Think Clearly: Improving Reasoning via Redundant Token Pruning

Daewon Choi', Jimin Lee!, Jihoon Tack', Woomin Song' >,
Saket Dingliwal?, Sai Muralidhar Jayanthi’, Bhavana Ganesh®*, Jinwoo Shin',
Aram Galstyan?, Sravan Babu Bodapati?,
'KAIST 2Amazon AGI AirSignal

daeone®920@kaist.ac.kr

Abstract

Recent large language models have shown
promising capabilities in long-form reasoning,
following structured chains of thought before
arriving at a final answer. However, we ob-
serve that these reasoning paths tend to include
substantial redundancy; analyzing attention pat-
terns reveals that attention scores are widely
scattered, particularly incorrect answers exhibit
greater attention sparsity. In this paper, we
demonstrate that deliberately removing this re-
dundancy in the reasoning process significantly
improves performance through clear thinking,
i.e., removing distraction. Specifically, we sys-
tematically identify reasoning redundancy by
measuring token-level attention scores to a spe-
cial end-of-thinking token, which is appended
to an explicit instruction inserted to conclude
each intermediate reasoning step. Furthermore,
we propose structure-aware pruning that pri-
oritizes removing tokens in low-contributing
reasoning chunks over individual tokens. After
evicting redundant tokens, we remove the in-
jected end-of-thinking instruction, then resume
the reasoning generation. We demonstrate that
our method significantly improves overall ac-
curacy across reasoning-intensive benchmarks
without any training involved. In particular,
our method shows strong performance on chal-
lenging mathematical competition benchmarks
such as AIME and AMC, where reasoning re-
dundancy is more prevalent.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable progress in complex reasoning tasks
(Wei et al., 2022; Zelikman et al., 2022), includ-
ing mathematical problem solving (Shao et al.,
2024), multi-hop question answering (Chen et al.,
2019), and long-form instruction following (Bai
et al., 2024). This success is often attributed to

T Work done during an internship at Amazon. ¥ Work
done at Amazon.

jiminl@kaist.ac.kr

the emergence of structured reasoning chains, gen-
erating sequences of intermediate thoughts that
gradually lead to a final answer (Kojima et al.,
2022; Hao et al., 2024). These reasoning chains al-
low models to break down complex problems into
smaller, more manageable subproblems, mimick-
ing the step-by-step cognitive strategies humans
reasoning (Prystawski et al., 2023).

In particular, recent reasoning models are trained
to verbalize their internal thoughts, effectively
leveraging the language abilities of pre-trained
models (Guo et al., 2025; Jaech et al., 2024). Addi-
tionally, this verbalization offers a key advantage:
it allows users to monitor and analyze—or even
intervene in—the model’s thought process during
generation (Baker et al., 2025; Wu et al., 2025).

In this paper, we found a somewhat interesting
observation by monitoring this internal thought pro-
cess of reasoning LLMs: reasoning chains often
consist of significant redundancy. Specifically, the
model generates intermediate reasoning steps that
tend to be repetitive, verbose, or include specula-
tive detours that do not ultimately contribute to the
final answer. Such redundancies are also observed
by analyzing the attention patterns, where attention
distributions during reasoning typically consist of
sparse patterns. This is especially problematic as
LLM can be easily distracted by irrelevant or redun-
dant context (Shi et al., 2023), and this tendency
is particularly evident when incorrect answers are
generated (see Fig. 1). More intriguingly, we ob-
serve reasoning chunks that receive consistently
low attention from subsequent tokens, suggesting
that the model briefly explores these misleading
paths but eventually abandons them, leaving be-
hind redundant traces in the generated sequence.
This raises a key question:

Can we improve the performance by identifying
and removing redundant tokens on-the-fly during
the reasoning process?

21437

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 21437-21451
November 4-9, 2025 ©2025 Association for Computational Linguistics

To this end, we propose a simple yet effective
test-time token pruning method that removes re-
dundant reasoning tokens. The core idea is to dy-
namically eliminate redundant tokens during gen-
eration, thereby enabling the model to preserve
only the most critical reasoning steps necessary
for reaching the correct answer. Specifically, we
propose two components: (i) identifying redun-
dant tokens by measuring their contribution to
a summarization-inducing end-of-thinking token,
and (ii) structure-aware pruning that prioritizes re-
moving low-contributing reasoning chunks rather
than individual tokens. Motivated by the obser-
vation that redundant tokens tend to receive low
attention from the token that concludes the rea-
soning step, we inject an explicit instruction that
prompts the model to summarize and terminate
the current thought process, enabling redundancy
measurement at intermediate stages.” Rather than
removing tokens in isolation, we first detect rea-
soning chunks that are unlikely to contribute to
the final answer (i.e., misleading paths), and prune
tokens within those chunks. Once pruning is com-
pleted, we resume the generation by removing the
injected end-of-thinking instruction.

We conduct a comprehensive set of experiments
to evaluate our token pruning scheme, focusing on
reasoning-heavy scenarios across a wide range of
tasks and models. Our results demonstrate that this
simple and lightweight inference-time approach
can significantly improve reasoning performance.
In particular, our method yields significant gains on
challenging mathematics competition benchmarks
such as AIME and AMC, where the model tends to
generate more redundant reasoning steps, making
our pruning approach especially effective. For in-
stance, our method improves the original model’s
accuracy from 75.0% to 82.5% on AMC2023 (Al-
MO, 2023), while reducing KV cache memory us-
age by 10.3% on Qwen2.5-7B (Yang et al., 2024b).

2 Related Work

We provide a comprehensive review of related
works on reasoning (focusing on the long chain-of-
thought literature) and token pruning and compres-
sion frameworks.

Long chain-of-thought. Recent Large Reason-
ing Models (LRMs) (Guo et al., 2025; Jaech et al.,
“We perform such an additional (summarization) prompt-

ing every 200 token-generation and observe that it introduces
marginal overhead in inference speed.

2024) have increasingly adopted explicit chain-of-
thought (CoT) reasoning to enhance performance
on complex tasks such as math (Shao et al., 2024),
science (Qwen, 2024), and symbolic reasoning (Xu
et al., 2024). Instead of producing direct answers,
these models generate multi-step intermediate rea-
soning traces, allowing them to break down com-
plex problems into smaller, more manageable steps
(Kojima et al., 2022; Prystawski et al., 2023). This
long-form reasoning improves both accuracy and
robustness (Wang et al., 2024; Guan et al., 2024),
as it provides opportunities for self-correction (Ku-
mar et al., 2025), verification (Lee et al., 2025), and
intermediate supervision during training or infer-
ence (Wu et al., 2025). A common pattern involves
separating the reasoning phase from the answer
phase, either through special tokens or by inter-
nal abstraction, where the reasoning is hidden and
only summarized (Hammoud et al., 2025a). Some
models expose the entire reasoning trace to the
user to increase interpretability and transparency
(Baker et al., 2025), while others keep it latent
to reduce vulnerability to prompt manipulation or
over-reliance (Hao et al., 2024). This shift toward
structured, multi-step reasoning has been central
to the recent progress of reasoning-focused LL.Ms,
enabling strong generalization to diverse domains,
from mathematics to program synthesis (Gao et al.,
2023). In this paper, we propose an efficient yet
effective test-time reasoning method by pruning
redundant tokens, enabling the model to focus on
critical points during long thinking.

Token pruning and compression. As the con-
text length and generated sequences of large lan-
guage models (LLMs) increase, the memory cost
of self-attention becomes a significant bottleneck
(Dao et al., 2022). In particular, the key-value
(KV) cache, which stores past activations for each
generated token, grows linearly with the sequence
length. To address this, several existing works
have explored strategies to identify and evict re-
dundant tokens in KV cache (Li et al., 2024). Xiao
et al. (2024) observe that attention distributions
often exhibit strong focus on initial tokens, and
show that retaining only the initial and most re-
cent tokens is sufficient to preserve performance.
Other approaches leverage attention-based metrics
to guide KV eviction (Chen et al., 2024). For ex-
ample, Zhang et al. (2023) proposes accumulat-
ing attention scores over decoding steps and using
them as token importance indicators. Oren et al.

21438

Poor reasoning
(High Redundancy)

W wait, actually .. @ Next,
& Alternatively, group ..
a Alternatively, group ..
g Alternatively, group ..

&) Alternatively, group ..

(a) Attention map and corresponding text

Good reasoning
(Low Redundancy)

Let me check ..
& Next, 7. Let me try ..
a Thus, the answer is ..

Attention value to </think>
(High value on important reasoning chunk)

Normalized Attention to Previous Keys at </think> Token
0204

0 250 500 750 1000 1250 1500 1750 2000
Token idx

W <Input question>

& Hmm.. So, lets see

& First, the double sum

(2] So, the double sum

&) But, from my earlier steps, it's clear
& Thus, the answer is ..

(b) Attention score on important chunks

Figure 1: Not all tokens are created equal for reasoning. We visualize and analyze the attention map of the output
sequence. (a) Attention maps when the model fails to produce the correct answer (i.e., poor reasoning) and when it
succeeds (i.e., good reasoning). Poor reasoning leads to highly redundant attention patterns. (b) Attention scores of
the end-of-thinking token </think>. The histogram shows that </think> attends to key reasoning chunks that contain
crucial information for deriving the final answer. We use Qwen2.5-7B distilled from DeepSeek-R1 on a subset of
the MATH-500 dataset. More quantitative analysis is provided in Appendix B.1.

(2024) evict the token with the lowest attention
score at each decoding step. Yang et al. (2024a)
observe that the number of crucial tokens varies
across layers, motivating a layer-wise compression
strategy. While these methods primarily aim to
improve inference efficiency, our approach focuses
on evicting redundant reasoning tokens to improve
the performance (compared to the full KV cache).
Nevertheless, we demonstrate the potential of us-
ing our method as a reasoning compression scheme,
achieving competitive performance under memory
constraints and often exceeding recent token evic-
tion and compression baselines.

Representation Engineering. Recent studies
(Zou et al., 2023; Azaria and Mitchell, 2023; Zhu
et al., 2024; Miao et al., 2025) have demonstrated
that large language models (LLMs) can be steered
by editing their hidden states. Zou et al. (2023);
Azaria and Mitchell (2023) identify activation di-
rections associated with high-level traits such as
truthfulness, and show that direct change along
these directions alter model behavior. In addition,
Zhu et al. (2024) show that LLLMs encode distinct
self- and other-beliefs within intermediate activa-
tions, which can influence their responses in diverse
social tasks. In line with these works, we propose
to indirectly influence the model’s internal states by
evicting redundant reasoning tokens from the KV
cache, thereby improving its reasoning capability.

3 Not All Tokens Matter for Reasoning

In this section, we investigate whether reasoning
models truly require all previously generated to-
kens to reach a correct final answer. To this end,
we focus on recent reasoning LLMs output 7;utput,
which consists of multi-step intermediate reasoning
traces Treason followed by final answer Tapswer With
special delimiters <think>... </think>.

Existence of redundant reasoning tokens. To
identify which reasoning tokens are important for
reaching the answer, we visualize the attention
maps of two samples: (i) a sample that fails to
answer the given question, and (ii) a sample that
successfully reaches the end-of-thinking token to
produce the correct answer. As shown in Fig. 1a,
the first case includes redundant text (e.g., repeated
attempts to rethink the process using phrases like
“Alternatively”), whereas the second case exhibits
a clear reasoning trajectory. Interestingly, the atten-
tion maps reflect this behavior; in the first case, the
attention is highly sparse due to redundancy in rea-
soning, while in the second case, the model attends
more frequently to previously generated tokens and
demonstrates a more global structure. These results
highlight the potential of using attention scores to
identify redundant reasoning steps.

Attention score to </think>. To quantify to-
ken importance more systematically, we analyze

21439

the attention scores directed to the special token
</think>, which marks the end of the reasoning
process. As shown in Fig. 1b, reasoning tokens
that contribute to the final answer tend to have
high attention scores to </think>. For example, the
</think> token frequently attends to sentences or
chunks that initiate the reasoning process or sum-
marize key conclusions. Interestingly, redundant
tokens often appear in contiguous chunks rather
than in isolation, suggesting that the </think> to-
ken selectively attends to informative reasoning
segments while ignoring irrelevant parts.

Based on this observation, we design a system-
atic token pruning strategy that leverages the end-
of-thinking token </think> and the chunked struc-
ture of the reasoning process to identify and remove
redundant reasoning tokens.

4 Improving Reasoning with Redundant
Token Pruning

In this section, we propose a novel KV cache evic-
tion policy that can improve reasoning models’ ef-
fectiveness and efficiency by removing redundant
tokens. Specifically, we suggest a novel scoring
function driven by self-summarization to identify
redundant tokens (in Section 4.1), and introduce a
stepwise eviction policy that aggressively removes
KV cache in the redundant reasoning step (in Sec-
tion 4.2). The overall procedure is illustrated in
Algorithm 1.

4.1 Identifying redundant tokens via
self-summarization

As shown in Fig. 1, the end-of-thinking token
</think> serves as a crucial cue for identifying
important reasoning tokens. Based on this, we
propose a novel scoring function for identifying
redundant tokens in the reasoning trace during the
intermediate decoding so that one can only pre-
serve important tokens. Specifically, we leverage a
short summarization prompt ending with </think>,
prompting the model to briefly summarize its own
reasoning. This forces the LLM to end the thinking
process, thereby effectively localizing the essential
part inside the reasoning trace.

Use of summarization prompts. During the in-
termediate step of the decoding, we periodically
trigger the model to summarize and answer the
question at every fixed interval. Here, to evaluate
the redundancy of tokens during reasoning, our key
idea is to forward the reasoning model with a short

Algorithm 1 Redundant Token Eviction via Self-
summarization

Require: Reasoning tokens 7' = {t1,...,t5},
eviction budget k, layers ¢ € [1, L], heads
h e [1,H]
Ensure: Set of k tokens to evict from KV cache
1: Inject summarization prompt Tgumm into the
input
2: Generate response including summarization
trigger token </think>
3: for each layer ¢ and head h do
4: for each token t € T do
5 Syh) — agilf:i)nb—w
6: end for
7 Segment Treason into steps {r1, . ..
8 for each step ; do
o o) « \Tlr\ D heH 2oter, st
10: end for
© 0

7TN}

11: Sort steps 7, 7, ..., 7/ in ascending order
12: of c%)

13: krem < k

14: for each sorted reasoning step fl@ do

15: 67(:? + min (]ﬂ@\, krem>

16: Erem < Krem — efff)

17: Evict eg) tokens with lowest ng,h) in
18: 7; per head h in layer £

19: if k.em = O then

20: break

21: end if

22: end for

23: end for

summarization prompt Tgumm. Which is constructed
as follows:

“Time is up. Given the time I’ve
spent and the approaches 1I’ve
tried, I should stop thinking and
now write summarization in one
sentence.</think>”

Especially, the prompt is designed to explicitly
shift the model from reasoning to summarization,
making the </think> token to capture informative
tokens in the reasoning trace without generating
explicit summarization.

Token importance score. To quantify the im-
portance of each token, we accumulate attention
weights assigned to previous tokens given the sum-
marization prompt Taumm.. Specifically, for each

21440

token ¢ in the current reasoning trace, we define

its importance score s,g ") at layer ¢ and head h
by aggregating attention values by injecting the
summarization prompt with </think>:

(f h) _ (¢,h)

= O phinks—sts ()

where agﬂ}fl)nb _,; denotes the attention weight from

the </think> in summarization tokens Tgymm. at
layer ¢ and head h. This score reflects how much
each token contributes to the final summarization,
as perceived by the model. Since the scores are
computed separately for each layer and attention
head, pruning decisions are made independently
at each level, enabling fine-grained control over
which tokens are retained.

4.2 Step-aware eviction with hierarchical
budget allocation.

We now present our eviction policy under a fixed
token eviction budget k. Motivated by our observa-
tion that reasoning traces often contain redundant
steps, we aim to remove tokens from such steps
while preserving essential ones. To this end, we
first segment the reasoning trace into semantically
coherent steps and then allocate the eviction bud-
get hierarchically across these steps based on the
importance score.

Aggregating importance score per reasoning
step. Following a previous work (Hammoud
et al., 2025b), we first divide the reasoning trace
into intermediate steps, and each steps consists of
a consecutive set of tokens with logical continuity
in reasoning (See Appendix A.2 for detail). Given
importance score s§ , We compute step score cﬁf)
by taking the mean over all tokens ¢ within the

same reasoning step r across head h:

> s @

heH ter

)

()
o rH]

where |H | is the number of heads and |r| is length
of reasoning step.

Hierarchical eviction. Given a token eviction
budget k, we aim to evict tokens primarily from
redundant reasoning steps, while preserving infor-
mative ones. To achieve this, we suggest a hier-
archical eviction policy that allocates the eviction
budget k in a step-aware manner, considering the
reasoning structure. Formally, given an importance

. ¢
score of reasoning step cg), we first sort all reason-

ing steps r() réz), e ,77%) in ascending order of

() G.e., ﬁf) is the most redundant step at layer

£). Then, following this order, we greedily allocate

a step-level eviction budget eg) to each reasoning

)

step 7, as:

0 _
ey, = min

1—1
k=Y ewl|. ©
=1’

where |7")\ is the number of tokens in step r(g) and

k is the total token eviction budget. This allocatlon

ensures that the total number of evicted tokens does

not exceed k, while prioritizing the more redundant

steps. After allocation, we evict tokelgs V)Vith the
4h

lowest token-level redundancy scores s; * within
each step rgz). This strategy naturally favors highly
redundant reasoning steps while avoiding prema-

ture removal from important ones.

5 Experiments

In this section, we present a thorough evaluation of
our proposed framework, with the goal of verify-
ing its ability to improve both reasoning accuracy
and inference efficiency. Our evaluation is divided
into three parts: (1) effectiveness, which examines
how well our method improves final answer cor-
rectness across a range of mathematical reasoning
tasks (Table 1); (2) efficiency, which measures the
memory savings achieved by our token pruning
strategy (Table 3); and (3) ablation and analysis,
which assesses the contribution of each individual
component of our framework, and explores how
well it generalizes to other domains and tasks (Ta-
ble 4, Table 6, and Table 7).

We empirically demonstrate that our method
not only reduces the computational overhead typi-
cally associated with long-form reasoning, but also
improves accuracy by filtering out redundant and
misleading intermediate steps. Across all tested
datasets and model sizes, our approach outperforms
existing KV cache compression baselines, often
by a significant margin. Importantly, the gains
are achieved without retraining or additional su-
pervision, indicating that our method is broadly
applicable as a plug-and-play enhancement for any
autoregressive reasoning model.

5.1 Experimental setup

We provide a detailed description of the experimen-
tal setup, covering the datasets, models, baselines,
and evaluation protocol.

21441

Table 1: Effectiveness of the redundant token pruning. We compare the proposed method (Ours) with the standard
decoding (FullKV) under six reasoning-intensive mathematical benchmarks, including MATH-500 (MATH),
Minerva, GaoKao, AIME2024, AIME2025, AMC2023. All models, including Qwen2.5-7B and Llama3.1-8B, are
reasoning LLMs distilled from DeepSeek-R1. We report accuracy (%) with the corresponding average response
length shown below in parentheses. Average accuracy and response length are presented in the final column. The

bold indicates the best accuracy within the group.

Dataset
Model Method MATH Minerva GaoKao AIME2024 AIME2025 AMC2023 Average
FullKV 87.0 59.9 65.8 36.7 233 55.0 54.6
(3397) (3391) (3845) (7060) (7133) (5004) 4971)
Qwen2.5-7B
Ours 87.2 60.5 67.1 46.7 36.7 82.5 63.4
(2926) (3471) (4219) (6841) (6905) (4488) (4808)
FullKV 81.0 459 67.1 333 13.3 75.0 52.6
(3389) (4060) (4689) (7067) (7088) (4986) (5213)
Llama3.1-8B
Ours 83.8 48.1 69.8 333 23.3 77.5 55.9
(3345) (3941) (4532) (7210) (7375) (4700) (5183)
Datasets. We evaluate our method on a diverse =~ Qwen2.5-7B (Yang et al., 2024b), and Llama3.1-

suite of publicly available benchmarks that span a
wide range of mathematical reasoning tasks, diffi-
culty levels, and linguistic diversity. Our core eval-
uation includes three widely used English bench-
marks: MATH-500 (Hendrycks et al., 2021), a
dataset of competition-level problems across alge-
bra, geometry, and combinatorics; and Minerva
Math (Lewkowycz et al., 2022), which consists of
high-school and advanced math questions sourced
from web documents.

To further assess the robustness of our method on
real-world and harder problems, we include recent
evaluation sets from mathematical competitions:
AIME 2024 (AIME, 2024), AIME 2025 (AIME,
2025) and AMC 2023 (AI-MO, 2023), all of which
contain challenging, high-school level problems
that demand precise logical deductions. Addition-
ally, we include GaoKaoMath (Zhong et al., 2023),
to assess the generality of our method on ques-
tions originating from the Chinese college entrance
exam. Finally, we further validate the general ap-
plicability of our method by evaluating it on a non-
mathematical reasoning dataset, namely the GPQA
Diamond (Rein et al., 2024). Note that GPQA Dia-
mond is a graduate-level question that consists of
science fields, requiring intensive reasoning capa-
bility to reach the answer.

Models. Our experiments are primarily based on
the DeepSeek-R1-Distill family of models, which
are designed to emulate the reasoning behavior
of DeepSeek-R1 (Guo et al., 2025) using dis-
tilled versions of popular backbones. We mainly
consider three backbone models: Qwen2.5-1.5B,

8B (Grattafiori et al., 2024), all trained with visible
chain-of-thought reasoning traces. Across all mod-
els, we observe consistent benefits of our method,
suggesting that our framework is architecture-
agnostic and works well across a wide range of
capacities.

Baselines. We primarily compare our method
with the standard decoding strategy that uses the
full KV cache (FullKV). For effectiveness, we also
consider overthinking methods that remove redun-
dancy in the reasoning chain, namely Chain of
Draft (Xu et al., 2025) and Break the Chain (Ding
et al., 2024). For efficiency, we compare against
recent decoding-time KV compression approaches
that can be applied without retraining, including
StreaminglLLM (Xiao et al., 2024), which retains
only the first and most recent tokens; H20 (Zhang
et al., 2023), which leverages accumulated atten-
tion scores to determine token importance; and
Pyramid-Infer (Yang et al., 2024a), which performs
layer-wise importance-based pruning.

Evaluation protocol. We adopt a standardized
evaluation protocol across all methods and datasets
to ensure fair comparisons. All models are evalu-
ated using standard generation with a temperature
of 0.6 and top-p of 0.95 under fixed seed to maxi-
mize replicability. The maximum generation length
is capped at 8192 tokens, sufficient for nearly all
long-form reasoning examples. To extract the final
answer from the generated output, we introduce a
designated token such as </think> to mark the end
of the reasoning phase. Accuracy is measured as

21442

the fraction of correctly answered questions, based
on an exact match with the ground truth. For ef-
ficiency, we measure the average number of KV
tokens stored during generation, normalized by the
total number of generated tokens, as well as the
total memory consumption when storing the KV
cache.

5.2 Redundant reasoning token pruning
improves the performance

We present that removing redundant tokens can
improve the accuracy. To this end, we compare our
method with the full KV (FullKV) cache method
on reasoning-intensive mathematical benchmarks.

As shown in Table 1, our method significantly
and consistently outperforms FullKV in accuracy.
For instance, our method improves the average
accuracy of FullKV from 57.9% to 63.4% under
Qwen2.5-7B. It is worth noting that our method
only involves changing the inference strategy, thus
showing wide applicability. Notably, our approach
consistently outperforms FullKV decoding despite
using fewer tokens. This suggests that our pruning
mechanism not only reduces memory usage but
also acts as a form of implicit regularization that
helps the model focus on essential reasoning steps
by making LLM less distracted by unnecessary text
(Shi et al., 2023). Interestingly, our method yields
greater improvements on more challenging bench-
marks such as AMC2023 or AIME datasets (i.e.,
mathematical competition problems). For example,
the performance on the AMC2023 dataset signifi-
cantly improves from 75.0—82.5 on Qwen2.5-7B,
and even uses 10.3% less response length. We con-
jecture that the LLM tends to struggle more and
produce a more redundant reasoning path in chal-
lenging setups, thus pruning such redundant tokens
is effective.

Moreover, we validate the effectiveness of our
method against existing overthinking approaches
(Ding et al., 2024; Xu et al., 2025) that attempt
to directly remove reasoning redundancy from the
output. Table 2 shows that these methods fail to
maintain the performance of the Full KV, whereas
our approach often improves reasoning accuracy.
These findings underscore a key distinction of our
method: by targeting internal redundancy through
evicting tokens from the KV cache, we achieve
performance improvements that are not attainable
with existing overthinking approaches.

Table 2: Comparison with overthinking methods. We
compare the proposed method (Ours) with the over-
thinking methods that attempt to remove redundancy
directly from reasoning trace. We evaluate on Qwen2.5-
7B distilled from DeepSeek-R1 across mathematical rea-
soning benchmarks, including AIME2024 and AMC23.
The bold indicates the best results.

Method AIME24 AMC23
FullKV 36.7 75.0
Chain of Draft 233 (-13.4) 72.5(-2.5)
Break the Chain 23.3 (-13.4) 72.5(-2.5)
Ours 46.7 (+23.4) 82.5 (+7.5)

Table 3: KV cache efficiency of the redundant token
pruning. We compare the proposed method (Ours) with
KV compression frameworks on MATH-500. We use
Qwen?2.5-1.5B reasoning LLM distilled from DeepSeek-
R1. For reference, we report the standard decoding with-
out KV compression (FullKV) results with the accuracy
(%). We evaluate accuracy under two KV compression
ratios (25% and 50%). The bold indicates the best re-
sults within the group.

Compression ratio

Method 25% 50%
FullKV 42.6

Streaming-LLM 34.8 38.6
H20 34.6 39.2
Pyramid-Infer 29.8 38.7
Ours 36.2 40.4

5.3 Redundant token pruning efficiently and
effectively reduces KV cache budget

To evaluate the memory efficiency of our method,
we vary the token pruning budget and compare
the resulting KV cache size and model accuracy.
Table 3 shows the performance of all methods at
various relative cache budgets (e.g., 25% and 50%
compared to full KV cache size). Our method
achieves superior compression ratios without com-
promising accuracy, while other methods suffer
significant accuracy degradation under aggressive
pruning.

Unlike previous approaches that are not special-
ized to the reasoning process compression, our
method dynamically adapts to the reasoning pro-
cess by allocating eviction budgets fairly across rea-
soning chunks. This chunk-aware strategy ensures
that each reasoning step retains its most important
context, enabling robust final answers even under
tight memory constraints. In particular, our method
maintains over 94% of the full-KV accuracy at
just 50% memory usage, making it an attractive

21443

Table 4: Component analysis. We ablate the two main
components of our method: self-summarization (Summ)
and step-aware token eviction (Step). We report the
accuracy (%) on the AIME2024 and AMC2023 datasets.
The bold indicates the best results.

Summ Step AIME2024 AMC2023

X X 40.0 70.0
v X 36.7 71.5
v 4 46.7 82.5

solution for deployment in resource-constrained
environments such as mobile devices, embedded
systems, or large-batch inference setups.

Table 5: Which tokens are frequently evicted? We
measure the frequency of eviction per tokens, during
evaluating DeepSeek-R1-Distill-Qwen-7B on AIME24.
Frequency are normalized by dividing by the maximum
count. The bold indicates the highest value.

Token Frequency
, (comma) 1.00
2 0.97
"" (blank quote) 0.84
1 0.62
4 0.49
. (full stop) 0.46

5.4 Ablation and analysis

We further analyze the contributions of individual
components in our framework and investigate its
generalizability across domains and complemen-
tary methods. Throughout this section, unless oth-
erwise specified, we consider the Qwen2.5-7B rea-
soning model that is distilled from DeepSeek-R1.

Component analysis. To understand which parts
of our method drive the observed gains, we perform
an ablation study where we remove key compo-
nents one at a time. As shown in Table 4, both the
self-summarization phase and the stepwise eviction
budget contribute meaningfully to performance.
Removing the summarization step by just insert-
ing the end-of-thinking </think> token leads to
inaccurate importance scores, resulting in the re-
moval of critical tokens. Conversely, removing the
step-aware token eviction results in over-pruning
from important chunks, reducing accuracy. The full
model, with both components, consistently yields
the best results. This supports our design intuition
that token importance is context-dependent and that
a structured pruning policy is necessary to avoid
harming the model’s reasoning ability.

Table 6: Importance of deliberate token pruning.
Random or structure-agnostic pruning degrades accu-
racy (%), while our method improves performance by
pruning at semantically meaningful reasoning bound-
aries. We evaluate on Qwen2.5-7B distilled from
DeepSeek-R1 across mathematical reasoning bench-
marks, including AIME2024 and AIME2025. The bold
indicates the best results.

Method AIME2024 AIME2025
FullKV 36.7 23.3
Random 36.7 333
H20 40.0 26.7
Ours 46.7 36.7

Which tokens are frequently evicted? We an-
alyze the tokens most frequently pruned by our
method. As shown in Table 5, they are typically
punctuation marks or numerical tokens, which tend
to be contextually redundant. For example, numeri-
cal values often appear during intermediate compu-
tation but are not used after subsequent reasoning
steps. Moreover, we observe that directly mask-
ing out them during reasoning degrades original
performance (See Appendix B.2 for detail).

Does eviction alone improve performance? A
natural question is whether token eviction it-
self—regardless of how the evicted tokens are se-
lected—can lead to improved performance. To
verify this, we compare three strategies under our
framework: (1) Random, which evicts tokens uni-
formly at random at each step, (2) H20, which
prunes tokens with the lowest accumulated atten-
tion scores, and (3) Ours, which step-aware evicts
tokens based on a score triggered by an end-of-
thinking token </think>.

As shown in Table 6, both Random and H20
yield marginal performance improvements, indi-
cating that even naive or structure-agnostic prun-
ing can occasionally help by reducing redundancy.
However, such approaches risk removing semanti-
cally important context, leading to unstable gains.
In contrast, our method significantly outperforms
others by aligning token eviction with the semantic
structure of the reasoning trace.

Effectiveness on a non-mathematical reasoning
benchmark. Finally, we test whether our method
generalizes beyond mathematical reasoning. In Ta-
ble 7, we report results on GPQA Diamond (Rein
et al., 2024), a dataset of expert-written multiple-
choice science questions. Despite the distinct na-
ture of these tasks, our method consistently im-

21444

Table 7: Effectiveness on non-mathematical reason-
ing benchmarks. We compare the proposed method
(Ours) with the standard greedy decoding (FullKV) un-
der a non-mathematical reasoning benchmark, GPQA
(science). We report the accuracy (%) and the corre-
sponding average response length in the parentheses.
The bold indicates the best results.

Method GPQA
FullKV 32.0 (6418)
Ours 36.4 (6277)

proves the performance over Full-KV, demonstrat-
ing its robustness across reasoning styles. We
find that the original model iteratively generates
intermediate justifications when tackling GPQA
Diamond, which hurts answer quality. Here, our
method effectively suppresses such distractions,
thus improving the performance.

6 Conclusion

In this paper, we propose a test-time scaling method
for enhancing reasoning in large language models
by identifying and pruning redundant tokens dur-
ing the generation of reasoning traces. By introduc-
ing a forced summarization phase at intermediate
reasoning steps, we estimate the contribution of
each token to the ongoing reasoning process. Com-
bined with a stepwise budget allocation strategy,
our method demonstrates that targeted KV cache
pruning can not only serve as a compression mech-
anism but also improve reasoning performance.
Moreover, our eviction algorithm is plug-and-play,
making it suitable for memory-constrained settings,
where it outperforms existing baselines under high
compression scenarios.

Limitations

While our proposed framework demonstrates
strong performance in both accuracy and mem-
ory efficiency across a range of reasoning tasks,
it also comes with several limitations that open av-
enues for future work. First, our method relies on
the presence of explicit reasoning traces in model
outputs (e.g., chain-of-thought reasoning or inter-
mediate steps marked by special tokens such as
<think>). This restricts applicability to models
trained with visible thoughts or intermediate su-
pervision. For models that operate in an end-to-end
manner without exposing their internal reasoning,
our summarization-based token importance estima-
tion may not generalize directly. Second, our prun-

ing strategy is applied only at test time and does
not benefit from end-to-end training with pruning
in the loop. While this makes our method widely
compatible with existing models, it also limits its
adaptiveness. Learning token importance jointly
with model weights—potentially via reinforcement
learning or differentiable attention masking—could
further improve performance. Third, while our ex-
periments span a diverse set of math reasoning
datasets, the majority of our evaluation focuses on
factual or symbolic reasoning tasks. Extending
our method to open-domain question answering,
commonsense inference, or multimodal reasoning
(e.g., visual QA) remains an open challenge. These
settings may require different forms of redundancy
detection or finer-grained reasoning segmentation.

Acknowledgments

This work was supported by Institute for Infor-
mation & communications Technology Technol-
ogy Planning & Evaluation(IITP) grant funded
by the Korea government(MSIT) (No.RS-2019-
11190075, Artificial Intelligence Graduate School
Support Program(KAIST); No.RS-2024-00509279,
Global AI Frontier Lab; No.RS-2025-02653113,
High-Performance Research AI Computing Infras-
tructure Support at the 2 PFLOPS Scale).

References

AI-MO. 2023. AIMO Validation AIME Dataset.
https://huggingface.co/datasets/AI-MO/
aimo-validation-aime.

AIME. 2024. American invitational mathematics
examination (aime). https://huggingface.co/
datasets/HuggingFaceH4/aime_2024.

AIME. 2025. American invitational mathematics
examination (aime). https://huggingface.co/
datasets/opencompass/AIME2025.

Amos Azaria and Tom Mitchell. 2023. The internal
state of an LLM knows when it’s lying. In The 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.

Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei
Hou, Jie Tang, Yuxiao Dong, and Juanzi Li. 2024.
Longalign: A recipe for long context alignment of
large language models. In Annual Conference of the
Association for Computational Linguistics.

Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou,
Melody Y Guan, Aleksander Madry, Wojciech
Zaremba, Jakub Pachocki, and David Farhi. 2025.
Monitoring reasoning models for misbehavior and

21445

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/opencompass/AIME2025
https://huggingface.co/datasets/opencompass/AIME2025
https://openreview.net/forum?id=y2V6YgLaW7
https://openreview.net/forum?id=y2V6YgLaW7

the risks of promoting obfuscation. arXiv preprint
arXiv:2503.11926.

Jifan Chen, Shih-ting Lin, and Greg Durrett. 2019.
Multi-hop question answering via reasoning chains.
arXiv preprint arXiv:1910.02610.

Renze Chen, Zhuofeng Wang, and 1 others. 2024.
Arkvale: Efficient generative llm inference with re-
callable key-value eviction. In Advances in Neural
Information Processing Systems.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
In Advances in Neural Information Processing Sys-
tems.

Mengru Ding, Hanmeng Liu, Zhizhang Fu, Jian Song,
Wenbo Xie, and Yue Zhang. 2024. Break the chain:
Large language models can be shortcut reasoners.
arXiv preprint arXiv:2406.06580.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Melody Y Guan, Manas Joglekar, Eric Wallace, Saachi
Jain, Boaz Barak, Alec Helyar, Rachel Dias, Andrea
Vallone, Hongyu Ren, Jason Wei, and 1 others. 2024.
Deliberative alignment: Reasoning enables safer lan-
guage models. arXiv preprint arXiv:2412.16339.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Hasan Abed Al Kader Hammoud, Hani Itani, and
Bernard Ghanem. 2025a. Beyond the last answer:
Your reasoning trace uncovers more than you think.
arXiv preprint arXiv:2504.20708.

Hasan Abed Al Kader Hammoud, Hani Itani, and
Bernard Ghanem. 2025b. Beyond the last answer:
Your reasoning trace uncovers more than you think.
arXiv preprint arXiv:2504.20708.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.
Training large language models to reason in a contin-
uous latent space. arXiv preprint arXiv:2412.06769.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su,
John D Co-Reyes, Avi Singh, Kate Baumli, Shariq
Igbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang,
Kay McKinney, Disha Shrivastava, Cosmin Paduraru,
George Tucker, Doina Precup, Feryal Behbahani, and
Aleksandra Faust. 2025. Training language models
to self-correct via reinforcement learning. In Interna-
tional Conference on Learning Representations.

Hyunseok Lee, Seunghyuk Oh, Jaechyung Kim, Jinwoo
Shin, and Jihoon Tack. 2025. Revise: Learning to
refine at test-time via intrinsic self-verification. In
International Conference on Machine Learning.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, and 1 others. 2022. Solving quan-
titative reasoning problems with language models.
Advances in Neural Information Processing Systems,
35:3843-3857.

Yuhong Li and 1 others. 2024. Snapkv: LIm knows
what you are looking for before generation. In Ad-
vances in Neural Information Processing Systems.

Yuchun Miao, Sen Zhang, Liang Ding, Yuqi Zhang,
Lefei Zhang, and Dacheng Tao. 2025. The energy
loss phenomenon in RLHF: A new perspective on
mitigating reward hacking. In Forty-second Interna-
tional Conference on Machine Learning.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi,
and Roy Schwartz. 2024. Transformers are multi-
state rnns. arXiv preprint arXiv:2401.06104.

Ben Prystawski, Michael Li, and Noah Goodman. 2023.
Why think step by step? reasoning emerges from
the locality of experience. In Advances in Neural
Information Processing Systems.

Qwen. 2024. QwQ: Reflect deeply on the boundaries of
the unknown. https://qwenlm.github.io/blog/
gwq-32b-preview/. Accessed: 2025-05-13.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan

21446

https://openreview.net/forum?id=82A81az3V5
https://openreview.net/forum?id=82A81az3V5
https://openreview.net/forum?id=82A81az3V5
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98

Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael Schirli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Interna-
tional Conference on Machine Learning.

Huaijie Wang, Shibo Hao, Hanze Dong, Shenao Zhang,
Yilin Bao, Ziran Yang, and Yi Wu. 2024. Offline
reinforcement learning for 1lm multi-step reasoning.
arXiv preprint arXiv:2412.16145.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. In Interna-
tional Conference on Machine Learning.

Tong Wu, Chong Xiang, Jiachen T Wang, and Prateek
Mittal. 2025. Effectively controlling reasoning mod-
els through thinking intervention. arXiv preprint
arXiv:2503.24370.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In International
Conference on Learning Representations.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-
Li Lee, and Wynne Hsu. 2024. Faithful logical rea-
soning via symbolic chain-of-thought. In Annual
Conference of the Association for Computational Lin-
guistics.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng
He. 2025. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024a. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm
inference. Preprint, arXiv:2405.12532.

Qwen An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Jun-
yang Lin, and 25 others. 2024b. Qwen2.5 technical
report. arXiv preprint arXiv:2412.15115.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. In Advances in Neural Information Process-
ing Systems.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, and 1 oth-
ers. 2023. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Ad-
vances in Neural Information Processing Systems,
36:34661-34710.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models. arXiv
preprint arXiv:2304.06364.

Wentao Zhu, Zhining Zhang, and Yizhou Wang. 2024.
Language models represent beliefs of self and others.
In Forty-first International Conference on Machine
Learning.

Andy Zou, Long Phan, Sarah Chen, James Campbell,
Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
and 1 others. 2023. Representation engineering: A
top-down approach to ai transparency. arXiv preprint
arXiv:2310.01405.

21447

https://arxiv.org/abs/2405.12532
https://arxiv.org/abs/2405.12532
https://arxiv.org/abs/2405.12532

A Experimental Details

A.1 Model details

In our proposed framework, we use the DeepSeek-R 1-Distill family of models, namely the Qwen2.5-1.5B7,
Qwen?2.5-7B*, and Llama3.1-8B%. All checkpoints are downloaded from Huggingface.

A.2 Implementation

Segment of reasoning steps. At the core of our method is segmenting the initial raw reasoning trace
TReason 1Nt0 a sequence of meaningful intermediate steps. This segmentation aims to capture points where
the model might pause, reflect, change direction, or move to a distinct next step in its reasoning. Following
prior work (Hammoud et al., 2025b), we perform segmentation based on occurrences of words or phrases
from a predefined set W. These markers often signal reflection, correction, sequencing, or the exploration
of alternatives. The set W used in our experiments is:

"Wait" "Alternatively" "Another angle" "Another approach" "But wait" "Hold on" "Hmm" "Maybe"
"Looking back" "Okay" "Let me" "First" "Then" "Alright" "Compute" "Correct” "Good" "Got it"
"I don’t see any errors" "I think" "Let me double-check” "Let’s see" "Now" "Remember" "Seems
solid" "Similarly" "So" "Starting" "That’s correct" "That seems right" "Therefore" "Thus"

Eviction budget. For the effectiveness setting, we consider a token eviction budget k£, which denotes the
number of tokens to be removed from the KV cache across all heads and layers at every predefined eviction
interval step p. The pruning interval is set to p = 200 for Qwen2.5-1.5B and 7B models, and p = 100 for
LLaMA3.1-8B. For the GPQA Diamond dataset, we conduct an ablation study using Qwen2.5-7B with
p = 300.

KYV cache budget. For the efficiency setting, we define a maximum KV cache budget during decoding,
computed based on the average KV length Ly of the Full KV baseline. Specifically, we compute
compressed budgets by multiplying Lg,; with target compression ratios of 25%, 50%. Following prior
works (Zhang et al., 2023; Li et al., 2024), we also preserve a recent window of KV entries by keeping
the most recent tokens, and set this recent size to half of the allocated cache. For comparison solely
focused on reasoning compression, all methods retain the full problem prompt in the KV cache throughout
generation. This portion is excluded when measuring the fixed cache budget.

Thttps://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
iht’cps ://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
Shttps://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B

21448

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B

Table 8: Quantitative analysis of observation. We quantitatively analyze our two key observations across models
and datasets: (a) attention redundancy: poor reasoning exhibits highly redundant attention patterns; (b) attention to
</think>: important reasoning chunks receive higher attention from the </think> token. For computing attention
redundancy, the threshold is set to the mean attention score, computed from a held-out 20% subset of each dataset.
The attention score of </think> is re-normalized by excluding the input prompt and the most recent tokens, which
tend to receive high attention regardless of content. All models, including Qwen2.5-7B and Llama3.1-8B, are
reasoning LLMs distilled from DeepSeek-R1.

(a) Attention redundancy (b) Attention of </think>
Model MATH-500 AIME24 AMC23 MATH-500 AIME24 AMC23
Qwen2.5-7B Qwen2.5-7B
Incorrect reasoning 0.93 0.90 0.94 Redundant step 0.37 0.31 0.40
Correct reasoning 0.85 0.82 0.90 G.T step 0.63 0.69 0.60
Llama3.1-8B Llama3.1-8B
Incorrect reasoning 0.97 0.96 0.98 Redundant step 0.46 0.26 0.43
Correct reasoning 0.95 0.92 0.96 G.T step 0.54 0.74 0.57
Table 9: Impact of attention redundancy on cor- Table 10: Comparison with Frequency masking. We
rect reasoning. We investigate whether attention evaluate Frequency masking that directly masks out the
redundancy can directly lead the model away from frequently evicted tokens (in Table 5) during reasoning.
correct reasoning. We manipulate the attention dis- Evaluated on DeepSeek-R1-Distill-Qwen-7B on AIME24,

tribution by restricting it to Only the recent tokens AIMEZS, and AMC23. Bold indicates the best results.
(shown in Fig. 1a).

Method AIME24 AIME25 AMC23
AIME24 AMC23 FullKV 36.7 233 75.0
Before 100.0 100.0 Frequency Masking 133 233 72.5
After 45.5 73.3 Ours 46.7 36.7 82.5

B More Experimental Results

B.1 Quantitative analysis of observation

We quantitatively analyze our two key observations across models and datasets: (a) attention redundancy:
poor reasoning exhibits highly redundant attention patterns; (b) attention to </think>: important reasoning
chunks receive higher attention from the </think> token.

Attention redundancy. We define an attention redundancy score as the proportion of reasoning tokens
whose attention is below a fixed threshold 9:

#{tokens with attention < 0}

Attention redundancy = .
. Y #{tokens during reasoning}

“

Based on this definition, we measure the redundancy for both correct reasoning that leads to the correct
answer and incorrect reasoning that leads to an incorrect answer. As shown in Table 8a, incorrect reasoning
consistently exhibits higher redundancy than correct reasoning across models and datasets. Furthermore,
we observe that attention redundancy can directly lead the model away from correct reasoning. To
investigate this, we manually adjusted the attention distribution to force high redundancy by restricting
the attention to only the most recent token (shown Fig. 1a in Section 3). As shown in the Table 9, forced
such redundancy consistently leads to incorrect reasoning from originally corrected ones: e.g., 54.5%
performance degradation in AIME24. All these results support that attention redundancy is a crucial
pattern associated with poor reasoning.

Attention score of </think>. To obtain both important and redundant reasoning steps, we injected
GPT-4-generated redundant steps into ground-truth reasoning steps and measured the sum of </think>’s
attention for each group. As shown in Table 8b, the </think> token assigns significantly higher attention

21449

Table 11: Sensitivity analysis. We analyze the sensitivity of eviction interval and budget, the two main hyperparam-
eters of our method. Experiments are conducted on DeepSeek-R1-Distill-Qwen-7B. Bold indicates the best results.

(a) Eviction Interval (p) (b) Eviction Budget (k)
Method AIME24 AMC23 Method AIME24 AMC23
FullKV 36.7 75.0 FullKV 36.7 75.0
Ours (p = 50) 33.3 71.5 Ours (k=1) 40.0 80.0
QOurs (p = 100) 36.7 85.0 Ours (k = 5, default) 46.7 82.5
Ours (p = 200, default) 46.7 82.5 Ours (k = 10) 40.0 71.5
Ours (p = 400) 40.0 717.5 Ours (k = 50) 333 717.5

Table 12: Effectiveness of the redundant token pruning on a small-sized reasoning LLM. We compare the
proposed method (Ours) with standard decoding (FullKV) under six reasoning-intensive mathematical benchmarks,
including MATH-500 (MATH), Minerva, GaoKao, AIME2024, AIME2025, AMC2023. We use Qwen2.5-1.5B
reasoning LLM distilled from DeepSeek-R1. We report accuracy (%) with the corresponding average response
length shown below in parentheses. The bold indicates the best accuracy within the group.

Dataset
Method MATH Minerva GaoKao AIME2024 AIME2025 AMC2023 Avgerage
FullKV 42.6 21.7 342 0.0 0.0 10.0 18.1
" (6125) (5663) (5825) (8192) (8192) (7398) (6899)
Ours 41.2 25.8 36.9 33 0.0 20.0 21.2
(6166) (5690) (6071) (8071) (8192) (7477) (6945)

to ground-truth reasoning steps than to redundant ones across models and datasets. This confirms that
</think> reliably distinguishes unnecessary reasoning from important reasoning.

B.2 Comparison with Frequency masking

In Section 5.4, we observe that our method often evicts punctuation marks or numerical tokens that are
generally regarded as redundant. This raises the question of whether directly masking such tokens can
improve reasoning performance. To investigate this, we implement a Frequency Masking baseline, where
the high-frequency tokens identified in Table 5 are directly masked out during generation. As shown
in Table 10, this method fails to improve performance compared to the FullKV baseline and, in some
cases, even leads to degradation. These results highlight the importance of context-aware pruning: unlike
frequency-based masking, our method dynamically estimates token importance via self-summarization
(Section 4.1), enabling more precise pruning and improved outcomes.

B.3 Sensitivity analysis

We provide a sensitivity analysis of our two key hyperparameters: the interval step, which determines how
frequently eviction is performed, and the eviction budget, which specifies how many tokens are removed
per step.

Eviction Interval. For the interval step, we compare four values: {50, 100, 200, 400}, where 200 is
our default setting. As shown in the Table 11a, both more frequent eviction (e.g., 100), and less frequent
eviction (e.g., 400), yield only marginal differences with FullKV performance. These results highlight
that pruning frequency is a crucial factor to a key determinant of model performance.

Eviction budget. For the eviction budget, we test four values {1, 5, 10, 50}, with 5 as the default. In
Table 11b, a small budget (e.g., 1) yields only marginal improvements over FullKV, while an overly large
budget (e.g., 50) leads to performance degradation. These results indicate that aggressive pruning is
harmful, while moderate budgets (e.g., 5 or 10) yield more favorable performance.

21450

B.4 Additional results on a small reasoning model

We also demonstrate the effectiveness of our method on a small reasoning LLM, namely the Qwen2.5-1.5B.
As shown in Table 12, our method significantly improves the overall reasoning accuracy across multiple
reasoning-intensive mathematical benchmarks even on small reasoning LLMs. Here, we also notice that
our method is effective on challenging benchmarks such as AMC2023, indicating the importance of the
deliberate token pruning based on redundancy.

21451

