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Abstract

Maltese is a unique Semitic language that has
evolved under extensive influence from Ro-
mance and Germanic languages, particularly
Italian and English. Despite its Semitic roots,
its orthography is based on the Latin script,
creating a gap between it and its closest linguis-
tic relatives in Arabic. In this paper, we ex-
plore whether Arabic-language resources can
support Maltese natural language processing
(NLP) through cross-lingual augmentation tech-
niques. We investigate multiple strategies for
aligning Arabic textual data with Maltese, in-
cluding various transliteration schemes and ma-
chine translation (MT) approaches. As part of
this, we also introduce novel transliteration sys-
tems that better represent Maltese orthography.
We evaluate the impact of these augmentations
on monolingual and mutlilingual models and
demonstrate that Arabic-based augmentation
can significantly benefit Maltese NLP tasks.

1 Introduction

Maltese is the only Semitic language written in
the Latin script and the only one that is an official
language of the European Union. It retains a core
Semitic structure but has undergone extensive lexi-
cal borrowing and structural influence from Italian
and English. Despite its roots in North African
Arabic, modern Maltese and Arabic are now or-
thographically and lexically distant, posing unique
challenges for leveraging Arabic NLP resources to
support Maltese.

Given the low-resource status of Maltese, re-
cent work has focused on leveraging multilingual
language models and transfer learning (Lauscher
et al., 2020; inter alia). In this paper, we pur-
sue a complementary strategy: enriching Maltese
datasets through augmentation derived from Ara-
bic resources. While doing so, we address the
divergence in script and phonology between Ara-
bic and Maltese, by considering multiple layers
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Buckwalter >wqft AlsyArp fy AlTryq.
Uroman awqft alsyara fy altryq.
CharTx uqft alsjara fi altriq.
MorphTx awqefat is-sejjara fit-teriq.
MT Waqqaft il-karozza fit-triq.

Maltese Ipparkjajt il-karozza fit-triq.
English I parked the car on the street.

Table 1: Arabic sentence and its Buckwalter, Uroman,
and transliterations using our new systems (CharTx
and MorphTx), along with Maltese machine transla-
tion (MT) and native Maltese versions.

of transliteration and translation to Arabic inputs.
These include transliteration schemes from previ-
ous works such as Buckwalter (Buckwalter, 2002),
Uroman (Hermjakob et al., 2018), as well as ma-
chine translations. As part of this work, we develop
novel phonology- and morphology-aware translit-
eration systems, which we publicly release.1 See
example in Table 1. We apply these augmentations
individually and in combination.

To assess the effectiveness of Arabic augmen-
tation, we evaluate its impact across three lan-
guage models: mBERT, BERTu (a Maltese BERT
model), and mBERTu (mBERT with additional
Maltese pre-training). Our experiments demon-
strate that the type of augmentation data signifi-
cantly affects downstream performance and that
models with more Maltese knowledge benefit dif-
ferently from Arabic augmentation compared to
less Maltese-aware models. We also show that com-
bining multiple augmentation techniques is helpful.

The paper presents related work in Section 2,
describes our transliteration methods in Section 3,
outlines the experimental setup in Section 4, and
presents our results in Sections 5 and 6.

1https://www.github.com/MLRS/maltify_arabic
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2 Related Work

2.1 Cross-lingual Transfer
Multilingual models have been shown to be quite
effective for cross-lingual transfer (Wu and Dredze,
2019), but their effectiveness on low-resource lan-
guages is often limited by their representation in
the model’s pre-training data, which is often small
or non-existent (Wu and Dredze, 2020; Lauscher
et al., 2020; Muller et al., 2021; Winata et al., 2022).
Low-resource languages are particularly limited to
generalise well due to miniscule annotated datasets.
However, few-shot cross-lingual fine-tuning has
been shown to be an effective strategy, where data
from a high-resource language is used to improve
performance on a low-resource language (Lauscher
et al., 2020; Zhao et al., 2021; Schmidt et al., 2022).

Previous works have shown that script mismatch
can particularly impact performance, while translit-
eration can be used as a way to align languages
in a unified script and boost cross-lingual transfer
(Muller et al., 2021; Liu et al., 2025). Closer to our
setting, Micallef et al. (2023) study Maltese as a
dialect of Arabic through transliteration. We ex-
tend this by comparing broader data augmentation
strategies and analysing their effects across models
with varying degrees of Maltese similarity.

2.2 Transliteration
Various Arabic-to-Latin transliteration systems
have been proposed with differing goals. Buckwal-
ter maps Arabic letters to ASCII characters deter-
ministically (Buckwalter, 2002), while CAPHI em-
phasizes phonetic accuracy (Habash et al., 2018).
Uroman offers general Latin-script mappings for
many languages, including Arabic (Hermjakob
et al., 2018). Eryani and Habash (2021) propose a
Romanisation system tailored for diacritised bibli-
ographic records. We use Buckwalter and Uroman
as baselines in our experiments, but note that these
representations often diverge from Maltese orthog-
raphy, limiting their effectiveness for our task.

3 Our Transliteration Systems

In this section, we outline the two Arabic-to-
Maltese transliteration systems we developed, with
all mapping rules listed in Appendix A.

3.1 CharTx: Character Mappings
We define Arabic-to-Maltese character mappings
by reversing the Maltese-to-Arabic rules from Mi-
callef et al. (2023). Ambiguities in that work, such

as ‘s’ mapping to � s or � S, collapse trivially to
one Maltese form in our case. More challenging
are the Arabic glides ø
 y and ð w, which can func-

tion as long vowels when preceded by � i and
�

u
diacritics, respectively (Habash, 2010). We handle
these by enumerating all diacritic combinations and
mapping accordingly.

Our system avoids generating Maltese letters like
‘ċ’, ‘g’, ‘p’, ‘v’, and ‘z’, as these largely arise from
non-Arabic sources. For instance, while ‘g’ could
map from h. j, we consistently map it to ‘ġ’, its
more frequent counterpart. Letters like ‘p’ and ‘v’
may relate to H. b or

	¬ f, but are rarely found in
words of Arabic origin.

Finally, characters not explicitly mapped are pre-
served. The mappings are applied at the word level,
so we tokenise using CAMeL Tools when needed
(Obeid et al., 2020). For cases where we tokenise
we rejoin transliterated tokens and detokenise to
remove unwanted spacing before punctuation.2

3.2 MorphTx: Morphological Features

On top of character mappings, we incorporate a lin-
guistic disambiguator to predict diacritised forms
using CAMeL Tools (Obeid et al., 2020), which
implements the BERT-based model of Inoue et al.
(2022) with the Egyptian CALIMA C044 morpho-
logical database (Habash et al., 2012). We use the
Egyptian model due to the greater similarity of
Maltese to Dialectal Arabic over MSA. Suitable
analysers for closer dialects like Tunisian were not
available. However, when predictions fail under
the Egyptian model, the system falls back to MSA.

The disambiguator selects the highest-scoring
diacritised form from all possible morphological
analyses in context, enabling more accurate applica-
tion of the character mappings (CharTx) from Sec-
tion 3.1. It also provides morpheme segmentation
and POS tags, allowing us to define morpheme-
specific mappings that override character-level
rules. For example, DET È@ Al maps to ‘il-’, and
PRON_2MP maps to ‘kom’. We include mappings for
all Arabic affixes in the analyser database, and map
them appropriately to Maltese. We also capitalise
morphemes tagged as proper nouns (NOUN_PROP).
Additionally, following Micallef et al. (2023), we
handle Maltese orthographic conventions such as
the contraction of fi il- to fil- ‘in the’, and sun letter
assimilation, e.g., il-żejt to iż-żejt ‘the oil’.

2The original boundaries may not always be preserved.

21581



4 Experimental Setup

Our goal is to improve cross-lingual transfer to
Maltese by transliterating Arabic and using it for
data augmentation. Our few-shot setup involves
fine-tuning on Arabic data, followed by Maltese.
Section 4.1 outlines the datasets used, and Sec-
tion 4.2 details the models and input processing.
Appendix C includes more technical details on our
fine-tuning setup.

4.1 Datasets

Named-Entity Recognitions (NER) For Arabic,
we use ANERCorp (Benajiba et al., 2007) with
the splits from Obeid et al. (2020). For Maltese,
we use the MAPA (Gianola et al., 2020) with the
splits and fixes from Micallef et al. (2024). We
normalise both datasets to a common tagset and
also downsample the Maltese data. After doing
so, we have 3,973 and 155 training sentences for
Arabic and Maltese, respectively. Span-level F1 is
used when evaluating model outputs.

Sentiment Analysis (SA) For Arabic we make
use of the data from Baly et al. (2018), while for
Maltese we use the data from Martínez-García et al.
(2021). Since the Maltese data only has positive
and negative sentences, we drop any neutral sen-
tences from the Arabic data. After this filtering pro-
cess we have 15,305 and 595 training sentences for
Arabic and Maltese, respectively. We use macro-
averaged F1 to evaluate the models.

All of the Arabic data is pre-processed using
CAMeL Tools arclean, which normalises ambigu-
ous Arabic characters, that could be potentially
problematic in our modelling (Obeid et al., 2020).
Appendix B includes more details on the datasets
used, including our filtering and processing steps.
The Arabic data is only used for training, and the
validation and testing data are always Maltese. Ta-
ble 2 provides a breakdown of the final dataset sizes
that are used in this work.

4.2 Models and Inputs

We experiment with the following models:

• BERTu (Micallef et al., 2022): a monolingual
model pre-trained on Maltese.

• mBERT (Devlin et al., 2019): a multilingual
model that includes Arabic in its pre-training,
but not Maltese.

• mBERTu (Micallef et al., 2022): mBERT
further pre-trained on Maltese.

Dataset Training Validation Testing
Named-Entity Recognition (NER)
Arabic 3,973 - -
Maltese 155 43 2,109

Sentiment Analysis (SA)
Arabic 15,305 - -
Maltese 595 85 171

Table 2: Data sizes for the downstream tasks
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Figure 1: Tokeniser fertility across datasets using the
different Arabic inputs and models.

In terms of Arabic inputs used for fine-tuning,
we compare the original Arabic data in its original
Arabic script (Original) with the different translit-
eration systems. In addition to our transliteration
systems – CharTx and MorphTx – we compare
against two generic transliteration systems: Buck-
walter and Uroman. For Buckwalter we also low-
ercase the produced transliteration, since it uses
uppercase letters for some of its mappings, while
uppercase letters carry linguistic meaning in Latin-
script languages.

We also include machine translation (MT) to
measure the differences between translating and
transliterating Arabic data. We do so using Google
Translate, from Arabic into Maltese.

To analyse the impact of using different Arabic
inputs, we compute the tokeniser fertility, which
measures the average number of sub-tokens that
the tokeniser splits a given token into (Ács, 2019).
For each input, we compute the fertility when pro-
cessed with a model’s tokeniser and visualise this
in Figure 1.

BERTu with Original Arabic data has a high fer-
tility (close to 4), but significantly drops with any
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of the transliteration inputs, dropping even further
with machine translation. We note that both our
transliteration systems – CharTx and MorphTx –
give lower fertility scores than the other translitera-
tion systems, as we move closer towards Maltese
orthography. Fertility dropps even further with ma-
chine translated data.

Conversely, for mBERT and mBERTu, the low-
est fertility is obtained with Original and increases
with transliteration and machine translation, reflect-
ing the overall lack of Maltese pre-training and
vocabulary representation with these models.

5 Transliteration Fine-Tuning Results

We first compare the different transliteration sys-
tems extrinsically with models fine-tuned on origi-
nal Arabic as well as fine-tuning only on Maltese
data. Results are shown in Table 3.

No Arabic vs Original Arabic When adding
original Arabic data, BERTu shows performance
drops as expected, since it is only pre-trained on
Maltese. However, mBERT and mBERTu gener-
ally improve with Arabic data, though mBERTu
slightly underperforms on SA.

No Arabic vs Transliterated Arabic Adding
transliterated data shows mixed results depending
on the model and transliteration system. Buckwal-
ter and Uroman underperform on NER for BERTu
and mBERTu, though Uroman helps on SA. Con-
versely, mBERT benefits from both Buckwalter
and Uroman. Our transliteration systems improve
BERTu on both NER and SA tasks and outper-
forms Buckwalter for mBERT and mBERTu, with
CharTx best on NER and MorphTx best on SA.

Original Arabic vs Transliterated Arabic Com-
paring the performance of adding Arabic data in
different scripts we also observe similar trends. Ex-
cept for Buckwalter, BERTu consistently attains
better performance with transliterated data. In con-
trast, both mBERT and mBERTu perform worse
with transliterated data, except for Uroman on SA.

In summary, data augmentation with some form
of Arabic data generally improves performance.
However, performance improvements with translit-
eration is dependent on the model’s exposure to
Maltese. Crucially, we highlight the importance
of applying an appropriate transliteration scheme
– while transliteration can eliminate script differ-
ences, its effectiveness relies on the orthographic
similarities with the target language.

6 Cascaded Arabic Training

In Section 5, our results show that multilingual
models do not benefit from cross-lingual transfer
capabilities as much when fine-tuning with translit-
erated Arabic, instead of original Arabic. We hy-
pothesise that this is due the model’s pre-training
on Arabic in Arabic script rather than Latin.

To test this, we conduct further experiments
where we cascade multiple stages of fine-tuning
on Arabic, with increasing similarity to Maltese,
before the final stage of Maltese fine-tuning. There-
fore, we first start with a fine-tuning step on original
Arabic data, followed by transliterated Arabic data,
and lastly a final phase of Maltese fine-tuning. To
simplify the setup, we choose one transliteration
system based on observed performance trends from
Section 5 – MorphTx for NER and CharTx for SA.
Furthermore, we consider another variant where we
also fine-tune on machine translated Arabic after
fine-tuning on original and transliterated Arabic.

We compare these cascaded approaches against
fine-tuning with only one stage of Arabic fine-
tuning – original, transliterated, and machine trans-
lated Arabic. The results are shown in Table 4.3

From our results, we observe that fine-tuning
with MT is a competitive baseline. When fine-
tuning with translations, better performance is ob-
tained than all the previously presented approaches
on NER with BERTu and on SA with mBERT.

With BERTu, cascaded Arabic fine-tuning does
not help over a single phase of Arabic fine-tuning,
as the best result is obtained with machine trans-
lation for NER and transliteration for SA. This is
likely due BERTu’s Maltese pre-training with lit-
tle to no Arabic data. This is supported by the
relatively lower scores observed for BERTu when
fine-tuned with original Arabic.

In contrast, both mBERT and mBERTu achieve
the best performance when fine-tuned on Arabic
data in a cascaded approach. For mBERTu, the best
result is obtained with original and transliteration
cascading, whereas the full cascade yields the best
result for mBERT. Interestingly, when mBERT and
mBERTu are fine-tuned solely with either translit-
erated Arabic or translated Arabic, worse results
are generally obtained compared to original Arabic
fine-tuning, but by combining all approaches in one
pipeline, we are better able to unlock the models’
cross-lingual transfer capabilities.

3The numbers from Table 3 for Maltese only, original Ara-
bic, and transliterated Arabic, are relisted to ease comparison.
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BERTu mBERT mBERTu
Maltese data only

58.3 50.1 64.9

Adding Original Arabic data
55.7 60.8 69.5

Adding Transliterated Arabic data
Buckwalter 55.9 51.4 63.7
Uroman 56.5 53.2 64.8
CharTx 59.3 54.3 65.6
MorphTx 61.3 55.5 67.0

(a) Named-Entity Recognition (NER)

BERTu mBERT mBERTu
Maltese data only

82.5 65.4 80.7

Adding Original Arabic data
82.3 68.9 79.4

Adding Transliterated Arabic data
Buckwalter 80.8 65.6 77.2
Uroman 83.6 67.3 81.4
CharTx 85.7 67.0 78.8
MorphTx 82.4 65.1 78.0

(b) Sentiment Analysis (SA)

Table 3: Results from fine-tuning with transliterated Arabic, Arabic in the original script, and no Arabic data. The
metrics used for NER and SA are span-level F1 and macro-averaged F1, respectively, and all scores are averages of
5 runs with different random seeds. Best scores per task and model are bolded.

Orig Tx MT BERTu mBERT mBERTu
Maltese data only

58.3 50.1 64.9

Adding a single stage of Arabic fine-tuning
✓ 55.7 60.8 69.5

✓ 61.3 55.5 67.0
✓ 67.3 59.4 69.1

Adding multiple stages of Arabic fine-tuning
✓ ✓ 58.6 61.6 70.2
✓ ✓ ✓ 61.8 61.8 68.8

(a) Named-Entity Recognition (NER)

Orig Tx MT BERTu mBERT mBERTu
Maltese data only

82.5 65.4 80.7

Adding a single stage of Arabic fine-tuning
✓ 82.3 68.9 79.4

✓ 85.7 67.0 78.8
✓ 82.5 69.3 78.7

Adding multiple stages of Arabic fine-tuning
✓ ✓ 84.0 69.3 79.8
✓ ✓ ✓ 82.7 70.0 76.7

(b) Sentiment Analysis (SA)

Table 4: Results from fine-tuning with different Arabic inputs: Original (Orig), Transliteration (Tx – MorphTx for
NER and CharTx for SA), and Machine Translation (MT). The metrics used for NER and SA are span-level F1 and
macro-averaged F1, respectively, and all scores are averages of 5 runs with different random seeds. Best scores per
task and model are bolded.

7 Conclusion and Future Work

In this work, we presented transliteration systems
from Arabic to Maltese. Our experimental results
highlight that the effectiveness of transliteration
depends on the model’s exposure to the target lan-
guage. We find that a monolingual Maltese model
benefits from transliterated Arabic data, while mul-
tilingual models are able to make cross-lingual
transfer links without transliteration. However, cas-
cading the original and transliterated data during
the fine-tuning process proves to be beneficial over
fine-tuning with only one of these.

Future work includes exploring unsupervised or
self-supervised methods to better align Arabic and
Maltese representations without heavy reliance on

parallel data or linguistic analysis. We also plan
to investigate advanced machine translation and
neural transliteration models that capture deeper
morphological and phonological patterns. Addi-
tionally, we plan on applying these augmentation
techniques to other facets of Maltese NLP such as
language modelling.

8 Limitations

While our results demonstrate the potential of
Arabic-driven augmentation for Maltese NLP, sev-
eral limitations remain. First, the effectiveness of
our approach is partly constrained by the quality
of Arabic-to-Maltese translations, which may intro-
duce stylistic or grammatical inconsistencies, espe-
cially when using off-the-shelf machine translation
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systems. Second, our transliteration rules and map-
pings, though linguistically motivated, simplify
complex morphological and phonological relation-
ships and may not generalise across all domains
of Maltese usage. Third, our evaluations focus
on downstream tasks using pre-existing datasets,
which may not fully capture real-world variation
in code-switching, informal registers, or dialectal
usage. Finally, while we focus on Standard Mal-
tese and Modern Standard Arabic, variation across
dialects and registers in both languages is not ad-
dressed and may affect generalisability.

9 Ethical Considerations

Our study uses publicly available language re-
sources and models for both Arabic and Maltese,
adhering to the licencing and usage terms of each
dataset. However, the use of machine translation
for data augmentation carries the risk of reinforc-
ing biases or introducing artefacts that may impact
fairness and interpretability in downstream tasks.
Moreover, while our approach aims to support a
low-resource language, it assumes a certain level of
equivalence between Arabic and Maltese that may
obscure sociolinguistic or cultural distinctions. We
encourage careful application of our methods, par-
ticularly in contexts involving sensitive or identity-
related content. We also note that our translitera-
tion and augmentation techniques are not intended
for human communication and may not reflect id-
iomatic or culturally appropriate usage.

We used AI writing assistance within the scope
of “Assistance purely with the language of the pa-
per” described in the ACL Policy on Publication
Ethics.
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A Transliteration System Rules

The character mappings presented in Section 3.1
are presented in Tables 5 and 6 while the morpheme
mappings presented in Section 3.2 are shown in Ta-
ble 7. We note how many of the character mappings
include diacritics on the source side and are typi-
cally not used by the CharTx system (Section 3.1)
since the text is not diacritised.

B Data Normalisation

Named-Entity Recognition (NER) Since the
MAPA (Gianola et al., 2020) and ANERCorp (Be-
najiba et al., 2007) datasets have a different tagset,
we normalise these to only keep Person (PER), Or-
ganisation (ORG), and Location (LOC) tags, dropping
every other tag (O). For ANERCorp, this means that
we only removed the Miscellaneous tags (MISC).
However, the MAPA data has more fine-grained
annotations. Hence, for MAPA, we only keep the
PER the token’s level 2 tag is either a given name
or a family name, and we designate LOC for to-
kens marked as city or country. Originally, the
MAPA data had 3,901 sentences which is compara-
ble to the ANERCorp data. Since we are interested
in data augmentation under a resource-constrained
setting, we choose to downsample the MAPA train-
ing data to allow us to better measure this. Hence,
we downsample the Maltese data, so that we have
around the same ratio of sentences as the Arabic
and Maltese datasets for Sentiment Analysis. By
doing so, we end up with 155 and 43 sentences for
training and validation, respectively, and the test
set remains unchanged.

Sentiment Analysis (SA) The Maltese dataset
from Martínez-García et al. (2021) only has posi-
tive or negative labels, whereas the Arabic dataset
from Baly et al. (2018) has positive, negative, or
neutral labels. Hence, we drop all Arabic sentences
with a neutral label, ending up with 15,305 sen-
tences. The Maltese data remains unchanged.

C Fine-Tuning Details

For our experimental setup described in Section 4,
we fine-tune BERT-based models by adding a linear
token or sentence classification head, depending
on the task. We use the Transformers library to
conduct all of our experiments (Wolf et al., 2020)
and the code is made publicly available.4

4https://github.com/MLRS/BERTu/tree/main/
finetune

For all tasks, we use an inverse square root learn-
ing rate schedule with a maximum learning rate of
2e-5 and a warmup of 1 epoch. We also set the clas-
sifier dropout to 0.1 and the weight decay to 0.01.
We train with batch sizes of 16 for a maximum
of 200 epochs early stopping on the development
set5 with a patience of 20 epochs. Each experiment
is performed 5 times with different random seeds,
reporting the average across these runs.

We fine-tune all models on a compute cluster us-
ing A100 GPUs. Fine-tuning runtimes vary largely
because we train using early stopping but also de-
pending on the dataset and model used. On average,
a single training run on Arabic data takes around 28
minutes and 44 minutes for Named-Entity Recog-
nition and Sentiment Analysis, respectively, while
a single training run on Maltese data takes around
7 minutes and 3 minutes for Named-Entity Recog-
nition and Sentiment Analysis, respectively.

5The development set used is always the Maltese data,
even when fine-tuning with Arabic data.
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Source Target

È l + Sun Letter with Gemination
�YË ld~ /

�	YË l*~ /
�	�Ë lD~ /

�	¡Ë lZ~ dd
�
ÉË ll~ ll
�	áË ln~ nn
�QË lr~ rr

��Ë ls~ / ��Ë lS~ ss
��IË lt~ /

��IË lv~ / �¡Ë lT~ tt
���Ë l$~ xx
�	QË lz~ żż

Final ø
 y with Gemination
[EOS] �ø
 y~ i

Gemination
�H. b~ bb

�X d~ /
�	X *~ /

�	� D~ /
�	  Z~ dd
�	¬ f~ ff
�è h~ hh
�h. j~ ġġ

�h H~ /
�
p x~ h̄h̄

�̈
E~ /

�	̈
g~ gh̄

�ø
 y~ jj
�
¼ k~ kk
�
È l~ ll
�Ð m~ mm
�	à n~ nn
��� q~ qq
�P r~ rr

�� s~ / �� S~ ss
��H t~ /

��H v~ / �  T~ tt
�ð w~ ww
��� $~ xx
�	P z~ żż

Source Target
Hamza/Alif with Diacritic
�Z ’o /

�
@ AF / @� AK /

�
@ AN

�Z ’a /
�

@ >a /

�
@
�
{a /

��
@ |a a

Z� ’i / @
� <i /
�
@� {i /

�
@� |i i

�Z ’u /
�

@ >u /

�
@
�
{u /

��
@ |u u

Long Vowel ‘a’
@ � aA a

ø �
aY a

�è � ap a

‘i’/‘y’ Glide
AK
 yA ja
�ø
 yo j

�ø
 ya /
�
ø }a je

ø
� yi / 
ø� }i ji
�ø
 yu /

�
ø }u ju

ø

�

oy j

ø

�

ay ej

ø

�

uy uj

ø
 � iy i
�
ø }o i

‘u’/‘w’ Glide
@ð wA wa
�ð wo w

�ð wa /
�
ð &a we

ð� wi / 
ð� &i wi
�ð wu /

�
ð &u wu

ð � ow w

ð � aw ew

ð � iw iw

ð � uw u
�
ð &o u

Table 5: Character Mappings (multiple characters) outlining how source Arabic characters are mapped to target
Maltese characters. The Buckwalter representation for Arabic is also shown. [BOS] and [EOS] are special markers
indicating the beginning and end positions of a word.
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Source Target
Diacritics �

` a�
a e
� i i�
u u�

o /
�

F / � K /
�

N /
�

~

Special Characters at Word Boundaries
[EOS]¨ E / [EOS]

	̈
g ’



@[BOS] > / @
[BOS] <

Letters
@ A /



@ > /

�
@ | / ø Y a

ø
 y / @
 < / 
ø } i

ð w / 
ð & u

Z ’ /
�
@ {
�è p a

H. b b

X d / 	X * / 	� D / 	  Z d
	¬ f f

h. j ġ

è h h

h H / p x h̄

¨ E /
	̈

g gh̄

¼ k k

È l l

Ð m m
	à n n
�� q q

P r r

� s / � S s
�H t / �H v /   T t

�� $ x
	P z ż

Source Target
Symbols

, ,

; ;

? ?

% %

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

Table 6: Character Mappings (single characters) outlining how source Arabic characters are mapped to target
Maltese characters. The Buckwalter representation for Arabic is also shown. [BOS] and [EOS] are special markers
indicating the beginning and end positions of a word.
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Tag Source Target

CONJ �ð wa / ð� wi u_

DET È@ Al il-

PREP H.� bi bi_

PREP È� li li_

PREP ú

	̄
� fiy fi_

NOUN ©�Ó maE ma’_

NOUN ¨A��K taAE ta’_

PREP ú
�
Î �« EalaY gh̄al_

PREP 	áÓ� min minn_

NSUFF_FEM_SG (construct state) �è p t

FUT_PART �� sa sa

CASE_*_* *
IVSUFF_MOOD:* *
IVSUFF_SUBJ:2FS *
IVSUFF_SUBJ:{D,MP,FP} * u
PVSUFF_SUBJ:{1S,2MS,2FS} * t
PVSUFF_SUBJ:3MS *
PVSUFF_SUBJ:3FS * at
PVSUFF_SUBJ:1P * na
PVSUFF_SUBJ:{2D,2MP,2FP} * tu
PVSUFF_SUBJ:3MP @ �ð woA ew

PVSUFF_SUBJ:{3MD,3FD,3MP,3FP} * u
CVSUFF_SUBJ:{2MS,2FS} *
CVSUFF_SUBJ:2MP * u
PRON_1S ú


	G� niy ni

{PRON,POSS_PRON}_1S * i
{PRON,POSS_PRON}_{2MS,2FS} * ek
PRON_3MS * u
POSS_PRON_3MS * u
{PRON,POSS_PRON}_3FS * ha
{PRON,POSS_PRON}_1P * na
{PRON,POSS_PRON}_{2D,2MP,2FP} * kom
{PRON,POSS_PRON}_{3D,3MP,3FP} * hom
NSUFF_FEM_SG * a
NSUFF_MASC_DU_* * ejn
NSUFF_FEM_DU_* * tejn
NSUFF_MASC_PL_* * in
NSUFF_FEM_PL * iet

Table 7: Morpheme Mappings indicating how different morpheme classes are mapped; some tags are collapsed to a
single row for presentation purposes. When the Arabic form is specified in the Source column, the target mapping is
only applied to this specific form, otherwise it applies to all forms (indicated by *). ‘_’ indicates an explicit spacing
added so that the morpheme is no longer attached to the word.
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