy
suggests that FineEdit-Pro, though generally more
reliable, can overapply modifications in specific
cases.

Overall, these results illustrate FineEdit-Pro’s
capacity to handle more complex edits, particularly
for DSL and Code, while Gemini often fails to
implement them. Nevertheless, occasional issues
like duplicate outputs highlight the need for refine-
ment, ensuring FineEdit-Pro consistently adheres
to direct editing requirements without introducing
redundant content. On the other hand, Gemini oc-
casionally performs better in simpler tasks, such as
LaTeX updates.

FineEdit is also generalized well to the multi-
turn editing task scenarios. Table 4 demon-
strates an example of how FineEdit-Pro per-
form more precisely than Gemini. In this
scenario, FineEdit-Pro successfully applies all
three requested changes: it removes the du-
plicate \begin{abstract}, replaces the inline
\footnote{} with a \footnotemark and corre-
sponding \footnotetext{} pair, and rewrites the
commented \{TODO...} as a finalized, explanatory
sentence.

In contrast, though Gemini removes the du-
plicate \begin{abstract}, it add a duplicate
\end{abstract} in the end of this content. Ad-
ditionally, Gemini does not follow the instruction
to split the \footnote{} into \footnotemark and
\footnotetext{}, instead simply retaining the
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Edit Request 1: Remove the duplicate \begin{abstract} at the beginning of the abstract environment.
Original: \begin{abstract} \begin{abstract} . . .
Gemini (✗) \begin{abstract} . . . \end{abstract} \end{abstract}
FindEdit Pro (✓) \begin{abstract} . . . \end{abstract}

Edit Request 2: Convert \footnote{...} to \footnotemark + \footnotetext{...}.
Original: \footnote{Dataset is available at \url{...}}
Gemini (✗) \footnote{Dataset is available at \url{...}}
FindEdit Pro (✓) \footnotemark . . . \footnotetext{Dataset is available at \url{...}}

Edit Request 3: Remove the ’TODO’ from the ’TODO’ line.
Original: \{TODO: we introduce distractibility as a new metric for evaluating language models.}
Gemini (✓) \{We introduce distractibility as a new metric for evaluating language models.}
FindEdit Pro (✓) \{We introduce distractibility as a new metric for evaluating language models.}

Table 4: Color-coded comparison of Gemini and the FineEdit Pro for a multi-turn task with three edit requests. (✗ =
incorrect) indicates an unsatisfied edit, while (✓ = correct) indicates a satisfied edit.

Threshold Wiki LaTeX DSL Code

G-score ≥ 9 97% 93% 90% 97%
G-score < 9 87% 89% 66% 83%

Table 5: Annotation accuracy across content types under
different G-score thresholds.

original inline footnote. These errors indicate that
Gemini struggles with compound edits that involve
structural modifications across multiple locations.

4.6 Human Evaluation

To assess whether DiffEval improves the over-
all quality of the dataset, we carried out a human
evaluation. Because the dataset includes Code and
DSL categories that require programming exper-
tise, we recruited three evaluators, each with at
least a bachelor’s degree in computer science or
a related discipline. We established the following
guidelines to ensure rigorous assessment: (1) Pre-
cise Observation: Confirm that the updated content
exactly corresponds to the segment specified by
the edit request. (2) No Unintended Modifications:
Verify that no other sections have been altered; any
unexpected changes result in failure. (3) Three-
Round Procedure: Two evaluators independently
review each item, with a third evaluator resolving
any discrepancies.

We examined 100 items per category and found
that data processed through our DiffEval pipeline
exhibited noticeably enhanced accuracy, as shown
in Table 5. The Wiki and Code datasets, in particu-
lar, demonstrated the most reliable outcomes, with
edited content precisely matching the requested
modifications. Notably, the DSL dataset experi-
enced the greatest improvement, with quality in-
creasing by over 24% compared to data that did not
meet DiffEval’s standards.

4.7 Ablation Study on DiffEval Components
To better understand the contribution of each com-
ponent in the DiffEval pipeline, we conducted two
ablation experiments. Manual annotation followed
the protocol described in Section 4.6.

Git diff effectiveness. We evaluated a reduced
pipeline in which G-Eval judged the alignment be-
tween the instruction and the edited text without
access to git diff. From its output, we randomly
sampled 100 examples whose G-Score was at least
nine and annotated them. For comparison, we an-
notated another 100 examples produced by the full
DiffEval pipeline, where G-Eval received the git
diff instead of the full edited text.

Including git diff raised the accuracy from
0.85 to 0.94. These results indicate that git diff
contributes important structural information for
identifying precise alignment between the instruc-
tion and the edit.

G-score threshold selection. We also examined
the effect of the G-score threshold α used in fil-
tering. Setting α = 8 results in many examples
where the core instruction is followed, but this
will sometimes introduce unintended formatting
changes. One common issue is the insertion of
extra spaces throughout the text. For instance, in
a deletion instruction targeting a historical phrase,
the phrase was correctly removed, but the resulting
diff introduced multiple superfluous spaces across
the paragraph. This violates the requirement to pre-
serve all formatting outside the instructed change.
Such formatting issues were significantly reduced
when the threshold was increased to α = 9.

5 Conclusion

We introduce InstrEditBench, a benchmark of over
30k editing tasks spanning Wiki, LaTeX, code, and
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DSL, aimed at precise instruction-based text edit-
ing. To ensure supervision quality, we develop
DiffEval, an automated pipeline combining struc-
tural and semantic filters. We further validate our
benchmark with FineEdit, a model fine-tuned on
InstrEditBench, achieving up to 10% gains over
leading models. Designed for both single-turn and
multi-turn editing, our modular benchmark and
pipeline enable broad applicability.

6 Limitations

Limited Deployment Scope. Due to cost and hard-
ware constraints, our evaluations were limited to
large proprietary LLMs (e.g., Gemini), rather than
large open-source models.
Controlled Context Evaluation. Our benchmark
focuses on controlled evaluation contexts, where
it does not yet encompass long-context chain-of-
thought scenarios, as smaller LLMs are confined
by limited context windows, even though such tech-
niques could be effective in proprietary models.
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A Additional Implementation Details

For existing models, we strictly adhere to configu-
rations from their original papers. To manage fixed
maximum token lengths L, if the combined Torig
and Iedit exceed L, we partition Torig into chunks of
size ≤ L, process each chunk independently with
the same edit instruction, and concatenate the out-
puts to form the complete edited text. We fine-tune
models using Low-Rank Adaptation (LoRA) (Hu
et al., 2021) with r = 8, α = 32, and a dropout
rate of 0.05, employing the AdamW optimizer with
a learning rate of 2× 10−5, training for 2 epochs,
an effective batch size of 1, and 4 gradient accumu-
lation steps.
Chunking long context: Many large language
models impose a fixed maximum token length L
on their input (and sometimes output) sequences.
Consequently, if the combination of Torig and Iedit
exceeds this limit, we divide the Torig into smaller
chunks of size ≤ L. Each chunk is then processed
independently—paired with the same edit request
and later concatenated to form the complete edited
text. This approach ensures that every chunk fits
within the model’s token budget, preventing over-
flow and reducing memory usage while preserving
the overall structured editing behavior.
Fine-Tuning Configuration: We use a LoRA rank
of r = 8 and LoRA alpha α = 32, following the
original LoRA paper (Hu et al., 2021). This com-
bination (r = 8, α = 32) and a learning rate of
2 × 10−5 are widely used in practice, including
in the default settings of the HuggingFace PEFT
library. It produces a scaling factor of α/r = 4,
which balances training stability and memory effi-
ciency, enabling the model to learn meaningful
updates without destabilizing training. We set
lora_dropout = 0.05, a typical value that helps
regularize LoRA updates and reduce overfitting.
Training and Generation Settings are as follows:

• Epochs: 2 epochs, which is generally suffi-
cient for convergence in our editing task.

• Gradient Accumulation Steps: 4 (necessary
due to a small batch size of 1 and GPU con-
straints).

• Max Chunk Tokens: 2048.

• Max Length: 4096.

• Generation Settings: temperature = 0.2,
top-p = 0.95.

The token constraints ensure no exceeding of the
model’s context window and maintain consistent
training across models. These parameters reduce
randomness while keeping the generated text rele-
vant to the task.

Decoding and Inference: During generation, we
set the temperature to 0.2 and used top-p sampling
with a probability of 0.95, then merging outputs
from all chunks to produce the final edited text.
The temperature and top-p settings follow previous
editing task studies (Cassano et al., 2024) to ensure
minimal changes rather than creative expansions as
our editing tasks require precise.

B Data Example

Table 6 presents representative examples from
our benchmark, covering four distinct data cat-
egories—WikiText, LaTeX, Code, and Database
DSL. Each example includes the original content,
the user-issued edit request, the resulting edited
content, the line-level difference, and the associ-
ated G-score indicating edit difficulty.

We make a concrete instance using data in the
LaTeX category in Table 6. If the edit request is
to “Remove the duplicate \begin{abstract} at
the beginning of the abstract environment," the diff
output might display on Line 1:

\begin{abstract}[-\begin{abstract}-]

This indicates that the duplicate has been success-
fully removed.

C Dataset Generation Prompts

We use the following prompts for dataset genera-
tion on each domain.
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user_prompt = r”’Task: Generate one
precise editing request for the given
LaTeX code, focusing exclusively on one
detailed LaTeX-specific aspect.
1. Analyze LaTeX Components: Examine
the LaTeX code thoroughly, identifying
elements such as commands, environments,
packages, mathematical expressions,
figures, tables, references, labels, and
syntax structures.
2. Target a Single LaTeX Issue: The editing
request must address only one specific
LaTeX-related issue such as commands,
environments, packages, mathematical
expressions, figures, tables, references,
labels, and syntax structures.
3. Clearly define the exact edit
needed. The action should be definitive
and unambiguous, avoiding any form of
suggestion, optional language, or choices.
Do not include reasons for the edit or any
additional information beyond the request.
4. Do not include reasons for the edit or
any additional information beyond the edit
request. The request should be a direct
instruction.
The request examples are:
[Example 1]
<Edit Request>
Replace the \begin{equation} ...
\end{equation} environment with a \[
...\] display math environment to present
the equation.
</Edit Request>
[Example 2]
<Edit Request>
Remove the \centering command inside the
figure environment and insert \centering
immediately after \begin{figure}.
</Edit Request>
[Example 3]
<Edit Request>
Change the citation command \cite{einstein}
to \parencite{einstein} to display the
citation in parentheses.
</Edit Request>
[Example 4]
<Edit Request>
Change the column specification in the
tabular environment from {l l l} to {l c
r} to adjust the alignment of the data
columns.
</Edit Request>
[Example 5]
<Edit Request>
Replace the placeholder ??? in the
reference text with \ref{sec:relwork} to
properly reference the “Related Work”
section.
</Edit Request>
[Example 6]
<Edit Request>
Rename the macro \vect to \vecbold in
both its definition and throughout the
document.
</Edit Request>

[Example 7]
<Edit Request>
Add the optional width argument to
\includegraphics{example-image} as
\includegraphics[width=0.5\textwidth]
{example-image} to scale the image.
</Edit Request>
[Example 8]
<Edit Request>
Remove the \usepackage{epsfig} line and
replace it with \usepackage{graphicx} to
handle graphics
</Edit Request>

I will give you the content and then
the editing request.
Please Edit the content based on the
editing request.
While Editing, don’t add other words like
modified or something. Just Edit directly.

Content: {original_context}
Editing Request: {edit_request}
Please return the complete content after
editing.
Don’t skip the empty line and keep the
original
apart from the editing part.

We use the following prompts for G-Eval.

I will give you the content and then the
editing request.
Please Edit the content based on the
editing request.
While Editing, don’t add other words like
modified or something.
Just Edit directly.

Content: {original_context}
Editing Request: {edit_request}
Please return the complete content after
editing.
Don’t skip the empty line and keep the
original apart from the editing part.
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Data Category Orignal Content Edit Request Edited Content Difference G-
score

WikiText ...As with previous <unk> Chroni-
cles games, Valkyria Chronicles III
is a tactical role @-@ playing game
where players take control of a mili-
tary unit...

Replace “\<unk>\” with “Valkyria”
where it appears in the text.

...As with previous Valkyria Chroni-
cles games, Valkyria Chronicles III
is a tactical role @-@ playing game
where players take control of a mili-
tary unit...

Line 2 differs: Differences: ...As with
previous [<un -> Val]k[> -> yria] Chron-
icles games, Valkyria Chronicles III is a
tactical role @-@ playing game where
players take control of a mili- tary unit...

9

LaTex \begin{abstract}\n\begin{abstract}\n
%\mika{}, \guandao{}, \leo{}\n
\vspace{-0.2cm}\n Neural radiance
fields (NeRF) rely on volume
rendering to...

Remove the duplicate \be-
gin{abstract} at the beginning
of the abstract environment.

\begin{abstract}\n %\mika{}, \guan-
dao{},\leo{}\n \vspace{-0.2cm}\n
Neural radiance fields (NeRF) rely
on volume rendering to...

Line 1 differs: Differences: \be-
gin{abstract}[- \begin{abstract}-]

9

Code ...def yield_nanopub(assertions, an-
notations, line_num):\n """Yield
nanopub object""" if not asser-
tions:...

Change the function definition from:
def yield_nanopub(assertions, anno-
tations, line_num)
to include type annotations as:
def yield_nanopub(assertions: list,
annotations: dict, line_num: int) ->
dict

...def yield_nanopub(assertions: list,
annotations: dict, line_num: int) ->
dict: """Yield nanopub object""" if
not assertions:...

Line 1 differs: Differences: def
yield_nanopub(assertions[+: list+],
annotations[+: dict+], line_num[+:
int+])[+ -> dict+]:

10

Database DSL ...CREATE TABLE DB_PRIVS\n
(\n DB_GRANT_ID NUMBER
NOT NULL,\n CREATE_TIME
NUMBER (10) NOT NULL,\n
DB_ID NUMBER NULL,\n )...

Rename the column
"CREATE_TIME" in the DB_PRIVS
table to "CREATION_TIMESTAMP"

...CREATE TABLE DB_PRIVS\n
(\n DB_GRANT_ID NUM-
BER NOT NULL,\n CRE-
ATION_TIMESTAMP NUMBER
(10) NOT NULL,\n DB_ID NUM-
BER NULL,\n )...

Line 4 differs: Differences: CREATE[E
->ION]_TIME[+STAMP+] NUMBER
(10) NOT NULL,

9

Table 6: Data examples of different data categories with all attributes (content, edit request, edited content, difference,
and G-score).
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