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Abstract

Large language models (LLMs) are trained
using massive datasets. However, these
datasets often contain undesirable content,
e.g., harmful texts, personal information, and
copyrighted material. To address this, machine
unlearning aims to remove information from
trained models. Recent work has shown that
soft token attacks (STA ) can successfully
extract unlearned information from LLMs.
In this work, we show that STAs can be an
inadequate tool for auditing unlearning. Using
common unlearning benchmarks, i.e., Who Is
Harry Potter? and TOFU, we demonstrate
that, in a strong auditor setting, such attacks
can elicit any information from the LLM,
regardless of (1) the deployed unlearning
algorithm, and (2) whether the queried content
was originally present in the training corpus.
Also, we show that STA with just a few soft
tokens (1 − 10) can elicit random strings
over 400-characters long. Thus showing that
STAs must be used carefully to effectively
audit unlearning. Example code can be found at
https://github.com/IntelLabs/LLMart/tree/main
/examples/unlearning

1 Introduction

Large language models (LLMs) excel in many
downstream tasks, e.g., machine translation (Zhu
et al., 2023), content generation (Acharya et al.,
2023), and complex problem-solving (Chen et al.,
2024). Their performance is attributed to their
large-scale architectures that require datasets con-
sisting of up to trillions of tokens to train effec-
tively (Kaplan et al., 2020). These datasets are
typically derived from large-scale corpora sourced
from public internet text. However, such datasets
can contain undesirable content, e.g., instructions
for building weapons, violent or explicit material,
private information, or copyrighted content. Given
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the sensitive nature of such data, it may be neces-
sary to remove it from the LLM to comply with the
local regulations, or internal company policies.

Machine unlearning is a tool for removing infor-
mation from models (Cao and Yang, 2015; Bour-
toule et al., 2021a). Approximate unlearning usu-
ally refers to removing information from models
without retraining them from scratch (Zhang et al.,
2024a; Eldan and Russinovich, 2023a; Izzo et al.,
2021), ensuring that the resulting model deviates
from a fully retrained version within a bounded er-
ror. While numerous studies have proposed various
unlearning algorithms, most lack formal guaran-
tees. Prior research has demonstrated that many
unlearning techniques can be circumvented through
rephrasing of the original data (Shi et al., 2024).
Recent work has shown that a soft token attack
(STA ) can be used to elicit harmful completions
and extract supposedly unlearned information from
models (Schwinn et al., 2024; Zou et al., 2024).

In this work, we introduce a simple frame-
work for auditing unlearning, and demonstrate that
STAs are inappropriate for verifying the effective-
ness of approximate unlearning in a strong auditor
setting. We show that the auditor can elicit any in-
formation from the model, regardless of its training
data. We claim the following contributions:

1. We show that STAs effectively elicit un-
learned information in all tested unlearning
methods and benchmark datasets (Who Is
Harry Potter?, and TOFU). Additionally, we
show that STAs also elicit information in the
base models that were not fine-tuned on the
benchmark datasets (Section 5.2).

2. We further demonstrate that the STAs are in-
appropriate for evaluating unlearning – we
show that a single soft token can elicit 150
random tokens, and ten soft tokens can elicit
over 400 random tokens (Section 5.3).
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2 Background

Adversarial prompt xa is an input prompt to the
LLM, obtained by applying the transform T (·) to
the base prompt xp: xa = T (xp, aux) to elicit a
desired completion c. T can be any function that
swaps, removes or adds tokens; aux denotes any
additional needed information. Such arbitrary at-
tacks are expensive to optimize, and difficult to
reason about. In practice, T optimizes an adversar-
ial suffix xs that is appended to xp to elicit c (Zou
et al., 2023). These suffix-only attacks also allow
efficient use of the KV-cache (Pope et al., 2023).
Specifically, we optimize the probability:

Prob = P (c|xp ⊕ xs). (1)

An adversary with white-box access to the LLM,
can instead mount the attack in the embedding
space i.e. modify the soft tokens:

Prob = P (c|embed(xp)⊕ embed(xs)). (2)

In this case, T uses the gradient from the LLM to
update xs. We visualize such attack in Figure 1.
Machine unlearning (MU) aims to remove infor-
mation from models. Consider a machine learning
model f trained using a training dataset Dtrain.
During an unlearning request to remove a specified
subset Dforget ∈ Dtrain, the objective of MU is to
produce an unlearned model fu that eliminates the
influence of Dforget. There are two types of MU –
exact, and approximate unlearning.
Exact unlearning ensures the output distribution
of fu is statistically indistinguishable from fret – a
model retrained exclusively on the retained dataset
Dretain = Dtrain/Dforget. This guarantees prov-
able data removal, satisfying:

p(fu(x) = y) = p(fret(x) = y)

s.t. ∀(x, y) ∈ Dtrain.
(3)

It can be made more efficient by splitting the
Dtrain into overlapping chunks, and training an
ensemble (Bourtoule et al., 2021b). During an
unlearning request, only the models containing the
requested records are retrained. For certain classes
of models, exact unlearning without retraining is
possible, e.g. ECO adapts the Cauwenberghs and
Poggio (CP) algorithm for exact unlearning within
LeNet (Huang et al.), and MUSE relabels the target
data to achieve unlearning for over-parameterized
linear models (Yang et al., 2024).

PotterWho is Harry ?

Large Language Model

embed(𝑥𝑠)

That's beyond my current 

knowledge base.

Harry Potter is the titular 

character of the Harry Potter 

series of novels by J. K. Rowling.

Gradient

embed(𝑥𝑝)

𝑥𝑝

𝑥𝑐:

Figure 1: STA combines xp with the optimized xs.

Approximate unlearning relaxes the strict equiv-
alence requirement, it only requires that fu ap-
proximates fret within some bounded error. It
relies on empirical metrics or probabilistic frame-
works. In LLMs, approximate unlearning is typi-
cally accomplished by overwriting the information
in the model (Eldan and Russinovich, 2023a; Wang
et al., 2024), guiding the model away from it (Feng
et al., 2024), or editing the weights and/or activa-
tions (Liu et al., 2024; Bhaila et al., 2024; Li et al.,
2024; Tamirisa et al., 2024; Huu-Tien et al., 2024;
Ashuach et al., 2024; Meng et al., 2022a,b).

3 Related work

While advances have been made in developing ma-
chine unlearning algorithms for LLMs, rigorous
methodologies for auditing the efficacy of unlearn-
ing remain understudied. Adversarial soft token
attacks (STAs) (Schwinn et al., 2024) and 5-shot
in-context prompting (Doshi and Stickland, 2024)
have been shown to recover unlearned knowledge
in models. When model weights can be modi-
fied, techniques such as model quantization (Zhang
et al., 2024e) and retraining on a partially unlearned
dataset (Łucki et al., 2024; Hu et al., 2024; Chen
et al., 2025) have also proven effective in recalling
forgotten information. (Lynch et al., 2024) exam-
ined eight methods for evaluating LLM unlearning
techniques and found that their latent representa-
tions remained similar. News and book datasets
are used to analyze unlearning algorithms from
six different perspectives (Shi et al., 2024). It was
shown that fine-tuning on unrelated data can re-
store information unlearned from the LLM (Qi
et al., 2024), indicating the existing unlearning
methods do not actually remove the information
but learn a refusal filter instead. Several bench-
marks have been developed to evaluate the exist-
ing unlearning algorithms. Besides, an unlearning
benchmark was introduced based on fictitious au-
thor information (Maini et al., 2024a). For real-
world knowledge unlearning, Real-World Knowl-
edge Unlearning (RWKU) used 200 famous peo-
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ple as unlearning targets (Jin et al., 2024), while
WDMP focused on unlearning hazardous knowl-
edge in biosecurity, cybersecurity (Li et al., 2024).

4 Auditing with Soft Token Attacks

An oracle auditor Ao takes an unlearned model fu
and the candidate sentences xc ∈ Xc, and outputs a
ground truth, binary decision a = {0, 1} indicating
whether the given records was part of Dtrain of:

a = Ao(fu, Xc = Dforget, aux). (4)

Ao is unrealistic but it can be easily instantiated for
exact unlearning where Ao knows the training data
associated with f : aux = {Dretain}.

A realistic unlearning auditor Au takes an fu,
and Dforget and outputs a score s = (0, 1) indicat-
ing whether the records were in Dtrain:

s = Au(fu, Xc = Dforget, aux = ∅) (5)

Au represents cases where users unlearn facts from
models that they did not create, e.g. to prevent
harmful outputs.

In this work, we instantiate the soft token at-
tack auditor ASTA based on the soft token attacks
(STAs) against unlearning (Schwinn et al., 2024;
Zou et al., 2024). ASTA compares the relative diffi-
culty of eliciting c for fft and fu. The unlearning
procedure is effective if eliciting completions using
fu is more difficult than fft.

s = ASTA(fu, Xc = Dforget, aux = {fft}). (6)

Crucially, Schwinn et al., 2024 optimized xs only
w.r.t. the affirmative beginning of xc (xp =‘Who is
Harry Potter?’, xc =‘Harry Potter is’). Contrary
to that minimal setting, our strong auditor ASTA
optimizes xs w.r.t. the entire xc. Our goal is to
study the extreme scenario where the auditor ex-
pects the exact completions for, e.g. to check for
copyrighted content, or personal information.

In the Appendix, Figure 3 gives an overview of
the auditing procedure, and the difference between
Ao and ASTA; Table 2 summarizes the notation.

5 Evaluation

5.1 Experiment setup
Datasets. For evaluation, we use two popular
benchmark datasets: 1) Who Is Harry Potter? (El-
dan and Russinovich, 2023a) (WHP ) that intends
to remove formation about the world of Harry Pot-
ter. WHP does not publish a full dataset. Hence,

we use the snippets from the associated Hugging
Face page, and we augment them with 20 (xp → c)
Harry Potter trivia pairs generated with Llama2.
2) TOFU (Maini et al., 2024a) is a dataset of
fictional writers, designed to be absent from the
LLM’s training data. Note that models released af-
ter TOFU was published might contain its records.
We use the provided 10% forget to 90% retain
split (Maini et al., 2024b).
Models. We use Llama-2-7b-chat-hf (Tou-
vron et al., 2023) (Llama2), and Llama-3-8b-
instruct (Meta, 2024) (Llama3). We get the un-
learned WHP model from Hugging Face (Eldan
and Russinovich, 2023b) (Llama2-WHP ).
Implementation. We implement STA using LL-
Mart (Cornelius et al., 2025) – a PyTorch-based
library for crafting adversarial prompts. We use im-
plementations of the unlearning methods from the
TOFU (Maini et al., 2024c), and NPO (Zhang et al.,
2024b) repositories. We benchmark the attack
against seven different unlearning algorithms: gra-
dient ascent (GA), gradient difference (GDF) (Liu
et al., 2022), refusal (IDK) (Rafailov et al., 2024),
knowledge distillation (KL) (Hinton, 2015), nega-
tive preference optimization (NPO) (Zhang et al.,
2024c), NPO-GDF, NPO-KL.

5.2 Auditing with attacks
Who Is Harry Potter?. To elicit completions,
we initialize the soft tokens using randomly se-
lected hard tokens, and append them to the prompt
xa = embed(xp)⊕ embed(xs). We then train the
soft prompt using AdamW (Loshchilov and Hutter,
2019) for up to 3000 iterations; using lr = 0.005,
and βs = (0.9, 0.999). xp does not change, only
the embedded suffix does. If the optimization fails,
we double the number of soft tokens up to the max-
imum of 16. We report the mean and standard devi-
ation over five independent runs across all prompts.
In Table 1a we report the average number of soft
tokens needed to elicit a completion. WHP * de-
notes the unlearned model with different prompt
templates.

We show that all target completions can be gener-
ated with ≈ 4−6 added soft tokens. For all pairs of
models, we conduct a t-test under the null hypothe-
sis H0 of equivalent population distributions with
α = 0.05. We use an unpaired Welch’s t-test since
sample variances are not equal (WELCH, 1947).
We cannot reject the hypothesis for any of the pairs
i.e. p > 0.05. In other words, for all models, no
significant evidence that eliciting completions is
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Prompt Model
template Llama2-WHP Llama3

N/A N/A 5.61± 6.32
WHP 4.63± 3.69 N/A

WHP +\n\n 6.50± 5.13 N/A
WHP +chat 4.12± 5.53 N/A

(a) WHP results with different prompt templates.

Unlearning method Model
Llama2 Llama3

f∅ (none) 3.07± 3.25 3.11± 3.15
fft (none) 2.95± 3.35 3.21± 3.19
fu−IDK 3.40± 3.20 3.33± 3.09
fu−GA 3.34± 3.97 3.21± 3.87
fu−GDF 3.06± 3.34 3.11± 3.40
fu−KL 3.08± 3.31 3.12± 3.17
fu−NPO 3.11± 3.27 3.12± 3.27

fu−NPO−GDF 3.15± 3.24 3.16± 3.16
fu−NPO−KL 3.23± 3.62 3.24± 3.57

(b) TOFU results with different unlearning methods.

Table 1: Number of soft tokens needed to elicit a com-
pletion for a fixed number of iterations; averaged over
all prompts in each set and over five runs per prompt.
When increasing the maximum iterations to 10,000, all
completions can be elicited with 1–2 soft tokens.

more difficult.
Additionally, we observe that the ease of elic-

iting the completions changes depending on the
prompt template. We notice that the model (WHP
+chat) reveals all unlearned information with man-
ually paraphrased prompts (in a chat setting). Fur-
thermore, when using the example prompts in the
corresponding Hugging Face repository (Eldan and
Russinovich, 2023b), Llama2-WHP would often
begin the response with a double new line (\n\n).
We suspect that the provided unlearned model is
overfit to “prompt\n\n completion”. To run our eval-
uation in the most favorable setting, we report all
three. Our results show that attacking is the easiest
for WHP +chat, and the most difficult for WHP
+\n\n. Given these discrepancies, and the lack of a
standard WHP dataset, we believe it is not a good
unlearning benchmark, despite its popularity.
TOFU. We follow the same setup as for WHP .
In Table 1b, we report the number of soft tokens
required to elicit the completions. f∅ refers to the
unmodified baseline model, fft are the models fine-
tuned on TOFU , followed by the unlearned models.

For all methods, we can elicit the completions
with ≈ 3 soft tokens. Similarly to WHP , for all
pairs of models (within the same architecture), we
conduct Welch’s t-test. We cannot reject the hy-
pothesis for any of the pairs i.e. p > 0.05; fu−IDK

vs fft (for Llama2) gives the lowest p-value of
0.509. For all models, there is not enough evidence
to say that eliciting completions is more difficult.

One could argue that the unlearning methods
used are not effective (when comparing fft vs
fu−∗), hence they require similar numbers of soft
tokens. In fact, most of these approaches have al-
ready been shown to be ineffective and susceptible
to simple paraphrasing (Shi et al., 2024). However,
the same holds when compared to f∅. In the next
section, we demonstrate that the result cannot be
attributed to the (in-)effectiveness of the unlearning
methods but rather the power of STA .

5.3 Eliciting random strings

The chance of a random string appearing in the
training set is negligible, and preceding tokens do
not inform the selection of the next token. We
construct random strings uniformly at random from
the range 33-126 of the ASCII table.

We initialize the soft prompt using randomly
selected tokens. In this experiment, there is only
xs, and no xp. We then train the soft prompt using
AdamW for up to 3000 iterations per soft token;
using lr = 0.005, and βs = (0.9, 0.999).

In Figure 2, we report the longest elicited string
for a given number of soft tokens. We repeat the ex-
periment five times – e.g., the first marker implies
that for each of the five tested random strings of
length 150, we found an effective soft prompt. We
observe that not all initializations and seed config-
urations succeed, in which case a run needs to be
restarted with a different seed. If the loss plateaus
around 25% of the iterations, we restart the run.
However, no single string was restarted more than
ten times. Our results show that STAs can be used
to elicit completely random strings, thus undermin-
ing their application for auditing unlearning.

Next, we aim to answer why eliciting strings
is possible. Prompt-tuning (Lester et al., 2021) is
an efficient fine-tuning technique that trains only
a soft prompt added to the input instead of all
weights. STAs can be viewed as an extreme case
of prompt-tuning, where instead of training over
many prompts, one trains an attack per each prompt.
Thus, an LLM that outputs a completion that it was
trained on is an expected behavior. However, one
could argue, in practice, a properly unlearned (or
aligned) LLM should never output undesirable text.

6 Discussion & Conclusion

Unlearning vs jailbreaking. Our findings also
apply to the jailbreaking community. Prior work
hinted that unlearning and preventing harmful out-
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Figure 2: A single soft token can force over 150 random
characters. With 10 soft tokens, it is possible to generate
over 400 random characters.

puts can be both viewed as suppressing particular
information (Zhang et al., 2024d). For instance, it
was shown that fine-tuning on benign or unrelated
data can restore undesirable behavior (Hu et al.,
2024; Łucki et al., 2024).
Variation in gradient descent. Prior work showed
that retraining with some records removed can
result in the same final model depending on the
seed (Thudi et al., 2022). The influence of the
records might be minimal, making unlearning un-
necessary. Similarly, it was shown that SGD has
intrinsic privacy guarantees, assuming there exists a
group of similar records (Hyland and Tople, 2022).
Thus, algorithmic auditing of unlearning might not
be possible, and one would have to rely on verified
or attested procedures instead (Eisenhofer et al.,
2023), regardless of their impact on the model.
Distinguishing learned soft tokens. Even though,
in most of our results, the number of soft tokens
required to elicit a completion is the same, we at-
tempt to distinguish between them. To this end, we
take all single-token STAs optimized for TOFU
(Table 1b) and assign a label y = {0, 1}: y = 0
for f∅, and y = 1 for fft and the unlearned mod-
els. We then train a binary classifier using f∅ and
fft. While we are able to overfit it and distinguish
between f∅ and fft, we were not able to train a
model that would generalize to the unlearned mod-
els, and decisively assign a class. Our approach
is similar to Dataset Inference (Maini et al., 2021,
2024d) which showed there can be distributional
differences between the models, depending on the
data they were trained on. Further investigation
into what soft tokens are learned during the audit
is an interesting direction for future work.
Conclusion. In this work, we show that soft to-
ken attacks (STA ) cannot distinguish between base,
fine-tuned, and unlearned models: a strong audi-

tor can elicit all unlearned text. Also, we show
that STA with a single token can elicit 150 random
characters, and over 400 with 10 tokens. Our work
shows that machine unlearning in LLMs needs care-
ful assumptions to avoid misleading results.

7 Limitations & ethical considerations

Limitations. Our experiments are constrained to
models with 7–8 billion parameters. Neverthe-
less, since the expressive power of LLMs generally
scales with size (Kaplan et al., 2020), we expect
our findings to extend to larger models. For ef-
ficiency reasons, we restrict our evaluation to at
most 10 soft tokens and random strings of up to
400 characters, which does not establish an upper
bound on the length of strings that can be elicited.
Future work could investigate whether black-box
optimization methods—such as zeroth-order opti-
mization (Chen et al., 2017)—can reproduce the
elicitation observed in the white-box setting. In
addition, extending our evaluation with random
strings may help determine whether there exists a
clear and generalizable relationship between the
number of soft tokens and the maximum number
of generated characters.
Ethical considerations. In this work, we show
that an auditor with white-box access and sufficient
computational resources can elicit arbitrary text
from an LLM. Although this requires knowledge
of the target completion, partial completions may
suffice, enabling the extraction of harmful informa-
tion—especially when the auditor has approximate
prior knowledge of the removed content.
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STA soft token attack
Ao oracle auditor
ASTA STA auditor
xp base prompt (benign)
xs adversarial suffix
xa adversarial prompt (xp ⊕ xs)
c target completion
f∅ base model
fft fine-tuned model
fu unlearned model
fu−∗ model unlearned using *
Dtrain training data
Dforget forget data
Dretain retain data

Table 2: Summary of the notation. ’*’ is replaced with
the specific unlearning method.

Appendices
A Auditing process

Figure 3 gives a complete overview of the audit-
ing procedure, and the difference between Ao and
ASTA. In Table 2, we summarize the notation.
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Figure 3: Overview of the auditing process using ASTA. For a perfect unlearning method, Ao always correctly audits
the model. On the other hand, ASTA can elicit the completion regardless of the information in the model – the audit
is ineffective.
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