
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 21489–21509
November 4-9, 2025 ©2025 Association for Computational Linguistics

LangProBe: a Language Programs Benchmark

Shangyin Tan1, Lakshya A Agrawal1, Arnav Singhvi2, Liheng Lai1, Michael J. Ryan2,
Dan Klein1, Omar Khattab3*, Koushik Sen1, Matei Zaharia1,4

1University of California, Berkeley, 2Stanford University
3Massachusetts Institute of Technology, 4Databricks

shangyin@berkeley.edu

Abstract

Composing language models (LMs) into multi-
step language programs and automatically op-
timizing their modular prompts is now a main-
stream paradigm for building AI systems, but
the tradeoffs in this space have only scarcely
been studied before. We introduce LangProBe,
the first large-scale benchmark for evaluating
the architectures and optimization strategies for
language programs, with over 2000 combina-
tions of tasks, architectures, optimizers, and
choices of LMs. Using LangProBe, we are the
first to study the impact of program architec-
tures and optimizers (and their compositions
together and with different models) on trade-
offs of quality and cost. We find that optimized
language programs offer strong cost-quality
Pareto improvement over raw calls to mod-
els, but simultaneously demonstrate that human
judgment (or empirical decisions) about which
compositions to pursue is still necessary for
best performance.We have open-sourced Lang-
ProBe at https://github.com/Shangyint/
langProBe

1 Introduction

Language models are now routinely used to build
modular natural-language software systems that
process data or serve bespoke applications. Previ-
ous work (Khattab et al., 2024; Opsahl-Ong et al.,
2024; Schlag et al., 2023; Soylu et al., 2024) re-
fer to such systems as language programs1, where
language model calls are wrapped into highly struc-
tured modules and pipelined with external tool
calls. Language programs often compose better-
scoped LM capabilities (Zaharia et al., 2024), of-
fer structure for models to access tools or infor-
mation (Lewis et al., 2020; Khattab et al., 2021;
Lazaridou et al., 2022), and systematically scale

*Work done while at Databricks.
1For a complete definition and examples of language pro-

grams, refer to Appendix A

AppWorld

HotPotQA

Hover

...

GeneratorCriticRanker

ChainOfThought

ReAct

......

BootStrapFewShot

MIPROv2

RuleInfer

.........

GPT-4o, GPT-4o-mini

OpenAI o1-mini

Meta LLama 3B, 8B,
70B

...

400+ (Dataset, Language Program, Optimizer) Configurations

Language Programs OptimizersLanguage Models Datasets

2000+ LangProBe Experiments (LM, Dataset, Language Program, Optimizer)

Figure 1: LangProBe includes 15 datasets, 4 optimizers,
and more than 10 language programs, creating more
than 400 configurations for evaluating language pro-
grams with different tasks and optimizers.

planning and search at inference time (Snell et al.,
2024; Saad-Falcon et al., 2024).

To support such programming and permit porta-
bility across models and tasks, recent work has
introduced declarative languages for expressing
these systems and automating prompting (or fine-
tuning) for their modules. For example, given
a task-specific objective, frameworks like DSPy
(Khattab et al., 2022, 2024) and TextGrad (Yuksek-
gonul et al., 2024) offer optimizers for language
programs. By composing techniques like bootstrap-
ping few-shot examples, refining free-form instruc-
tions, or fine-tuning, the optimizers transform the
baseline language program into a new, optimized
language program with updated parameters (includ-
ing both LM prompts and LM weights), which of-
ten align better with a distribution of inputs or a
nuanced task.

Despite the interest in this space, it remains
unclear which problems actually need modular
programs, especially as models continue to im-
prove, or which types of architectures and opti-
mizers will work best for different problems. To
study this, we introduce LangProBe (Language
Program Benchmark) (Figure 1), a benchmark for
evaluating combinations of language models, pro-
gram architectures, and their optimizers. For many
datasets, LangProBe implements multiple language

21489

https://github.com/Shangyint/langProBe
https://github.com/Shangyint/langProBe

programs (Section 3.2), ranging from a single LM
call to sophisticated and modular systems. Using
LangProBe, we run over 2000 experiments to in-
vestigate several research questions.

Do language programs and optimizers for
them improve cost-performance compared
to using raw model calls? (Section 5)

On average, we find that language programs
show non-trivial improvement over raw model pre-
diction baselines even while considering language
model costs. For example, the best optimized pro-
gram running on gpt-4o-mini performs better than
both the gpt-4o and o1-mini raw model prediction
baselines at a significantly cheaper cost. However,
this is far from uniform, as many self-contained
problems (e.g., MMLU) can be straightforwardly
tackled by powerful models without composition
or optimization.

What language program architectures work
best on different problems? (Section 6)

We find that modular programs are, perhaps ex-
pectedly, indispensable for tasks whose specifica-
tion demands or strongly encourages access to ex-
ternal information or other tools. For example,
tasks that require composing long-tail world knowl-
edge benefit from retrieval-augmented generation
(RAG) programs and multi-hop retrieval. While
inference-time scaling programs are known to be
helpful in certain cases, we find that they can fail to
exceed baseline systems in certain applications, e.g.
when error compounds across different modules.
This illustrates a general theme we find, in which
human judgment (or empirical decisions) about
which compositions to pursue is still necessary for
best performance.

Which optimizers perform best and where?
(Section 7)

All optimizers can provide quality gains for
many—though not all—combinations of mod-
els, tasks, and programs, but different optimiz-
ers create rich tradeoffs in terms of optimization

2Cost for OpenAI’s models are from (OpenAI, 2025) and
for Meta’s Llama models are from (Amazon Web Services,
2025). Inference costs are likely to vary across time and
providers, but provide a reasonable relative comparison be-
tween models by the same provider.

and inference costs. On average, we find that
MIPRO (Opsahl-Ong et al., 2024), an optimizer
that constructs and explores combinations of in-
structions and few-shot examples through Bayesian
search, performs best overall. As in prior work,
we find that searching over combinations of self-
bootstrapped few-shot examples (BootstrapFew-
shotRandomSearch) is a highly competitive sim-
ple strategy, though the benefits of (bootstrapped)
demonstrations heavily depend on the model–task
pair. While this lies outside our scope, we believe
that LangProBe defines a general methodology and
large headroom for new prompt optimizers and also
for finetuning- or RL-based optimizers to boost
quality even further.

In summary, we contribute a new benchmark
for Language Programs (Section 3), the first sys-
tematic investigation of the cost–quality trade-
offs of Language Programs (Section 5), and new
empirical insights showing that employing ap-
propriate language programs with cheaper mod-
els for some tasks is both cost- and performance-
optimal compared to using the raw prediction
from a stronger model and offering guidance on
which language program architecture and optimizer
choices work best (Section 6, Section 7).

2 Related Work

Composing language model calls with tool usage
into complex applications is now popular, with the
help of established language model programming
libraries such as DSPy (Khattab et al., 2022, 2024),
LangChain (Chase, 2022), or TextGrad (Yuksek-
gonul et al., 2024). Language programs compose
and integrate knowledge and information flow and
are often equipped with additional reasoning ca-
pabilities. For instance, RAG (Lewis et al., 2020)
combines a language model with external retrieval
from a corpus for knowledge-intensive tasks; Multi-
Agent Debate (Du et al., 2023) harnesses multiple
models debating each other to sharpen mathemati-
cal and strategic reasoning; Self-Refine (Madaan
et al., 2023) iterates on its own outputs for contin-
uous improvement; and ReAct (Yao et al., 2023)
integrates step-by-step reasoning with actions to
facilitate interactions with external environments.
Recent research also focuses on scaling inference-
time computation by generating multiple responses
and verifying them with specialized models (Snell
et al., 2024; Chen et al., 2024).

Recent work has introduced agentic benchmarks

21490

$0.25 $0.5 $1 $2 $4 $8 $16 $32
Total Inference Cost ($ in log-scale)

30

40

50

60

70

La
ng

Pr
oB

e
Sc

or
e

OpenAI Models

gpt-4o-mini
gpt-4o
o1-mini
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

$0.25 $0.5 $1 $2 $4
Total Inference Cost ($ in log-scale)

30

40

50

60

70

Llama Models

llama-3.2-3b
llama-3.1-8b
llama-3.3-70b
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

Aggregate Cost-Performance Pareto Curves Across LangProBe

Figure 2: This figure shows stark cost-performance trade-offs across various configurations of (LM, Language
Program, Optimizer), aggregated over multiple datasets in LangProBe. The Pareto curves represent the upper-left
convex hull of achievable configurations. Piece-wise linear Pareto curve segments appear curved due to the log
scale, but all points on the Pareto front are achievable via weighted (randomized) choice between the two endpoints.
Four configurations are compared: 1) Model: Performance of baseline program (e.g., raw model predictions)
without optimizers. 2) Model+Program: Performance with language programs applied, without optimizers. 3)
Model+Optimizer: Performance with optimizers applied to the baseline program. 4) Model+Program+Optimizer:
Performance of combined use of both language programs and optimizers. Key Takeaway: For both model families,
the Model+Program+Optimizer Pareto curve deliver cost and quality improvements against Model+Program and
Model+Optimizer Pareto curves, which in turn improve over the Model Pareto curve, implying that using language
programs and optimizing them can offer considerable gains not only with respect to quality, but also cost2.

(Kapoor et al., 2024; Zhou et al., 2024; Yang et al.,
2024; Wang et al., 2024), which are closely related
to LangProBe. As agents are a form of complex
language programs, these benchmarks can help ex-
amine some design choices in language programs
and we intend to add some of them to future iter-
ations of LangProBe. Unfortunately, such agen-
tic tasks leave plenty of unstudied problem types
and are somewhat hard to adapt for asking ques-
tions about broader categories of program architec-
tures (Stroebl et al., 2024). For example, SWE-
bench (Yang et al., 2024) is helpful in evaluating
software engineer-like agents, but it can be diffi-
cult to rely on it for testing general inference-time
scaling or retrieval-augmented generation methods.

3 The LangProBe Benchmark

To offer an overview of LangProBe, we define dif-
ferent categories of benchmarks and then describe
the selected programs and optimizers that we will
study in this work. A detailed list of descriptions

can be found in Appendix B and Appendix C.

3.1 Dataset Categories

We choose datasets across diverse categories. In
contrast to evaluations focused on comparing
model capabilities, e.g. HELM (Liang et al., 2023)
or lm-evaluation-harness (Gao et al., 2024), for
each category, we recast existing datasets into a uni-
form testbed with metrics and data splits, seeking
to establish a proxy for applications that people pro-
gram. Our categories include agentic tasks (App-
World; Trivedi et al. 2024), coding and software en-
gineering tasks (SweBench annotation tasks; Ope-
nAI 2024, HumanEval; Chen et al. 2021), math-
ematical and reasoning tasks (MATH; Hendrycks
et al. 2021b, GSM8K; Cobbe et al. 2021), domain-
specific classification tasks (Iris; Fisher (1936) and
Heart Disease; Janosi et al. (1989)), and question-
answering problems (HotpotQA; Yang et al. 2018,

21491

MMLU; Hendrycks et al. 2021a), and more.3

While these serve an insightful starting point, we
believe that future work must increasingly push
LangProBe past the general capability datasets that
model providers benchmark against and closer to
the composite downstream problems that LM pro-
grammers seek to solve.

3.2 Language Programs
We adopt and design a diverse set of language
program designs for the different tasks in Lang-
ProBe. By nature, language programs are much
more structured, declarative, and compositional
than free-form conversations with language mod-
els or community evaluation harnesses comparing
model capabilities on self-contained tasks. This
paradigm necessitates a uniform framework for pos-
ing our research questions. For this, we build our
evaluation testbed in the DSPy framework, leverag-
ing its offering of such language program compos-
ability and optimization of such systems, although
in principle, future declarative languages for pro-
gramming language models can support the same
research questions we ask about programs, models,
and optimizers.

General language programs Many programs ar-
chitectures are general: with little to no changes,
they can be used for all benchmarks. The simplest
such program is to use a single DSPy Predict
module, which translates to directly calling the lan-
guage model in a structured manner with the task
description and inputs and parsing its outputs. Sim-
ilarly, we also include a DSPy chain-of-thought
(CoT; Wei et al. 2023) program that uses CoT
prompting, requiring the language model to output
both reasoning and answer. We also adapt Archon’s
modular structure (Saad-Falcon et al., 2024) for de-
signing more complex general language programs.
Specifically, we use generators (generate a list of
responses given a single query), critics (provide
feedback for a list of responses), fusers (compile
a list of responses into a single one), and rankers
(rank the list of responses).

From these basic building blocks, we build two
general language model programs: GenCriticFuser
and GenCriticRanker. Namely, both pipelines first
employ a generator module to generate a list of
responses given inputs from the language model,

3We borrow a few programs and datasets like HotPotQA,
HoVer, Iris, and Heart Disease from the open-source DSPy
repository, contributed by Khattab et al. (2024) and Opsahl-
Ong et al. (2024), and adapt them to our more general setting.

then a critic module to provide strengths and weak-
nesses to the list of responses; finally, both a fuser
and ranker module is used respectively to get the
singular final result.

Specialized programs We also adopt problem-
specific program architectures for certain tasks.
For example, we define two retrieval-augmented
generation (RAG) programs for some knowledge-
intensive and classification tasks. We define the
RAG program with a module that queries the re-
triever with the task input and then leverages a CoT
module to generate the final response with the re-
trieved documents. Another RAG system, a highly
simplified version of Baleen (Khattab et al., 2021),
makes LM calls in a multi-hop design, systemati-
cally generating queries for the retriever, perform-
ing the retrieval and composing the set of retrieved
documents to generate the final answer.

For benchmarks that require interactions within
a closed-space environment (agent benchmarks),
we build a ReAct (Yao et al., 2023) program, which
reasons and generates actions simultaneously.

3.3 Optimizers

To measure the performances of these compound
language programs, it is also important to measure
how they perform under various prompt optimiza-
tion techniques. LangProBe provides four general
prompt optimization techniques for all language
model programs.

BootstrapFewShot (Khattab et al., 2022, 2024)
is a simple heuristic for building few-shot exam-
ples for all modules in arbitrary programs. Using a
metric and a teacher model, it bootstraps “success-
ful” demonstrations from the training set that pass
the metric. The process iteratively refines predic-
tions until the maximum number of bootstrapped
demonstrations is reached and then included in the
final prompt. The BootstrapFewShotRandom-
Search optimizer searches through different com-
binations of bootstrapped few-shot demonstrations
using a validation set, applying multiple optimiza-
tion rounds with random search to select the best-
performing set of few-shot examples to include in
the final prompt.

MIPROv2 (Opsahl-Ong et al., 2024) optimizer
produces sets of few-shot examples like Boot-
strapFewShot and then generates instruction can-
didates for each predictor in the program using a
separate LM proposer program. To search for the
best combination of few-shot examples and instruc-

21492

Dataset Category Datasets & Tasks Specialized Programs

Code HumanEval, SWEUnderspecified, GeneratorCriticRanker, GeneratorCriticFuser
SWEValidity

Reasoning Judge, Scone GeneratorCriticRanker, GeneratorCriticFuser

Agent AppWorld ReActBaseline, ReActAugmented

Knowledge MMLU, HoVer, IReRa, HotpotQA, RAGBasedRank, RAG, MultiHopSummarize,
HotpotQAConditional, RAGQAArena SimplifiedBaleen

Classification HeartDisease, Iris CoTBasedVote, GeneratorCriticRanker,
GeneratorCriticFuser

Math MATH, GSM8K GeneratorCriticRanker, GeneratorCriticFuser

Table 1: Dataset categories, the datasets associated with them, and the specialized language programs evaluated
on each different category. We also provide a detailed description for each dataset, task, and language program in
Appendix B and Appendix C.

tions, the optimizer uses Bayesian Optimization to
identify the optimal instruction-examples set for
each module in the program.

Finally, as part of this work, we introduce the
RuleInfer optimizer, which runs the program
through a single iteration of the BootstrapFew-
Shot optimizer, allowing candidates to induce rules
based on the successful proposed few-shot demon-
strations, tasks, and instructions. These rules are
then appended to the original instruction, gener-
ating refined instructions directly from the best-
selected few-shot demonstrations.

4 Benchmarking Language Programs

Evaluating language programs with LangProBe
are simply Cartesian products of dataset tasks, lan-
guage programs, optimizers, and language models.
While some language programs obviously do not
work with specific types of datasets, we evaluate
all such possible combinations.

To this end, we evaluate 16 distinct tasks from
various open-source datasets with six different
language models (gpt-4o, gpt-4o-mini, o1-mini,
Llama3.1-8B-Instruct, Llama3.2-3B-Instruct, and
Llama3.3-70B-Instruct) and a total of more than 10
different language model programs. We also apply
four prompt optimization techniques described in
Section 3.3 to all language model programs with
different hyperparameters (Table 2). In total, we
run over 2000 different combinations of language
programs and dataset experiments.

5 Costs of Programs and Optimizers

In this section, we analyze the cost-performance
trade-offs of using language models with varying
inference costs and capabilities when combined
with language programs and optimizers. Figure 2
visualizes these trade-offs as Pareto curves aggre-
gated over multiple datasets in LangProBe. The
x-axis uses a logarithmic scale for inference costs
to accommodate the wide range of costs across
different configurations.

We make the following observations from the
Pareto curves: 1) Every point on the Pareto-
optimal curve is instantiable: The Pareto-curves
are calculated as an upper-left convex hull over
linearly scaled performance-cost axes, and hence,
every point on or below the curves is instantiable
by cost-aware load balancing between the config-
urations at either end of a Pareto segment. 2)
Use of language programs or optimizers en-
ables achieving better performance at lower
cost: the Model+Program+Optimizer Pareto curve
dominates (achieve better performance at lower
cost) the Model+Program and Model+Optimizer
Pareto curves, which in turn dominate the Model
Pareto curve, implying that using language pro-
grams and optimizing them has the capacity to sup-
port significant improvements not only with respect
to performance, but also cost. 3) Smaller models
with effective programs and optimizers outper-
form larger models, at a lower cost: We observe
that often a smaller or cheaper LM with language
program or optimization (or both) outperform con-
figurations with larger or expensive LMs lacking
language programs or optimization both in terms

21493

Figure 3: Performance comparison between best-performing programs and the baseline. In most cases, the baseline
is a zero-shot call to the LM with task description and task inputs. Unoptimized programs are original, unchanged
language programs, while optimized language programs are trained with updated prompts to adapt to the specific
tasks. Scores are averaged from all language models we evaluated, including both OpenAI models and Llama
models. We also include the same comparison of gpt-4o-mini only in Appendix F to reduce possible scattering of
averaging results from different model families. Figure 8 delivers a similar conclusion as this plot: in almost all
tasks, both optimized and unoptimized programs perform better than the raw model prediction baselines.

Figure 4: Performance comparison to Baseline, with best performing and worst performing programs for all
Knowledge, Reasoning, and Math tasks. All programs are unoptimized. On the same dataset, different language
programs’ performances vary. Similarly, the same language program’s performance varies on different
datasets.

of cost and absolute performance. On aggregate,
in Figure 2, we observe that gpt-4o-mini with lan-
guage programs and optimization achieves 11.68%
higher score than gpt-4o’s baseline at just 50% of
the cost, and gets slightly better performance than
gpt-4o with language programs at 10% of the cost.

Among individual datasets, in Figure 9c, we see
that gpt-4o-mini with program composition and
optimization achieves 33.2% better result than gpt-
4o without program composition and optimization
at 18% lesser cost. These instances reflect the
importance of composing compound systems to

prompt language models and optimizing these sys-
tems, which can lead to increased downstream task
performance at fractional costs.

In some instances, we observed that using an
optimizer can actually reduce the inference cost
for the same program while boosting performance.
For instance, in GSM8K (Figure 11b), we see
that gpt-4o-mini with optimization (BootstrapFew-
ShotWithRandomSearch) achieves 8% better re-
sult at 5% lesser inference cost than gpt-4o-mini
without optimization. Since optimizing the pro-
gram with BootstrapFewShotWithRandomSearch

21494

includes few-shot examples in the prompt, which
increases the number of input-context tokens pre-
sented to the model but excludes the generation
of lengthy reasoning traces in the output, and the
notion that LM input token costs are cheaper com-
pared to output token costs, we observe such cases.

In conclusion, our results demonstrate that lan-
guage programs and optimizers can significantly
enhance performance and cost-efficiency across
tasks compared to raw model predictions on the
aggregate.

6 Language Program Design

We now address the research question of what lan-
guage program architecture achieves higher quality,
e.g. whether structured language programs consis-
tently outperform direct model prediction baselines
and which programs contribute the most to perfor-
mance gains. Additionally, we examine whether
the effectiveness of different language programs
varies across tasks, highlighting the conditions un-
der which they provide the greatest benefit.

First, we show an overview of performance com-
parison between best language programs and raw
model prediction baseline in Figure 3. In almost
all cases, using some selected language programs,
either unoptimized or optimized, gives a better per-
formance than the raw model prediction baseline.

6.1 Can language program achieve higher
quality compared to raw language model
baseline?

We present the overall result of language program
performance in Figure 3. In this figure, we observe
constant improvement compared to the raw model
prediction baseline.

On some knowledge-intensive benchmarks like
HotPotQA or IReRa, the improvement is signif-
icant, with relative gains of +258% and +829%,
respectively. In these benchmarks, the raw model
lacks certain knowledge to directly answer com-
plex questions or classify complex labels. However,
with the addition of using a retriever as a tool, the
structured language program is able to fetch addi-
tional information from the retriever and integrate
the information to the context. This capability al-
lows the program to address knowledge gaps that a
raw model would struggle with, enabling accurate
and context-aware responses.

MIPR
Ov2

-T

Boo
tst

rap
Few

Sh
otR

an
do

mSe
arc

h-T

MIPR
Ov2

Ru
leIn

fer

Ru
leIn

fer
-T

Boo
tst

rap
Few

Sh
otR

an
do

mSe
arc

h

Boo
tst

rap
Few

Sh
ot

MIPR
Ov2

-lit
e-T

MIPR
Ov2

-lit
e

Ru
leIn

fer
-lit

e

Base
line

Optimizer

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

Model = llama3-family

Frequency Distribution of Optimizers
Frequency Type

Within 3% of Highest Score
Highest Score

Figure 5: Frequency Distribution for individual opti-
mizer performance, ranked by the number of times that
an optimizer applied on a program is within 3% of that
program’s highest score (blue bar). We also note the
number of the highest-performing optimizer as the top
score (green bar). From the plot, MIPROv2-T, which
uses a stronger model for optimization to propose
better instructions combined with corresponding
few-shot examples through Bayesian search, works
the best.

6.2 Which language program designs provide
more improvements?

Although Figure 3 provides a clear overview of
the best-performing language programs on each
dataset, it does not easily show the relative improve-
ments achieved by different programs. To address
this, we present Figure 4, which highlights, for each
dataset in the Knowledge, Reasoning, and Math
categories, both the best-performing and worst-
performing programs and their performance rel-
ative to the baseline.

From Figure 4, the performance of different lan-
guage programs varies significantly when com-
pared to the baseline. On the left side, we ob-
serve significant improvement over the baseline by
mostly retriever-augmented generation programs.
Conversely, other programs, including Generator-
CriticRanker for RAGQAArena and GeneratorCrit-
icFuser for JudgeBench perform worse than the
baseline. Inspecting the evaluation traces, we find
that when the program involves multiple modules,
errors (like wrong format, factual errors, or hallu-
cination) cascade from one module flow into other
modules, causing errors to aggregate. Luckily, the
error aggregation patterns, especially parsing er-
rors, are mitigated through carefully curated few-
shot examples and instructions from different opti-
mization techniques as highlighted by the positive
performance with both optimized variances.

21495

MIPR
Ov2

Boo
tst

rap
Few

Sh
otR

an
do

mSe
arc

h-T

Ru
leIn

fer
-T

MIPR
Ov2

-T

MIPR
Ov2

-lit
e-T

Ru
leIn

fer

MIPR
Ov2

-lit
e

Boo
tst

rap
Few

Sh
ot

Boo
tst

rap
Few

Sh
otR

an
do

mSe
arc

h

Ru
leIn

fer
-lit

e

Optimizer

20

0

20

40

60

80

100

120

Re
la

tiv
e

Ga
in

%

122.5% 117.6%
111.7% 111.6%

103.1% 99.4% 94.8% 94.6% 92.2%
80.2%

9.4%
18.1%

10.4%
17.8% 13.1% 9.3% 9.1% 10.7% 9.5% 6.3%

0% -3.4% -7.6%
0% 0%

-7.6%
0% -4.1% 0%

-13.9%

Model = llama3-family

Relative Percentile Gains by Optimizers
Percentile

p90
median
p10

Figure 6: For all the experiments with Llama models, the relative gains by the optimizer compared to the same
unoptimized program. We report 90th percentile, median, and 10th percentile. Optimizers with "lite" suffixes are
configured with less compute resources, and optimizers with "T" are configured with a stronger optimizer model
(gpt-4o-mini). From this plot, in best case scenarios, all optimizers provide large performance gains of more
than 80%. The median performance gains are from 6.3% to 18.1%. However, in some cases, optimizers do
degrade the performance of the unoptimized program.

Overall, these results demonstrate various gains
due to compositional program architectures, but
they also show that human judgment about which
compositions to pursue (or a well-scoped search for
tasks with enough data) is still required for best per-
formance. In other words, there is no general “set
it and forget it” strategy for program composition
within the scope we considered.

6.3 When do language programs provide
more improvements?

From both Figure 4 and the individual Pareto
curves on each dataset in Appendix D, we observe
larger improvement from language programs often
associated with datasets or tasks that require addi-
tional information to complete. For example, Hot-
PotQAConditional requires answering questions in
a specific format that is unknown to the language
model; IReRa is a classification task that needs
additional information about the labels, etc. Lan-
guage programs often show significant improve-
ment over these datasets, which resembles a large
class of real-world applications. On the other
hand, tasks that language models are trained to per-
form, like MMLU or HumanEval, often see little
to no benefit from unoptimized language programs.
Figure 9f plots an overlapping Pareto curve for
Model+Program and the baseline, demonstrating
no performance benefits from using unoptimized
language programs for HumanEval.

7 Optimizers

As in Section 6, programs are important for most
datasets, as they provide additional context or more
opportunities to reason with the language model.
In addition to program design and architecture,
prompt-based optimizations are also crucial to the
performance of a compound AI system. In this sec-
tion, we discuss whether the existing optimization
techniques are effective by answering the following
research questions.

7.1 What optimization techniques are more
effective than others?

We rank the performance of each individual opti-
mizer in Figure 5. From the plot, we observe that
general optimizers that perform optimal instruction
finding (MIPROv2 and its variants) and in-context
learning (BootstrapFewShotRandomSearch and its
variants) are leading in general, both having more
experiments that appear within 3% of the highest
score for the same dataset and program among all
optimizer settings. The rule induction optimizers
"RuleInfer" are good at obtaining the best scores
but perform slightly worse to generalize for more
tasks. This is due to its specialized nature, which al-
lows RuleInfer to only work for tasks with obvious
and conclusive rules from the examples.

Additionally, optimizers using a stronger model
internally (suffices with "T") generally perform

21496

better with an exception on RuleInfer. Because
MIPRO and BootstrapFewshot all depend on good
few-shot demonstrations, a stronger internal model
provides better performance by generating better
traces at a relatively lower cost.

7.2 How do performance gains from different
optimizations vary across the
distribution?

We list the relative gain for all optimizers in Fig-
ure 6. From the plot, at the 90th percentile, all
optimizers demonstrate strong performance, rang-
ing from 80.2% up to 122.5%. This illustrates that
if used carefully, optimizers can provide substantial
performance gains. For example, for the HeartDis-
ease dataset, the MIPROv2 optimizer finds instruc-
tions like “using the provided patient information,
predict whether the patient has heart disease by
analyzing the clinical parameters step by step and
providing a rationale for your conclusion” and a
few good few-shot examples with detailed LM-
generated reasoning. These optimized prompts
increase the performance for Llama-3.2-3B from
26.32 to 76.32, resulting in an 189.97% increase.

The median of performance gains suggests the
common effect of using optimizers. For most tasks,
we expect a 5% to 20% from the optimizers. Fi-
nally, in some rare cases, performance degradation
happens. Because most optimizers employ a sep-
arate validation set to control the quality of opti-
mizations, the optimized language program may
overfit the validation set, causing a performance
drop on the final test set. RuleInfer and its variants
have the most performance degradation due to non-
transferable rules. Although the rules induced by
the optimizer work well for the validation set, some
may not directly help with the test set performance.

8 Conclusion

We presented LangProBe, a benchmark for evalu-
ating language programs across a range of tasks.
We used it to investigate far more comprehensively
than prior work the interactions between architec-
tures, optimization strategies, language models,
and the resulting quality and cost tradeoffs. We
hope that this starts a line of work on studying this
new category of AI systems and that our current
findings can already begin to offer practical guid-
ance for researchers and practitioners designing
and optimizing modular AI systems. Lastly, one
of the primary goals of LangProBe is to facilitate

the development and comparison of new language
program architectures and optimization strategies.

Limitations

Due to compute constraints, LangProBe is not able
to include more language programs (e.g., program-
of-thought) and datasets (e.g., SWE-bench), which
could allow more insightful observations. Lang-
ProBe does not run full evaluation on the newest
reasoning models, like DeepSeek-R1 or OpenAI
o3-mini, also due to budget constraint.

References
Amazon Web Services. 2025. Amazon bedrock pricing.

Accessed on February 05, 2025.

Harrison Chase. 2022. LangChain.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter
Bailis, Ion Stoica, Matei Zaharia, and James Zou.
2024. Are more llm calls all you need? towards scal-
ing laws of compound inference systems. Preprint,
arXiv:2403.02419.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Karel D’Oosterlinck, Omar Khattab, François Remy,
Thomas Demeester, Chris Develder, and Christopher
Potts. 2024. In-context learning for extreme multi-
label classification. Preprint, arXiv:2401.12178.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2023. Improving

21497

https://aws.amazon.com/bedrock/pricing/
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2403.02419
https://arxiv.org/abs/2403.02419
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2401.12178
https://arxiv.org/abs/2401.12178
https://arxiv.org/abs/2305.14325

factuality and reasoning in language models through
multiagent debate. Preprint, arXiv:2305.14325.

R. A. Fisher. 1936. Iris. UCI Machine Learning Repos-
itory. DOI: https://doi.org/10.24432/C56C76.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Rujun Han, Yuhao Zhang, Peng Qi, Yumo Xu, Jenyuan
Wang, Lan Liu, William Yang Wang, Bonan Min, and
Vittorio Castelli. 2024. Rag-qa arena: Evaluating
domain robustness for long-form retrieval augmented
question answering. Preprint, arXiv:2407.13998.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the MATH dataset. In NeurIPS
Datasets and Benchmarks.

Andras Janosi, William Steinbrunn, Matthias Pfisterer,
and Robert Detrano. 1989. Heart disease. UCI Ma-
chine Learning Repository. https://doi.org/10.
24432/C52P4X.

Yichen Jiang, Shikha Bordia, Zheng Zhong, Charles
Dognin, Maneesh Singh, and Mohit Bansal. 2020.
Hover: A dataset for many-hop fact extraction and
claim verification. Preprint, arXiv:2011.03088.

Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel,
Nitya Nadgir, and Arvind Narayanan. 2024. Ai
agents that matter. Preprint, arXiv:2407.01502.

Omar Khattab, Christopher Potts, and Matei A. Zaharia.
2021. Baleen: Robust multi-hop reasoning at scale
via condensed retrieval. In NeurIPS, pages 27670–
27682.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li,
David Hall, Percy Liang, Christopher Potts, and
Matei Zaharia. 2022. Demonstrate-search-predict:
Composing retrieval and language models for
knowledge-intensive NLP. CoRR, abs/2212.14024.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. Dspy: Compiling
declarative language model calls into self-improving
pipelines. In ICLR.

Hynek Kydlicek, Alina Lozovskaya, Nathan Habib, and
Clémentine Fourrier. 2025. Fixing open llm leader-
board with math-verify. https://huggingface.
co/blog/math_verify_leaderboard. Accessed:
2025-02-21.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech
Stokowiec, and Nikolai Grigorev. 2022. Internet-
augmented language models through few-shot
prompting for open-domain question answering.
CoRR, abs/2203.05115.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In NeurIPS.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Alexander Cosgrove, Christo-
pher D Manning, Christopher Re, Diana Acosta-
Navas, Drew Arad Hudson, Eric Zelikman, Esin
Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren,
Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel
Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun,
Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar
Khattab, Peter Henderson, Qian Huang, Ryan An-
drew Chi, Sang Michael Xie, Shibani Santurkar,
Surya Ganguli, Tatsunori Hashimoto, Thomas Icard,
Tianyi Zhang, Vishrav Chaudhary, William Wang,
Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Ko-
reeda. 2023. Holistic evaluation of language models.
Transactions on Machine Learning Research. Fea-
tured Certification, Expert Certification.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: It-
erative refinement with self-feedback. Preprint,
arXiv:2303.17651.

Princeton NLP. 2024. Swe-bench verified dataset. Ac-
cessed: 2025-02-15.

OpenAI. 2024. Introducing swe-bench verified.

OpenAI. 2025. Openai api pricing. Accessed on Febru-
ary 5, 2025.

Krista Opsahl-Ong, Michael J. Ryan, Josh Purtell,
David Broman, Christopher Potts, Matei Zaharia, and
Omar Khattab. 2024. Optimizing instructions and
demonstrations for multi-stage language model pro-
grams. In EMNLP, pages 9340–9366. Association
for Computational Linguistics.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David
Broman, Christopher Potts, Matei Zaharia, and Omar

21498

https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://arxiv.org/abs/2407.13998
https://arxiv.org/abs/2407.13998
https://arxiv.org/abs/2407.13998
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://doi.org/10.24432/C52P4X
https://doi.org/10.24432/C52P4X
https://arxiv.org/abs/2011.03088
https://arxiv.org/abs/2011.03088
https://arxiv.org/abs/2407.01502
https://arxiv.org/abs/2407.01502
https://huggingface.co/blog/math_verify_leaderboard
https://huggingface.co/blog/math_verify_leaderboard
https://openreview.net/forum?id=iO4LZibEqW
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://huggingface.co/datasets/princeton-nlp/SWE-bench_Verified
https://openai.com/index/introducing-swe-bench-verified
https://openai.com/api/pricing/

Khattab. 2024. Optimizing instructions and demon-
strations for multi-stage language model programs.
Preprint, arXiv:2406.11695.

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok
Natarajan, Nahum Maru, Hristo Todorov, Etash
Guha, E. Kelly Buchanan, Mayee Chen, Neel
Guha, Christopher Ré, and Azalia Mirhoseini.
2024. Archon: An architecture search frame-
work for inference-time techniques. Preprint,
arXiv:2409.15254.

Imanol Schlag, Sainbayar Sukhbaatar, Asli Celikyilmaz,
Wen tau Yih, Jason Weston, Jürgen Schmidhuber,
and Xian Li. 2023. Large language model programs.
Preprint, arXiv:2305.05364.

Jingyuan S. She, Christopher Potts, Samuel R. Bow-
man, and Atticus Geiger. 2023. Scone: Benchmark-
ing negation reasoning in language models with fine-
tuning and in-context learning. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), page
1803–1821. Association for Computational Linguis-
tics.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

Dilara Soylu, Christopher Potts, and Omar Khattab.
2024. Fine-tuning and prompt optimization: Two
great steps that work better together. Preprint,
arXiv:2407.10930.

Benedikt Stroebl, Sayash Kapoor, and Arvind
Narayanan. 2024. Inference scaling flaws: The limits
of llm resampling with imperfect verifiers. Preprint,
arXiv:2411.17501.

Sijun Tan, Siyuan Zhuang, Kyle Montgomery,
William Y. Tang, Alejandro Cuadron, Chenguang
Wang, Raluca Ada Popa, and Ion Stoica. 2024.
Judgebench: A benchmark for evaluating llm-based
judges. Preprint, arXiv:2410.12784.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin
Manku, Vinty Dong, Edward Li, Shashank Gupta,
Ashish Sabharwal, and Niranjan Balasubramanian.
2024. Appworld: A controllable world of apps and
people for benchmarking interactive coding agents.
In ACL (1), pages 16022–16076. Association for
Computational Linguistics.

Cunxiang Wang, Ruoxi Ning, Boqi Pan, Tonghui Wu,
Qipeng Guo, Cheng Deng, Guangsheng Bao, Xi-
angkun Hu, Zheng Zhang, Qian Wang, and Yue
Zhang. 2024. Novelqa: Benchmarking question
answering on documents exceeding 200k tokens.
Preprint, arXiv:2403.12766.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. 2024. Swe-agent: Agent-computer interfaces
enable automated software engineering. Preprint,
arXiv:2405.15793.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In EMNLP, pages 2369–2380. Association for
Computational Linguistics.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen,
Sheng Liu, Zhi Huang, Carlos Guestrin, and James
Zou. 2024. Textgrad: Automatic "differentiation" via
text. Preprint, arXiv:2406.07496.

Matei Zaharia, Omar Khattab, Lingjiao Chen,
Jared Quincy Davis, Heather Miller, Chris Potts,
James Zou, Michael Carbin, Jonathan Frankle,
Naveen Rao, and Ali Ghodsi. 2024. The shift from
models to compound ai systems.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2024. Webarena: A realistic web envi-
ronment for building autonomous agents. Preprint,
arXiv:2307.13854.

A Language Programs

Language programs are modular systems around
structured LLM calls. Soylu et al. (2024) defines
language program as a program Φ : X ⇒ Y ,
whose execution breaks down inputs into calls
for a set of language model modules M =<
M_1, ...,M_m >, each representing an LM invo-
cation, declaratively defined in terms of its desired
input/output behavior. Note that here, the LM mod-
ules are parameterized with prompts or language
model weights, which are tuned by optimizers.

We show a common language programs (RAG)
in two popular frameworks, DSPy and LangChain,
in Figure 7. While the two programs are different in
syntactical forms, they both contains abstractions
around building and invoking language model mod-
ules, together with allowing tool calling (retriever)
in-between.

We list dataset categories and specialized pro-
grams for them in Table 1.

21499

https://arxiv.org/abs/2406.11695
https://arxiv.org/abs/2406.11695
https://arxiv.org/abs/2409.15254
https://arxiv.org/abs/2409.15254
https://arxiv.org/abs/2305.05364
https://doi.org/10.18653/v1/2023.acl-short.154
https://doi.org/10.18653/v1/2023.acl-short.154
https://doi.org/10.18653/v1/2023.acl-short.154
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2407.10930
https://arxiv.org/abs/2407.10930
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2411.17501
https://arxiv.org/abs/2410.12784
https://arxiv.org/abs/2410.12784
https://arxiv.org/abs/2403.12766
https://arxiv.org/abs/2403.12766
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2406.07496
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

class RAG(dspy.Module):
def __init__(self , num_passages =3):

self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_query = dspy.ChainOfThought("question -> search_query")
self.generate_answer = dspy.ChainOfThought("context , question -> answer")

def forward(self , question):
search_query = self.generate_query(question=question).search_query
passages = self.retrieve(search_query).passages

return self.generate_answer(context=passages , question=question)

query_prompt = ChatPromptTemplate.from_template(
"Generate a concise Wikipedia search query for the question: {question}"

)

generate_query_chain = (
RunnablePassthrough.assign(question=lambda x: x["question"])
| query_prompt | llm | StrOutputParser ()

)

retriever = WikipediaRetriever(top_k_results =3, lang="en")

def format_docs(docs: list[Document]) -> str:
return "\n\n".join(doc.page_content for doc in docs)

answer_prompt = ChatPromptTemplate.from_template(
"""
Answer the question based only on the context provided.
Context: {context}
Question: {question}
"""

)

chain = (
{ "question": RunnablePassthrough (), "query": generate_query_chain , }
| RunnableMap ({

"question": lambda x: x["question"],
"context": lambda x: retriever.invoke(x["query"]) | format_docs ,

})
| answer_prompt | llm | StrOutputParser ()

)

Figure 7: We show a RAG langauge program in two different popular frameworks, DSPy (up) and LangChain
(bottom). Although two frameworks provide different abstractions, i.e., different declarative language for writing
language programs, they both contain structured ways to interact with LLMs. DSPy provide signatures, while
LangChain uses prompt templates. In LangProBe, we use DSPy for easier integration and evaluation of existing
optimization techniques. We open-sourced our evaluation suite and encourage language program contributions from
all frameworks.

21500

B Dataset Descriptions

LangProBe uses the following open-sourced
datasets for research purposes only.

AppWorld (Trivedi et al., 2024)
Task: AppWorld databases start in some initial
state set by the benchmark. The agent should take
certain actions during the execution to change the
database into another state.
Input: A question about mobile applications, along
with its supervisor’s information like name, phone
number, and email.
Output: python code that will be executed by App-
World server.
Evaluation metrics: the output python code will be
executed by the AppWorld server and check if the
database after execution is the same as the ideal
final state. Success is marked by passing all the
unit tests for state check and no unwanted actions
are taken. Otherwise, it’s a failure.
License: Apache 2.0

SweBenchVerifiedAnnotation (NLP, 2024)
Task: to examine each sample in the SWE-bench
test set for properly defined issue descriptions and
unit tests with appropriate scope by giving them
scores.
Input: the repository name containing the issue, the
issue description, gold patch, test patch, and the
names of the tests in the test patch that will be used
to evaluate the solution.
Output: a score from 0 to 3 based on certain 4
criteria.
Evaluation metrics: the ground truth is also a score
based on the same criteria. We calculate the string
equivalence between the predicted score and the
ground truth score.
License: MIT

MATH (Hendrycks et al., 2021b)
Task: The Mathematics Aptitude Test of Heuristics
(MATH) dataset consists of problems from mathe-
matics competitions, including the AMC 10, AMC
12, AIME, and more. Each problem in MATH has
a full step-by-step solution, which can be used to
teach models to generate answer derivations and
explanations.
Input: a math question written in LaTeX and natu-
ral language.
Ground truth: step-by-step solution written in La-
TeX and natural language with the final answer

enclosed in LaTeX’s \boxed tag.
Evaluation metrics: string equivalence between the
predicted mathematical answer and the gold solu-
tion extracted from the LaTeX’s \boxed tag. We
adopt Hendrycks et al. (2021b)’s evaluation. Ar-
guably, a more prominent evaluator like Math-
Verify (Kydlicek et al., 2025) would report fairer
(and higher) scores for all programs and optimizers,
which is left as future work.
License: MIT

GSM8K (Cobbe et al., 2021)
Task: solving high-school-level mathematics prob-
lems across various topics. These problems are
presented in natural language, and the model is
required to produce correct solutions.
Input: The question to a grade school math problem
in natural language
Output: The solution to this problem with step by
step reasoning in natural language. The numerical
solution is always at the end of the solution string.
Evaluation metrics: the ground truth is the solution
to this problem with step-by-step reasoning in natu-
ral language. We calculate the integer equivalence
between the predicted mathematical answer and
the gold solution.
License: MIT

HotPotQA (Yang et al., 2018)
Task: HotpotQA is a new dataset with 113k
Wikipedia-based question-answer pairs. Our task
is to answer questions that require reasoning across
multiple supporting documents.
Input: question in natural language
Output: answer to the question in natural language
Evaluation metrics: ground truth is the answer to
the question in natural language. We evaluate the
string equivalence between the predicted answer
and the ground truth answer.
License: CC BY-SA 4.0

HumanEval (Chen et al., 2021)
Task: The HumanEval dataset released by Ope-
nAI includes 164 programming problems with a
function signature, docstring, body, and several unit
tests. The task is to produce reliable and executable
code that passes the unit tests given.
Input: the prompt for function specification that
includes necessary import statements, function sig-
natures, and docstring of unit tests.
Ground truth: generated code snippet following the
function specification.

21501

Evaluation metrics: binary indicator that specifies
whether generated code passes the test cases de-
fined in the ground truth.
License: MIT

MMLU (Hendrycks et al., 2021a)
Task: answer multiple-choice questions across a
broad range of knowledge domains.
Input: description of the question along with its
four options in natural language.
Ground truth: the correct option for this question
Evaluation metrics: ground truth is provided as the
correct option in natural language (“A”, “B”, “C”,
or “D”). We evaluate the string equivalence be-
tween the predicted option and the ground truth
option.
License: MIT

IReRa (D’Oosterlinck et al., 2024)
Task: solve multi-label classification tasks with an
extreme number of classes
Inputs: a textual description
Outputs: all the ESCO job skill labels mentioned
in natural language.
Evaluation metrics: rank-precision (RP) of the pro-
duced rankings, calculated from a list of true rele-
vant items and a list containing the predicted items
in ranked order.
License: MIT

Heart Disease (Janosi et al., 1989)
Task: classify the patient’s heart disease status
based on the information provided
Inputs: textual description of patient heart dis-
ease attributes, including age, slope, chol, ca, thal,
restecg, exang, trestbps, cp, thalach, fbs, oldpeak,
and sex.
Outputs: A binary classification ("yes" or "no")
indicating whether the patient has heart disease.
Evaluation metrics: we evaluate the string equiv-
alence between the predicted diagnosis and the
ground truth diagnosis (“yes” or “no”).
License: CC BY 4.0

HoVer (Jiang et al., 2020)
Task: perform multi-hop evidence retrieval of a
claim to determine whether it’s supported or not.
Inputs: a claim about a fact in natural language.
Outputs: documents being retrieved concatenated
as a single string.
Evaluation metrics: The ground truth is the fact
the model is required to retrieve. We calculate

the proportion of examples in which the model is
required to retrieve at least one supporting fact from
each supporting document and accurately predict
the correct label.
License: CC BY-SA 4.0

Iris (Fisher, 1936)
Task: predict the species of an iris flower based on
its sepal and petal measurements.
Inputs: petal and sepal dimensions in cm about the
iris species in natural language.
Outputs: the class of iris plant (setosa, versicolor,
or virginica).
Evaluation metrics: the ground truth is the iris
class in natural language. We evaluate the string
equivalence between the predicted class and the
ground truth class.
License: CC BY 4.0

Scone (Scoped Negation Benchmark) (She et al.,
2023)
Task: ScoNe-NLI contains contrast sets of six ex-
amples where entailment relations are impacted by
the scope of one or two negations. The main task
is to test how well models understand and reason
about negation in natural language.
Inputs: a context dependent question and its con-
text in natural language
Outputs: “yes” or “no”
Evaluation metrics: ground truth answer to the
question is “yes” or “no”. We evaluate the string
equivalence between the predicted answer and the
ground truth answer.
License: CC0 1.0

RAG-QA Arena "Technology" (Han et al., 2024)
Task: generate quality answers for technology
questions.
Inputs: question in natural language.
Outputs: response to the question in natural lan-
guage.
Evaluation metrics: ground truth is a response in
natural language. We calculate the semantic F1
score between the model response and the ground
truth response. Note here the language model used
to evaluate F1 is the same as the model being eval-
uated.
License: Apache 2.0

JudgeBench (Tan et al., 2024)
Task: evaluating LLM-based judges for objective
correctness on challenging response pairs.

21502

Inputs: a question, response A and response B in
natural language
Outputs: which response is better. Either A>B or
B>A.
Evaluation metrics: ground truth is which one is
better, either “A>B” or “B>A”. string equivalence
between the predicted answer and the ground truth
answer.
License: MIT

C Language Program Descriptions

CoT
Given an instruction prompt, Chain of thought pro-
duces a step-by-step explanation leading to the final
answer.
Number of LLM calls: 1

RAG
Retrieval Augmented Generation first retrieves top-
k most relevant passages using a retriever. These
retrieved passages are then integrated as context
into the model’s input and passed through a Chain-
of-Thought reasoning process to generates a final
response.
Number of LLM calls: 1

ReActBaseline
Re-Act is a combination of reasoning and action
in a step-by-step manner. Usually, the action in-
volves retrieving relevant information from ex-
ternal sources and then integrates reasoning and
action-based decision-making into the model’s pro-
cess. In our case of AppWorld, the action involves
generating code that will be executed by the App-
World server.
Number of LLM calls: equivalent to the number
of reasoning steps (the number of reasoning steps
defaults to 40 in the case of AppWorld).

ReActAugmented
Same as ReActBaseline but with few-shot demon-
stration added.
Number of LLM calls: same as ReActBaseline

SimplifiedBaleen
First generates multiple search queries and iter-
ate through each one of them in multiple "hops,"
where each hop retrieves relevant passages from a
knowledge base using a retriever. These retrieved
passages are then aggregated as contexts and are

passed through a Chain-of-Thought reasoning pro-
cess to generate the final response.
Number of LLM calls: equivalent to the number
of hops (defaults to be 2).

SimplifiedBaleenWithInst The setup is the same
as SimplifiedBaleen except for a manually written
prompt. In our case of HotpotQA conditional, the
prompt is the following: When the answer is a
person, respond entirely in lowercase. When the
answer is a place, ensure your response contains no
punctuation. When the answer is a date, end your
response with “Peace!”. Never end your response
with "Peace!" under other circumstances. When
the answer is none of the above categories respond
in all caps.
Number of LLM calls: same as SimplifiedBaleen.

GeneratorCriticRanker
Produce a list of candidate responses from a given
instruction prompt, then for each of these responses,
it identifies the strengths/weaknesses for each can-
didate response. Then it returns a ranked list of
top-K candidate responses.
Number of LLM calls: equivalent to the number
of candidate * 2 + 1 (the number of candidates
defaults to be 5).

GeneratorCriticFuser
Produce a list of candidate responses from a given
instruction prompt, then for each of these responses,
it identifies the strengths/weaknesses for each can-
didate response. Then it returns a single, high-
quality response.
Number of LLM calls: equivalent to the number
of candidate * 2 + 1 (the number of candidates
defaults to be 5).

RAGBasedRank
It’s an in-context learning framework designed for
multi-label classification with an extremely large
number of classes (IReRa). The process begins
by generating queries based on the input and re-
trieving documents from a fixed retriever. Then the
retrieved documents are re-ranked by an LM.
Number of LLM calls: 2. One for generating the
query for retrieval and one for re-ranking the top k
retrieved documents.

MultiHopSummarize
It begins by retrieving and summarizing the top k
relevant passages for a given claim. Subsequent

21503

hops generate refined queries based on previous
summaries, retrieving additional passages. In total
of 3 iteration performed to gather information about
the initial question.
Number of LLM calls: equivalent to the number
of hops (the number of hops defaults to 7 in the
case of HoVer).

CoTBasedVote
It first applies multiple Chain-of-Thought classi-
fiers to generate independent predictions (votes)
that includes both the reasoning and the answer to
the question. These votes are then assessed and
consolidated through critical evaluation of these
"opinions".
Number of LLM calls: equivalent to the number of
voters + 1. (the number of voters defaults to be 3
in the case of Heart Disease).

D Cost-Performance Pareto Curves for
all benchmarks

Figure 2 visualizes the Performance-Cost Pareto
optimal configuration aggregated over 7 datasets
in LangProBe (Scone, HotpotQA, HumanEval,
HeartDisease, Judge, Iris, HotpotQAConditional)
and Figures 11, 9, and 10 and visualize the
Performance-Cost Pareto optimal configurations
for individuals datasets in LangProBe.

E Hyperparameter Settings for
Optimizers

Table 2 summarizes the optimizer configurations
used in LangProBe.

F Program Comparison for gpt-4o-mini

To show that results from Appendix F are not
scattered or biased averaging result from differ-
ent model families, we also show the Baseline vs.
Best Programs plot using data from gpt-4o-mini
in Figure 8. This plot delivers the same message
as Figure 3. In most cases, optimized programs
perform better than unoptimized programs, which
all are much better than language model call base-
lines.

G Introducing RuleInfer Optimizer

We introduce RuleInfer, a prompt optimization ap-
proach that identifies actionable rules to optimize
the DSPy program performance. We provide a dia-
gram of RuleInfer in Figure 12. Building upon the

Algorithm 1 RULEINFER: Inducing Rules from
Few-Shot Demonstrations to Optimize LM Pro-
grams

Require: Initial program Φ, Training set X , Vali-
dation set X ′, Candidates N

1: Φ∗ ← ApplyFewShots(Φ, X)
2: µ∗ ← Evaluate(Φ∗, X ′) ▷ Compute initial

score
3: for n = 1, . . . , N do
4: Φn ← Apply rule induction to Φ∗ using X
5: µn ← Evaluate(Φn, X

′)
6: if µn > µ∗ then
7: Φ∗ ← Φn ▷ Update best program
8: µ∗ ← µn ▷ Update best score
9: end if

10: end for
11: return Φ∗ ▷ Final optimized program

BootstrapFewShot optimizer, RuleInfer leverages
an LLM to perform rule induction on the generated
successful few-shot demonstrations, ascertaining
specific insights grounded by the "positive" behav-
ior from the examples to improve model perfor-
mance. The optimizer then appends these sets of
rules to the original task instructions and produces
candidates of optimized prompts with natural lan-
guage guidelines that are validated iteratively with
the final output of a best-performing optimized pro-
gram.

In comparison to optimizers like BootstrapFew-
Shot (designed mainly for producing examples)
and MIPRO (which proposes both instructions
and few-shots), RuleInfer offers a distinct way of
incorporating grounded, actionable rules derived
from existing few-shots. RuleInfer excels in tasks
with clear, discrete constraints, such as classifi-
cation (HeartDisease and Iris) or coding domains
(HumanEval and SWEBench), where well-defined
rules can be leveraged to create structured decision
boundaries for the language model to consider and
hence reinforce both consistency and accuracy in
performance. This quality makes RuleInfer par-
ticularly effective at aligning model behavior to
task requirements without extensive manual engi-
neering of the prompt instructions specifically, as
the LLM performing rule induction strengthens
this alignment. However, the optimizer lacks bene-
fits on tasks are less domain-specific like question-
answering tasks (HotPotQA, MMLU) as the in-
duced rules tend can be too broad for open-ended
general knowledge queries.

21504

Figure 8: Performance comparison between best-performing programs and the baseline for gpt-4o-mini, to reduce
result scattering between different models. This plot deliver the same message as Figure 3.

BootstrapFewShot
Init Args max_errors=5000 max_labeled_demos=2

Compile Args (none)

BootstrapFewShotWithRandomSearch
Init Args max_errors=5000 max_labeled_demos=2 num_threads=16

Compile Args (none)

MIPROv2-lite
Init Args max_errors=5000 auto="medium" num_threads=16

Compile Args num_trials=20

max_bootstrapped_demos=4

max_labeled_demos=2

MIPROv2
Init Args max_errors=5000 num_threads=16 num_candidates=12

Compile Args num_trials=50

max_bootstrapped_demos=4

max_labeled_demos=2

batch_size=35

batch_full_eval_steps=5

RuleInfer-lite
Init Args max_errors=5000 num_candidates=10 num_rules=10

num_threads=8

Compile Args (none)

RuleInfer
Init Args max_errors=5000 num_candidates=10 num_rules=20

num_threads=8

Compile Args (none)

Table 2: Summary of default optimizer configurations.

RuleInfer demonstrates how the LangProBe
benchmark can be leveraged to introduce and val-
idate new prompt optimization techniques across
various tasks. By comparing RuleInfer across ex-
isting DSPy optimizers across multiple tasks, pro-
grams and models, we provide a streamlined analy-
sis to easily pinpoint instances where rule-based in-
duction excels versus where it underperforms. This
will greatly benefit both prompt optimization de-
velopers in benchmarking novel techniques against
previous ones and prompt workflow developers in

understanding when to use what kinds of optimiz-
ers based on their task and program.

H Models Evaluated

We include all models we evaluated on LangProBe.
OpenAI models are available through https://
platform.openai.com/ and Llama models are
available on https://huggingface.co/ with the
handle below.

• meta-llama/Llama-3.1-8B-Instruct

21505

https://platform.openai.com/
https://platform.openai.com/
https://huggingface.co/

• meta-llama/Llama-3.2-3B-Instruct

• meta-llama/Llama-3.3-70B-Instruct

• gpt-4o-mini-2024-07-18

• gpt-4o-2024-08-06

• o1-mini-2024-09-12

21506

$0.00391 $0.00781 $0.0156 $0.0312 $0.0625 $0.125
Total Inference Cost ($ in log-scale)

30

40

50

60

70

80

90

100
Sc

or
e

Cost-Performance Pareto Curve for Iris

llama-3.2-3b
gpt-4o-mini
gpt-4o
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(a) Iris

$0.0156 $0.03122 × 10 2 3 × 10 2 4 × 10 2

Total Inference Cost ($ in log-scale)

30

40

50

60

70

80

Sc
or

e

Cost-Performance Pareto Curve for HeartDisease

llama-3.2-3b
llama-3.1-8b
gpt-4o-mini
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(b) HeartDisease

$0.0156 $0.0625 $0.25 $1 $4
Total Inference Cost ($ in log-scale)

0

10

20

30

40

50

60

Sc
or

e

Cost-Performance Pareto Curve for HotpotQA

llama-3.2-3b
llama-3.3-70b
gpt-4o-mini
gpt-4o
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(c) HotpotQA

$0.00781 $0.0156 $0.0312 $0.0625 $0.125 $0.25 $0.5 $1
Total Inference Cost ($ in log-scale)

0

10

20

30

40

Sc
or

e
Cost-Performance Pareto Curve for HotpotQAConditional

llama-3.2-3b
llama-3.3-70b
gpt-4o-mini
gpt-4o
o1-mini
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(d) HotpotQAConditional

$0.25 $0.5 $1 $2 $4 $8 $16
Total Inference Cost ($ in log-scale)

20

25

30

35

40

45

50

55

Sc
or

e

Cost-Performance Pareto Curve for hover

llama-3.2-3b
llama-3.3-70b
gpt-4o-mini
gpt-4o
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(e) HoVer

$0.00781 $0.0156 $0.0312 $0.0625 $0.125 $0.25 $0.5 $1
Total Inference Cost ($ in log-scale)

20

30

40

50

60

70

80

90

100

Sc
or

e

Cost-Performance Pareto Curve for HumanEval

llama-3.2-3b
llama-3.1-8b
gpt-4o-mini
o1-mini
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(f) HumanEval

Figure 9: Performance (Y) vs. Cost (X) Graph for different Benchmarks, Language Programs and Optimizers

21507

$0.0156 $0.0312 $0.0625 $0.125 $0.25 $0.5 $1 $2 $4
Total Inference Cost ($ in log-scale)

0

20

40

60

80

Sc
or

e
Cost-Performance Pareto Curve for IReRa

llama-3.2-3b
llama-3.3-70b
gpt-4o-mini
gpt-4o
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(a) IReRa

$0.125 $0.25 $0.5 $1 $2 $4
Total Inference Cost ($ in log-scale)

56

58

60

62

64

66

68

70

72

Sc
or

e

Cost-Performance Pareto Curve for Judge

llama-3.2-3b
gpt-4o-mini
o1-mini
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(b) Judge

$0.0625 $0.125 $0.25 $0.5 $1 $2
Total Inference Cost ($ in log-scale)

20

30

40

50

60

70

80

90

Sc
or

e

Cost-Performance Pareto Curve for MATH

gpt-4o-mini
gpt-4o
o1-mini
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(c) MATH

$0.0312 $0.0625 $0.125 $0.25 $0.5 $1 $2 $4 $8
Total Inference Cost ($ in log-scale)

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Sc
or

e

Cost-Performance Pareto Curve for MMLU

gpt-4o-mini
gpt-4o
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(d) MMLU

$0.0156 $0.0312 $0.0625 $0.125 $0.25 $0.5 $1 $2
Total Inference Cost ($ in log-scale)

60

70

80

90

100

Sc
or

e

Cost-Performance Pareto Curve for Scone

llama-3.2-3b
llama-3.3-70b
gpt-4o-mini
gpt-4o
o1-mini
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(e) Scone

$0.25 $0.5 $1 $2 $4
Total Inference Cost ($ in log-scale)

30

40

50

60

70

80

90

Sc
or

e

Cost-Performance Pareto Curve for SWEUnderspecified

llama-3.2-3b
llama-3.3-70b
gpt-4o-mini
gpt-4o
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(f) SWEUnderspecified

Figure 10: Performance (Y) vs. Cost (X) Graph for different Benchmarks, Language Programs and Optimizers

21508

$0.25 $0.5 $1 $2 $4
Total Inference Cost ($ in log-scale)

62

64

66

68

70

72

74

Sc
or

e

Cost-Performance Pareto Curve for SWEValidity

llama-3.1-8b
llama-3.3-70b
gpt-4o-mini
gpt-4o
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(a) SWEValidity

$0.125 $0.25 $0.5 $1 $2
Total Inference Cost ($ in log-scale)

84

86

88

90

92

94

96

98

Sc
or

e

Cost-Performance Pareto Curve for GSM8K

gpt-4o-mini
gpt-4o
o1-mini
Model
Model+Program
Model+Optimizer
Model+Program+Optimizer

(b) GSM8K

Figure 11: Performance (Y) vs. Cost (X) Graph for dif-
ferent Benchmarks, Language Programs and Optimizers

Bootstrap Demonstrations

Input

Program

Outputs

Metric

...

55%

x

Extract Rules
Demos Rules

If input
X then
check Y,
answer Z…

Evaluate Combination

x

Instruction

Rules

Demos

Figure 12: RuleInfer Optimizer Diagram. RuleInfer
Bootstraps demonstrations, extracts rules, and finally
finds useful combinations of the rules and demonstra-
tions that work well on the validation set. Optimizer
diagram styles from (Opsahl-Ong et al., 2024)

21509

