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Abstract

Small Language Models (SLMs) offer com-
putational efficiency and accessibility, yet a
systematic evaluation of their performance and
environmental impact remains lacking. We in-
troduce SLM-Bench, the first benchmark specif-
ically designed to assess SLMs across multi-
ple dimensions, including accuracy, compu-
tational efficiency, and sustainability metrics.
SLM-Bench evaluates 15 SLMs on 9 NLP tasks
using 23 datasets spanning 14 domains. The
evaluation is conducted on 4 hardware config-
urations, providing a rigorous comparison of
their effectiveness. Unlike prior benchmarks,
SLM-Bench quantifies 11 metrics across cor-
rectness, computation, and consumption, en-
abling a holistic assessment of efficiency trade-
offs. Our evaluation considers controlled hard-
ware conditions, ensuring fair comparisons
across models. We develop an open-source
benchmarking pipeline with standardized eval-
uation protocols to facilitate reproducibility
and further research. Our findings highlight the
diverse trade-offs among SLMs, where some
models excel in accuracy while others achieve
superior energy efficiency. SLM-Bench sets a
new standard for SLM evaluation, bridging the
gap between resource efficiency and real-world
applicability.

1 Introduction

Recent advancements in Language Models (LMs)
have profoundly influenced a wide range of do-
mains, including finance (Theuma and Shareghi,
2024), healthcare (Yang et al., 2024a), and man-
ufacturing (Li et al., 2024). These models have
demonstrated exceptional capabilities in retain-
ing vast amounts of knowledge (Zheng et al.,
2023), solving highly complex tasks (Bursztyn
et al., 2022), and conducting intricate reasoning
processes (Yang et al., 2024b) that closely align

with human-level intentions. Their ability to un-
derstand context, generate coherent text, and adapt
to diverse applications has made them indispens-
able tools in both academic research and industry
practices.

However, the impressive performance of LMs of-
ten comes at a significant cost. The large number of
parameters that enable their functionality requires
extensive computational resources (Lv et al., 2024),
leading to prohibitively high operational expenses.
Additionally, these models demand intensive en-
ergy consumption, which not only drives up costs
but also contributes to substantial environmental
challenges. The carbon footprint associated with
training and deploying Large Language Models
(LLMs) has raised concerns about their sustain-
ability (Faiz et al., 2024), as they emit significant
amounts of CO2. These issues underline the press-
ing need for more efficient and environmentally
conscious alternatives to LLMs, particularly in an
era of growing awareness around climate change
and resource optimization.

SLMs (Gao et al., 2023; Magister et al., 2023)
have emerged as a promising solution to mitigate
the negative impacts associated with LLMs. By
significantly reducing the number of parameters,
SLMs aim to lower computational costs, minimize
energy consumption, and decrease the associated
carbon emissions, making them a more sustainable
alternative. Their potential has garnered increas-
ing attention from both academic researchers and
industry practitioners, positioning SLMs as a prac-
tical choice for applications requiring efficiency
and scalability.

Despite their growing prominence, a notable gap
exists in the systematic evaluation of SLMs. Cur-
rently, there is no dedicated benchmark that com-
prehensively assesses the performance of SLMs
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Figure 1: Overview of SLM-Bench

across diverse tasks while also quantifying their
environmental impacts. This lack of standardized
evaluation hinders a deeper understanding of their
practical implications, particularly in resource-
constrained environments where efficiency and sus-
tainability are paramount. Addressing this gap is
essential to unlock the full potential of SLMs and
guide their development and deployment to bal-
ance performance with environmental responsibil-
ity.

In this paper, we aim to address the existing
gap by introducing SLM-Bench (Small Language
Model-Benchmark), a comprehensive benchmark-
ing framework designed to evaluate SLMs across
diverse settings with a focus on their environmen-
tal impacts. The insights gained from SLM-Bench
will be instrumental in guiding the develop-
ment and deployment of SLM-powered applica-
tions, particularly in resource-constrained environ-
ments. SLM-Bench is characterized by three pri-
mary features: (i) Focus on SLMs: Unlike ex-
isting benchmarks that predominantly emphasize
LLMs (Myrzakhan et al., 2024), SLM-Bench evalu-
ates SLMs that are computationally efficient and
accessible to a wider range of users and systems.
(ii) Measurement of Environmental Impacts: A
unique aspect of SLM-Bench is its integration of

metrics for energy consumption and CO2 emis-
sions. This allows for a holistic assessment of the
sustainability of SLMs, addressing a crucial aspect
often overlooked in benchmarking efforts. (iii)
Evaluation Across Diverse Settings: SLM-Bench
rigorously evaluates 15 SLMs on 9 tasks using
23 datasets from 14 domains. The evaluation is
conducted on 4 hardware configurations, provid-
ing a comprehensive analysis of their performance
across varied scenarios. This extensive evaluation
ensures a deeper understanding of SLM capabili-
ties and trade-offs.
SLM-Bench is illustrated in Figure 1, where

we provide an overview of its key components,
including the selected SLMs, the datasets used,
the selected domains, the tasks evaluated, and
the metrics employed for assessment. To the
best of our knowledge, SLM-Bench represents
the first systematic benchmarking framework
dedicated to the evaluation of SLMs with a specific
focus on their environmental impacts. We hope
that SLM-Bench will drive construction through
evaluation, facilitating the development of SLMs
in many more applications. Aiming at repro-
ducibility and transparency, the source code and
homepage for SLM-Bench are provided at https:
//github.com/HiveIntel/SLM-Bench.git and
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https://swarm.hiveintel.ai/leaderboard/,
respectively, which will be continuously updated
to catch up with state-of-the-arts. In summary, our
contributions are as follows.

• We introduce SLM-Bench, a comprehensive
benchmark of SLMs, which are computation-
ally efficient and more accessible for deploy-
ment in resource-constrained environments.

• We consider the environmental impacts, such
as energy consumption and CO2 emissions,
enabling a holistic assessment of the sustain-
ability of SLMs.

• We extensively evaluate 15 SLMs across 9
tasks using 23 datasets from 14 domains on 4
hardware configurations, offering a thorough
understanding of their capabilities and limita-
tions in various contexts.

2 Related Work

2.1 Small Language Models
LLMs, such as GPT-4 (OpenAI, 2023),
LLaMA (Touvron et al., 2023), and PaLM (Vi-
lar et al., 2023), have demonstrated exceptional
capabilities across various tasks. However,
their large parameter sizes lead to high com-
putational costs (Sharir et al., 2020), energy
demands (Strubell et al., 2020), and environmental
impacts (Dhar, 2020). To address these challenges,
SLMs have gained attention for their efficiency and
scalability. Techniques like model pruning (Zhang
et al., 2024b; Sun et al., 2024; Ma et al., 2023),
knowledge distillation (Gu et al., 2024; Zhang
et al., 2024a), and low-rank factorization (Hu
et al., 2022; Xu et al., 2024) have enabled
models like DistilBERT (Sanh et al., 2019) and
TinyBERT (Jiao et al., 2020) to achieve strong
performance with fewer parameters. Existing
benchmarks, such as GLUE (Wang et al., 2019b)
and SuperGLUE (Wang et al., 2019a), primarily
evaluate LLMs and lack a focus on SLMs and their
performance. This leaves a gap in understanding
the trade-offs between efficiency, performance,
and sustainability.

2.2 Emission-aware Benchmarking on
Language Models

The development of LMs demands substantial
computational resources, raising environmen-

tal concerns. Strubell et al. (Strubell et al.,
2019) first quantified LMs’ carbon footprint,
and later work (Strubell et al., 2020; Patterson
et al., 2021) underscored rising energy demands
and sustainability trade-offs. While tools like
CodeCarbon (Lottick et al., 2019) and ML CO2
Impact(Lacoste et al., 2019) enable emissions
tracking, benchmarks such as Big-Bench (Authors,
2023) focus largely on performance, neglecting
energy impact. Recent work has addressed full-
lifecycle emissions. For instance, Luccioni et
al.(Luccioni et al., 2023) showed that BLOOM’s to-
tal emissions (50.5 tCO2) exceeded training emis-
sions due to hardware and idle energy. Hardware
choice matters too–T4 to A100 GPU migration can
cut emissions by 83%(Liu and Yin, 2024). Fine-
tuning also incurs significant cost (Wang et al.,
2023). Gowda et al. (Gowda et al., 2023) proposed
the Sustainable-Accuracy Metric to balance perfor-
mance and efficiency. Poddar et al.(Poddar et al.,
2025) benchmark LLM inference energy, while
Singh et al.(Singh et al., 2024) explore sustainable
training and deployment. However, these efforts
mainly target LLMs and partial aspects of environ-
mental impact. To our knowledge, SLM-Bench is
the first benchmark focused specifically on SLMs
with a comprehensive evaluation of both computa-
tional and environmental metrics.

3 Benchmarking Design

3.1 Data Collection
We extensively collect 23 datasets from 11 diverse
domains, including common sense, mathematics,
physics, news, and legal, among others. These
datasets encompass 9 task types, covering reading
comprehension, text classification, logical reason-
ing, sentiment analysis, and more. In total, our
dataset collection comprises 799,594 samples, en-
suring a well-rounded evaluation framework. Ta-
ble 1 provides an overview of the collected datasets
along with their associated characteristics. Due to
space limitations, we provide the details and ex-
amples of these datasets in Appendices B and A,
respectively. Our selection of these datasets is mo-
tivated by their widespread adoption in previous
studies (Myrzakhan et al., 2024), ensuring compat-
ibility and comparability with existing benchmarks.
Furthermore, we aim to evaluate SLMs from multi-
ple perspectives, assessing their generalization abil-
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ity, reasoning capabilities, and robustness across
diverse tasks and domains. Integrating datasets
from various fields ensures a comprehensive and
challenging benchmark that reflects real-world ap-
plications.

Dataset #Samples Domain Task

BoolQ 15,432 Open-domain Question Answering
ARC-Easy 5,876 Open-domain Question Answering
ARC-Challenge 2,590 Open-domain Question Answering
OpenBookQA 5,957 Open-domain Question Answering
PIQA 16,113 Physics Reasoning
Hellaswag 10,421 Common Sense Reasoning
WinoGrande 44,321 Common Sense Reasoning
CommonsenseQA 12,102 Common Sense Reasoning
GSM8k 8,034 Mathematics Problem Solving
AQuA 99,765 Mathematics Problem Solving
RACE-Middle 24,798 Education Reading Comprehension
RACE-High 26,982 Education Reading Comprehension
CoQA 127,542 Open-domain Question Answering
e2e_nlg 50,321 Food & Beverage Text Generation
viggo 9,842 Video Games Text Generation
glue_qnli 104,543 Linguistics Question Answering
bc5cdr 20,764 Chemistry Recognition
conllpp 23,499 Linguistics Recognition
customer_support 14,872 Customer Behaviors Classification
legal 49,756 Legal Classification
reuters 9,623 News Topic Extraction
covid 19,874 Healthcare Sentiment Analysis
drop 96,567 Open-domain Reasoning

Table 1: Datasets’ Details

3.2 Model Selection
We select 15 SLMs for our benchmarking based
on three key criteria as follows. (i) Model Size:
The primary criterion for classification as an SLM
is the number of parameters. The LMs must have
fewer than 7 billion parameters to qualify as SLMs.
(ii) Popularity & Reputation: The selected SLMs
should be widely recognized and developed by
well-known organizations to ensure the impact.
(iii) Open-Source Availability: The models must
be open-source, allowing for transparency, repro-
ducibility, and further research. These criteria en-
sure a fair, representative, and reproducible bench-
marking process, focusing on models that are both
accessible and widely used in the research commu-
nity. Table 2 provides an overview of the selected
models. Due to space limitations, we provide the
details of these models in Appendix C.

3.3 Evaluation
We evaluate an SLM using 11 metrics, cover-
ing various aspects of performance and efficiency.
These metrics assess accuracy, such as BLEU, and
computational performance, such as Runtime. Our
evaluation focuses solely on the fine-tuning pro-
cess. Since we do not have access to the necessary

Model #Params (B) Size (GB) Year Provider

GPT-Neo-1.3B 1.37 2.46 03/2021 EleutherAI
Dolly-v2-3B 3 5.8 12/2022 Databricks
Pythia-2.8B 2.8 5.5 02/2023 EleutherAI
LLaMA-2-7B 6.47 13 07/2023 Meta
TinyLlama-1.1B 1.1 2 08/2023 SUTD
Mistral-7B 7 13 09/2023 Mistral AI
Zephyr-7B 7 13.74 11/2023 WebPilot.AI
ShearedLlama-2.7B 2.7 5 11/2023 Princeton NLP
Gemma-2B 2 4.67 11/2023 Google
Phi-1.5B 1.42 2.84 12/2023 Microsoft
StableLM-3B 3 6.5 12/2023 Stability AI
Open-LLaMA-3B 3 6.8 06/2024 OpenLM
Llama-3.2-1B 1.24 2.47 09/2024 Meta
Phi-3-3.8B 3.82 2.2 01/2025 Microsoft
Gemma-3-1B 1 2 03/2025 Google

Table 2: SLMs’ Details (sort by release time)

data for full training, we rely exclusively on pre-
trained models. For inference, we did not include
runtime comparisons in the paper, as the differ-
ences between models were insignificant. Addi-
tionally, to measure the resource consumption of
SLMs, we incorporate three key metrics: Cost,
CO2 emissions, and Energy usage. This compre-
hensive evaluation ensures a balanced assessment
of both the effectiveness of the model and its en-
vironmental and financial impact. To measure re-
source consumption, we use the APIs of the exper-
imental server to measure both FLOPs and cost.
Specifically, we conducted experiments by renting
a lightning.ai1 server and recorded the deducted
amount from our account balance as the cost. Ad-
ditionally, we used a built-in function of the same
platform to measure FLOPs. To estimate CO2
emissions, we use the ML CO2 package2, calling
its built-in function. For energy consumption, we
use the Zeus package3 in a similar manner. It is
important to note that FLOP, costs, CO2 emissions,
and energy consumption vary across different hard-
ware configurations. If end-users run the models
on a local server, FLOPs can be measured using
the calflops library. The cost can be estimated
by multiplying energy consumption, runtime, and
electricity price. Table 3 provides an overview
of the evaluation metrics. Due to space limita-
tions, we provide the details of these metrics in
Appendix D.

1https://lightning.ai/
2https://mlco2.github.io/impact/
3https://ml.energy/zeus/
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Metrics Evaluation Task Dataset

Accuracy Correctness Question Answering
Classification
Recognition
Reasoning
Problem Solving
Reading Comprehension

All
except
[e2e_nlg,
viggo, reuters]

F1 Score Correctness Question Answering
Classification
Recognition
Reasoning
Problem Solving
Reading Comprehension

All
except
[e2e_nlg,
viggo, reuters]

BLEU Correctness Text Generation
Topic Extraction

e2e_nlg, viggo,
reuters

ROUGE Correctness Text Generation
Topic Extraction

e2e_nlg, viggo,
reuters

METEOR Correctness Text Generation
Topic Extraction

e2e_nlg, viggo,
reuters

Perplexity Correctness Text Generation
Topic Extraction

e2e_nlg, viggo,
reuters

Runtime Computation All All
FLOP Computation All All
Cost Consumption All All
CO2 Consumption All All
Energy Consumption All All

Table 3: Metrics’ Details

3.4 Benchmarking Pipeline

To enhance extensibility and reproducibility, we
design a unified process pipeline for benchmark-
ing, consisting of 7 key modules. The Universal
Data Loader ensures consistency by converting
datasets of different formats into a unified structure.
The Preprocessing module then refines the data by
trimming, removing special symbols, and applying
necessary transformations. Once the data is pre-
pared, the Calling module manages the execution
of SLMs and tasks, enabling flexibility where a sin-
gle SLM can be tested on multiple tasks and vice
versa. After inference, the output undergoes fur-
ther refinement through the Post-processing mod-
ule before moving to the Evaluation module, which
applies appropriate metrics to assess model per-
formance. Finally, the Report module compiles
results and visualizations, providing insights into
the model’s effectiveness. Additionally, the Log-
ging module is integrated throughout the pipeline
to record all events, enabling better traceability,
debugging, and transparency. This modular design
allows for scalability, flexibility, and ease of adap-
tation, making it well-suited for benchmarking and
future extensions. Figure 2 illustrates the proposed
pipeline.

3.5 Ranking Methodology

We propose a ranking method for SLMs based
on their performance across multiple datasets and

Universal
Data Loader

Dataset 1
...

Dataset N

Pre-
processing

SLM 1
...

SLM K

Calling Model
and Task

Post-
processing

Evaluation
Metric 1

...
Metric M

Report

Logging
Pipeline

Task 1
...

Task T

Figure 2: Benchmarking Pipeline

evaluation metrics. This method counts how often
each model ranks first, second, or third in different
experimental settings. Specifically, let K be the
number of SLMs, N the number of datasets, T the
number of tasks, and M the number of evaluation
metrics. For each model k, we count the number
of times it achieves the best (gold medal), second-
highest (silver medal), and third-highest (bronze
medal) performance across all K ×N × T ×M
cases. This approach provides a straightforward
yet effective way to assess overall model perfor-
mance by considering rankings across diverse con-
ditions rather than relying on a single aggregated
metric. By aggregating the detailed benchmark
results into a comprehensive summary, we aim to
make insights more accessible to end-users, allow-
ing users to quickly select models based on three
major criteria: accuracy, efficiency, or energy con-
sumption.

4 Experiments

4.1 Implementation Details

We conduct our experiments on lightning.ai, a
cloud-based platform designed as a development
studio for building, training, and deploying AI
models. Lightning AI offers support for various
hardware configurations, allowing flexibility in ex-
perimentation. We conduct evaluations across four
hardware configurations: two server-grade and two
edge-device setups. The server configurations use
NVIDIA L4 and A10 GPUs, while the edge-device
configurations use NVIDIA Jetson Orin AGX with
16GB and 64GB memory, respectively. Due to
space constraints, the main paper reports results
only on the NVIDIA L4 GPU. Results for the other
configurations are provided on the extended ver-
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Figure 3: Overall Results

sion (Pham et al., 2025). Furthermore, while the
magnitudes of the results vary on different hard-
ware configurations, the relative ranking among
the SLMs remains consistent. In addition, we im-
plement the benchmarking pipeline (see Figure 2)
by using Python 3.10, Numpy 1.24, Pandas 1.5,
PyTorch 2.0, Sklearn 1.2 and Zeus-ML 0.7.0.

4.2 Hyperparameter Settings
We select hyperparameters based on recommen-
dations from various sources, including original
research papers, official code repositories, and
Hugging Face4 model hubs, which often provide
well-tuned configurations for strong performance.
When specific values are unavailable for a given
model-dataset pair, we apply a systematic fine-
tuning strategy using a validation set to iteratively
optimize performance. Our hyperparameter tuning
process includes the following steps: (1) defining
appropriate search ranges and (2) conducting a ran-
dom search over the defined space. Specifically, we
vary learning_rate from 1e-6 to 1e-4; batch_size
among 2, 4, 8, 16, 32, 64, 128; fine-tuning epochs
among 2, 4, 6, 8, 10; LoRA_rank among 2, 4, 6,
8, 10; and dropout probability among 0.1, 0.2, 0.3,
0.4, 0.5. This approach ensures a fair and consis-
tent evaluation across all models and datasets.

4.3 Overall Results
We present the overall results in Figure 3, which
visualizes the ranking of each SLM across all

4https://huggingface.co/

datasets and evaluation metrics. The models are
sorted from left to right based on the number
of gold medals they have achieved. Our anal-
ysis reveals that Llama-3.2-1B outperforms the
other SLMs, securing the highest number of gold
medals. This indicates that it consistently delivers
top-tier performance across a diverse range of eval-
uations. Additionally, GPT-Neo-1.3B emerges as
the runner-up in terms of gold medal count, fur-
ther demonstrating strong performance. Following
closely, Phi-1.5B performs competitively, secur-
ing the third-highest number of gold medals. This
model exhibit strong results, often excelling in spe-
cific datasets or metrics. Meanwhile, Mistral-7B,
TinyLlama-1.1B and LLaMA-2-7B, while not se-
curing the most gold medals, frequently appear in
the top-three rankings. This suggests that these
models maintain a high level of robustness and
consistency across various tasks, even if they do
not always achieve the top position.

Furthermore, TinyLlama-1.1B and
LLaMA-2-7B appear in the middle of the rankings,
securing a moderate number of gold medals
while frequently earning silver and bronze medals.
Although they do not dominate in terms of gold
medal achievements, their balanced performance
across different evaluation criteria suggests that
they remain competitive across various tasks.
Their ability to accumulate a significant number
of medals overall indicates that they can serve
as reliable alternatives to the top-performing
models, especially in scenarios where consistency
across multiple benchmarks is valued. Meanwhile,
Dolly-v2-3B, Gemma-3-1B, and Phi-3-3.8B
rank toward the lower end of the leaderboard,
achieving the fewest gold medals among the
evaluated models. While their performance is less
dominant, they still manage to secure some silver
and bronze medals, indicating that they exhibit
strengths in certain areas. These results highlight
the varying capabilities of SLMs and the potential
trade-offs when selecting a model for specific
applications. Appendix E further discusses the
metric contribution to medals in 15 models.

4.4 Evaluation Taxonomy

We categorize the evaluation metrics into three
distinct types: correctness, computation, and con-
sumption (see Table 3). Figure 4 presents the per-
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Figure 4: Taxonomy Results

formance results for each evaluation type, high-
lighting the strengths of different SLMs across
these dimensions.

In terms of correctness, Llama-3.2-1B earns
the most gold medals, making it the most accu-
rate SLM in our evaluation. Mistral-7B follows
closely, with Gemma-3-1B and Phi-3-3.8B also
frequently ranking in the top three, reflecting their
consistent output quality.

For computational efficiency, GPT-Neo-1.3B
leads with the highest number of gold medals,
suggesting strong performance in processing
speed and resource usage. TinyLlama-1.1B and
ShearedLlama-2.7B also rank highly, demonstrat-
ing notable efficiency across tasks.

In terms of resource consumption, Phi-1.5B
stands out as the most energy-efficient model.
StableLM-3B and GPT-Neo-1.3B share the
second-highest number of gold medals, while
LLaMA-2.7B and ShearedLlama-2.7B frequently
appear among the top performers, highlighting
their sustainable design.

Although computation and energy consumption
are often correlated, they are not equivalent. Some
models use more energy to achieve faster runtimes,
while others with similar compute may be less
efficient due to non-parallelizable operations and
architectural bottlenecks.

We observe that correctness does not strongly
correlate with computation or consumption. This
is because accuracy depends not only on model
size, but also on the quality and diversity of pre-
training data. Similarly, consumption and computa-
tional cost are influenced by more than just model
size–factors like model architecture, paralleliza-

tion efficiency, and computational complexity play
a significant role. For example, Llama-3.2-1B,
despite its small size, achieves the highest accu-
racy but performs poorly in computation and en-
ergy consumption–an unexpected yet insightful out-
come.

4.5 Performance Trade-off

We visualize the performance trade-offs of SLMs
using Kiviat charts. Our evaluation consid-
ers three key performance aspects: correct-
ness, computation, and consumption. Initially,
we focus on the number of gold medals each
SLM has achieved. To enhance readability,
we select five top-performing SLMs from previ-
ous experiments: Llama-3.2-1B, GPT-Neo-1.3B,
Zephyr-7B, Phi-1.5B, and Mistral-7B. Figure 5
illustrates the performance trade-offs among these
models.

Our observations reveal that Llama-3.2-1B ex-
cels in correctness but falls short in computation
and consumption efficiency. In contrast, Phi-1.5B
demonstrates the highest efficiency in consump-
tion but lags in correctness. Next, GPT-Neo-1.3B
achieves the best performance in computation but
also lags in correctness. Mistral-7B maintains
a balanced performance across all three metrics,
making it a strong candidate for scenarios requiring
an all-around solution.

Next, instead of solely considering the number
of gold medals, we adopt a score-based evalua-
tion approach that accounts for all gold, silver, and
bronze medals. Specifically, we assign a weighted
score to each medal type: each gold medal con-
tributes 3 points, each silver medal contributes 2
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Correctness

Computation

Consumption

Llama-3.2-1B
GPT-Neo-1.3B
Zephyr-7B
Phi-1.5B
Mistral-7B

Figure 5: Performance Trade-off, only Gold Medals

points, and each bronze medal contributes 1 point.
We then compute the total score for each SLM
across the three evaluation categories by summing
the respective scores. This method provides a more
nuanced assessment of model performance, cap-
turing relative strengths beyond just the highest
achievements. To maintain consistency and read-
ability, we again focus on the five top-performing
SLMs identified in the previous experiment. Fig-
ure 6 illustrates the performance trade-offs among
these models under the score-based evaluation
framework.

Our observations remain consistent in that
Llama-3.2-1B continues to excel in correctness
while exhibiting weaker performance in compu-
tation and consumption efficiency. However, the
score-based evaluation reveals additional insights.
Notably, Mistral-7B outperforms Phi-1.5B and
Zephyr-7B across all three evaluation metrics, in-
dicating that it provides a more balanced trade-
off between accuracy and efficiency. Further-
more, GPT-Neo-1.3B maintains well-rounded per-
formance across correctness, computation, and
consumption, reinforcing its suitability for scenar-
ios where an all-purpose model is desirable.

4.6 Discussion
After conducting extensive experiments and ana-
lyzing the results, we can derive several key end-
user recommendations when selecting an appropri-
ate SLM. There are clear trade-offs among three
key dimensions: correctness, computational effi-
ciency, and resource consumption. If accuracy is
the primary goal, Llama-3.2-1B is a strong choice,
consistently ranking highest in correctness met-

Correctness

Computation

Consumption

Llama-3.2-1B
GPT-Neo-1.3B
Zephyr-7B
Phi-1.5B
Mistral-7B

Figure 6: Performance Trade-off, Score-based Evaluation

rics. However, this comes with increased compu-
tational and energy costs. For scenarios requiring
fast and efficient execution, GPT-Neo-1.3B offers
superior runtime performance, making it suitable
for latency-sensitive tasks. If energy efficiency and
sustainability are critical, Phi-1.5B is the most
resource-friendly option, ideal for deployment on
low-power or edge devices. For applications need-
ing a balance across all three criteria, Mistral-7B
performs reliably and consistently, making it a ver-
satile, well-rounded choice. Finally, the choice
of SLM should be guided by specific application
requirements, as different models offer varying
strengths and weaknesses that may influence real-
world deployment decisions.

5 Conclusion

We introduce SLM-Bench, a comprehensive bench-
mark for evaluating the environmental impact of
SLMs. It provides critical insights to guide the
selection, optimization, and deployment of models,
helping researchers and practitioners balance accu-
racy, efficiency, and sustainability—especially in
resource-constrained settings. To support future re-
search, SLM-Bench includes an open-source, exten-
sible pipeline for continuous integration. In future
work, we plan to incorporate additional SLMs and
explore a wider range of hardware settings. Addi-
tionally, we aim to enhance the accuracy of energy
consumption and CO2 emission measurements by
utilizing sensor-equipped devices. We also plan to
incorporate instruction–following capabilities as a
distinct task dimension, extending the benchmark’s
coverage of real-world use cases.
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6 Limitations

Although SLM-Bench provides a solid evaluation
of SLMs, it has limitations. First, environmental
metrics like energy consumption, CO2 emissions,
and runtime depend heavily on the hardware used.
So far, we have only tested 4 configurations and
plan to include more in future work. Second, en-
ergy consumption and CO2 emissions are currently
estimated using standardized formulas rather than
real-time measurements. We aim to improve this
by using sensor-equipped devices to capture actual
energy usage and emissions.

7 Broader Impact

SLM-Bench promotes the development and deploy-
ment of efficient, sustainable, and accessible AI by
focusing on SLMs. By evaluating models across
accuracy, computation, and energy consumption,
our benchmark helps users make informed, respon-
sible choices—especially in resource-constrained
environments. Our inclusion of environmental met-
rics raises awareness of AI’s carbon footprint and
supports more sustainable practices. By making
the benchmark publicly available and regularly up-
dated, we aim to drive progress in green AI and
practical model deployment across both academia
and industry.
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Appendix

A Datasets Examples

Figures A1–A23 provide representative examples
from the benchmark datasets used in this study. We
randomly sample two instances from each dataset,
showing the variety of question formats, input
structures, and answer types present in these bench-
marks. These examples provide insight into the
challenges posed by each dataset and highlight the
differences in their underlying tasks.
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Example 1

Question: Can dogs see color?
Passage: Dogs can see colors, but not as vividly as humans. Their color vision is similar to that of a person with
red-green color blindness. They primarily see shades of blue and yellow.
Answer: true

Example 2

Question: Is Mount Everest the tallest mountain in the world?
Passage: Mount Everest, located in the Himalayas, is the highest mountain above sea level, with a peak reaching
8,848.86 meters. However, if measuring from base to peak, Mauna Kea in Hawaii is technically the tallest mountain.
Answer: true

Figure A1: Examples from BoolQ

Example 1

Question: Which planet is known as the Red Planet?
Options: [Mercury, Venus, Earth, Mars]
Answer: Mars

Example 2

Question: What do plants absorb from the soil?
Options: [Oxygen, Nutrients, Carbon dioxide, Sunlight]
Answer: Nutrients

Figure A2: Examples from ARC-Easy

Example 1

Question: Why do stars appear to twinkle in the night sky?
Options: [ Because stars themselves are flickering, Due to the movement of air in the Earth’s atmosphere, Because of
their distance from Earth, Due to changes in their brightness ]
Answer: Due to the movement of air in the Earth’s atmosphere

Example 2

Question: Which of the following substances is a poor conductor of electricity?
Options: [Silver, Copper, Rubber, Iron]
Answer: Rubber

Figure A3: Examples from ARC-Challenge
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Example 1

Question: What is the primary function of the root in a plant?
Options: [ To store sunlight for later use, To absorb water and nutrients, To produce oxygen, To perform photosynthesis
]
Answer: To absorb water and nutrients

Example 2

Question: Why do objects fall to the ground when dropped?
Options: [ Because of magnetism, Due to the force of gravity, Because the air pushes them down, Due to Earth’s
rotation ]
Answer: Due to the force of gravity

Figure A4: Examples from OpenBookQA

Example 1

Question: What is the best way to move a heavy box across a smooth floor?
Options: [ Push it while keeping it flat on the ground, Lift it and carry it, Drag it using a rope tied to the bottom, Kick
it repeatedly until it moves ]
Answer: Push it while keeping it flat on the ground

Example 2

Question: How can you efficiently dry wet clothes indoors?
Options: [ Lay them flat on a table, Hang them near a heat source or a fan, Roll them into a ball and leave them
overnight, Put them in a plastic bag ]
Answer: Hang them near a heat source or a fan

Figure A5: Examples from PIQA

Example 1

Context: A person is slicing a tomato on a cutting board.
Ending options: [ The person places the tomato slices on a plate., The person throws the tomato slices into the trash. ]
Correct ending: The person places the tomato slices on a plate.

Example 2

Context: A man is playing a guitar on stage during a concert.
Ending options: [ The audience claps and cheers after his performance., The man stops playing and leaves the stage
silently. ]
Correct ending: The audience claps and cheers after his performance

Figure A6: Examples from Hellaswag
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Example 1

Sentence: The trophy doesn’t fit into the brown suitcase because it is too large.
Question: What is too large? Options: [ trophy, suitcase ]
Answer: trophy

Example 2

Sentence: The cat chased the mouse because it was hungry.
Question: What was hungry? Options: [ cat, mouse ]
Answer: cat

Figure A7: Examples from WinoGrande

Example 1

Question: Where would you find a chandelier?
Options: [ ceiling, floor, wall, table, window ]
Answer: ceiling

Example 2

Question: What do people use to keep their hair dry while swimming?
Options: [ swim cap, goggles, flippers, towel, sunscreen ]
Answer: swim cap

Figure A8: Examples from CommonsenseQA

Example 1

Question: If a train travels at a speed of 60 miles per hour, how long will it take to travel 180 miles?
Answer: 3 hours

Example 2

Question: A bookstore sold 120 books in a week. If they sold 30 books each day from Monday to Thursday, how many
books did they sell on Friday?
Answer: 0 books

Figure A9: Examples from GSM8k

Example 1

Question: If a car’s fuel efficiency is 25 miles per gallon and the car has a 15-gallon tank, how far can the car travel on
a full tank?
Options: [ 300 miles, 350 miles, 375 miles, 400 miles ]
Answer: 375 miles

Example 2

Question: A rectangle has a length of 10 cm and a width of 5 cm. What is the area of the rectangle?
Options: [ 15 cm2, 30 cm2, 50 cm2, 100 cm2 ]
Answer: 50 cm2

Figure A10: Examples from AQuA
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Example 1

Article: There is not enough oil in the world now. As time goes by, it becomes less and less, so what are we going to
do when it runs out? Perhaps we will have to go back to using horses, carriages and bicycles.
Question: According to the passage, which of the following statements is TRUE?
Options: [ There is more petroleum than we can use now., Trees are needed for some other things besides making gas.,
We got electricity from ocean tides in the old days., Gas wasn’t used to run cars in the Second World War. ]
Answer: Gas wasn’t used to run cars in the Second World War.

Example 2

Article: Schoolgirls have been wearing such short skirts at Paget High School in Branston that they’ve been ordered to
wear trousers instead.
Question: The girls at Paget High School are not allowed to wear skirts because.
Options: [ short skirts give people the impression of sexualisation, short skirts are too expensive for parents to afford,
the headmaster doesn’t like girls wearing short skirts, the girls wearing short skirts will be at the risk of being laughed
at ]
Answer: short skirts give people the impression of sexualisation.

Figure A11: Examples from RACE-Middle

Example 1

Article: Next eliminate most of their planets; they are either too far from or too close to their suns. Then eliminate all
those planets which are not the same size and weight as the earth. Finally, remember that the proper conditions do not
necessarily mean that life actually does exist on a planet. It may not have begun yet, or it may have already died out.
This process of elimination seems to leave very few planets on which earthlike life might be found.
Question: What is the main idea of the passage?
Options: [ The universe is full of planets., Life is rare in the universe., Earth is unique in the universe., The conditions
for life are complex. ]
Answer: Life is rare in the universe.

Example 2

Article: Some kids listen to music, watch TV or use the phone while doing their homework. ‘It’s important to make
sure that you can stop and concentrate on one thing deeply,’ says Rideout. With new and exciting devices hitting stores
every year, keeping technology use in check is more important than ever. ‘Kids should try,’ adds Rideout. ‘But parents
might have to step in sometimes.’
Question: Which of the following is an example of multitasking according to the passage?
Options: [ Watching TV while using the computer., Talking on the phone while staying with others., Playing video
games on the Internet., Listening to music while relaxing. ]
Answer: Watching TV while using the computer.

Figure A12: Examples from RACE-High
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Example 1

Passage: Once upon a time, there was a little girl named Goldilocks. She went for a walk in the forest. Pretty soon, she
came upon a house. She knocked and, when no one answered, she walked right in.
Turns: [ Question: What was the girl’s name? Answer: Goldilocks , Question: Where did she go for a walk? Answer:
In the forest ]

Example 2

Passage: John took his dog Max to the vet because Max was not feeling well. The vet examined Max and gave him
some medicine.
Turns: [ Question: Why did John take Max to the vet? Answer: Because Max was not feeling well , Question: What
did the vet do? Answer: Examined Max and gave him some medicine ]

Figure A13: Examples from CoQA

Example 1

Meaning representation: [ name: The Eagle, eat_type: restaurant, food: French, price_range: high, customer_rating:
5 out of 5, near: Riverside ]
Human reference: The Eagle is a highly rated French restaurant near Riverside with a high price range.

Example 2

Meaning representation: [ name: The Golden Curry, eat_type: pub, food: Indian, price_range: low, customer_rating:
3 out of 5, family_friendly: yes ]
Human reference: The Golden Curry is a family-friendly Indian pub with a low price range and a customer rating of 3
out of 5.

Figure A14: Examples from e2e_nlg

Example 1

Meaning representation: [ name: Super Mario World, release_year: 1990, esrb: E (for Everyone), rating: excellent,
genres: [ platformer ], player_perspective: [ side view ], has_multiplayer: yes, platforms: [ Nintendo ] ]
Human reference: Super Mario World is an excellent platformer game that is played in the side view. It was released
in 1990 on Nintendo and is rated E (for Everyone). It can be played multiplayer.

Example 2

Meaning representation: [ name: The Elder Scrolls V: Skyrim, release_year: 2011, esrb: M (for Mature), genres: [
adventure, role-playing ] ]
Human reference: The Elder Scrolls V: Skyrim is an adventure RPG that came out in 2011. It’s rated M (for Mature).

Figure A15: Examples from viggo
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Example 1

Question: What is the capital of France?
Sentence: Paris is the capital and most populous city of France.
Label: entailment

Example 2

Question: Who wrote ‘Pride and Prejudice’?
Sentence: ‘Pride and Prejudice’ is a novel by Jane Austen.
Label: entailment

Figure A16: Examples from glue_qnli

Example 1

Text: Aspirin is commonly used to reduce fever.
Entities: [ entity: Aspirin, type: Chemical, start: 0, end: 7 ]

Example 2

Text: Hypertension can lead to serious health complications.
Entities: [ entity: Hypertension, type: Disease, start: 0, end: 11 ]

Figure A17: Examples from bc5cdr

Example 1

Sentence: Barack Obama was born in Hawaii.
Entities: [ [ entity: Barack Obama, type: PERSON, start: 0, end: 12 ], [ entity: Hawaii, type: LOCATION, start: 25,
end: 31 ] ]

Example 2

Sentence: Apple Inc. is headquartered in Cupertino, California.
Entities: [ [ entity: Apple Inc., type: ORGANIZATION, start: 0, end: 9 ], [ entity: Cupertino, type: LOCATION, start:
29, end: 38 ], [ entity: California, type: LOCATION, start: 40, end: 50 ] ]

Figure A18: Examples from conllpp

Example 1

Query: How can I reset my password?
Category: Account Management

Example 2

Query: What is the status of my order #12345?
Category: Order Tracking

Figure A19: Examples from customer_support
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Example 1

Text: The defendant was found guilty of theft under Section 378 of the Penal Code.
Category: Criminal Law

Example 2

Text: The contract was terminated due to a breach of the confidentiality clause.
Category: Contract Law

Figure A20: Examples from legal

Example 1

Headline: Oil prices rise as OPEC agrees to cut production.
Topics: [ Economy, Energy ]

Example 2

Headline: Tech stocks rally amid strong quarterly earnings.
Topics: [ Technology, Markets ]

Figure A21: Examples from reuters

Example 1

Text: The new vaccine has shown promising results in early trials.
Sentiment: positive

Example 2

Text: Lockdown measures have been extended due to rising case numbers.
Sentiment: negative

Figure A22: Examples from covid

Example 1

Passage: In 1995, the population of the city was 1.2 million. By 2005, it had increased to 1.5 million.
Question: What was the increase in population from 1995 to 2005?
Answer: 300,000

Example 2

Passage: The team scored 24 points in the first half and 30 points in the second half.
Question: What was the total score for the team?
Answer: 54 points

Figure A23: Examples from drop
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B Datasets Details

Table A1 presents a comprehensive overview of
the benchmark datasets used in this study, includ-
ing their key characteristics such as dataset size,
dataset domains, venues, and task objectives. This
detailed comparison helps contextualize their rele-
vance and challenges in the broader scope of our
analysis

C Models

Table A2 provides detailed information on SLMs
in this study, including their providers, licenses, pa-
rameter sizes, model sizes, training time, and train-
ing performance. We observe that Llama-3.2-1B,
Phi-3-3.8B, and Gemma-3-1B possess extended
context lengths and were pre-trained on more ex-
tensive corpora, which appears to strongly influ-
ence their correctness.

D Metrics Details

Table A3 provides detailed explanations of the met-
rics used in our evaluation framework. We catego-
rize our metrics into three main groups: correctness
evaluation, computation evaluation, and consump-
tion evaluation.

E Expanded Analysis of Metric
Contributions to Medals

For each model, gold medals indicate the best per-
formance using specific metrics. Some models
show dominance in a single metric, suggesting spe-
cialization, while others maintain a balanced dis-
tribution of Gold medals across multiple metrics,
indicating versatility. Models with more evenly
distributed Gold, Silver, and Bronze medals across
different criteria tend to be more well-rounded,
offering strong performance without extreme spe-
cialization.

The Silver and Bronze medal distributions fur-
ther refine this understanding. A model that con-
sistently earns Silver in multiple metrics suggests
strong overall performance but is slightly outper-
formed by one or more competitors in specific
cases. Conversely, a model with many Bronze
medals may still be efficient but is frequently
ranked below two other models. This suggests
that while it is competitive, it does not lead to any
single criterion.

Among the expanded selection of models, differ-
ences in trade-offs become more apparent. Some
models score highly in cost efficiency but rank
lower in computational complexity, indicating that
they are affordable but require significant pro-
cessing resources. Others achieve substantial re-
sults in energy efficiency while being slightly less
cost-effective, making them preferable in energy-
conscious environments. The expanded dataset
also provides insights into the impact of computa-
tional complexity, where models that rank lower
in this criterion might still perform well in other
categories, balancing out the trade-offs.

By examining a more extensive set of models,
this analysis helps refine decision-making for dif-
ferent use cases. Whether the goal is to prioritize
training speed, minimize cost, reduce energy con-
sumption, or optimize computational efficiency,
this breakdown provides clear guidance on which
models align best with specific operational priori-
ties. The broader dataset ensures that model selec-
tion is not limited to a few top-performing options.
Instead, it considers a wider range of competitive
alternatives, each offering different strengths based
on their medal distributions.

F Inference Cost

After deploying SLMs, inference is performed or-
ders of magnitude more frequently than fine-tuning,
often by many users concurrently. As a result, even
small differences in inference efficiency can accu-
mulate into significant computational and energy
costs—often exceeding those of fine-tuning. To
quantify this, we conducted experiments to mea-
sure the computation time and energy consumption
required to generate 1,000 tokens during the infer-
ence phase. The results, presented in Table A4,
were obtained using an NVIDIA L4 GPU, as de-
scribed in Section 4.1. Among the evaluated mod-
els, Phi-1.5B demonstrates the best performance
in both computation efficiency and energy con-
sumption.
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No Dataset #Samples #Tokens Domain Task Venues Description

1 BoolQ 15,432 3M Common Sense Question Answering NAACL 2019 A yes/no question-answering dataset where
each question requires reasoning over a
short passage (Clark et al., 2019).

2 ARC-Easy 5,876 1.8M Common Sense Question Answering arXiv A subset of the AI2 Reasoning Challenge
with straightforward grade-school science
questions (Clark et al., 2018).

3 ARC-Challenge 2,590 1.5M Common Sense Question Answering arXiv A more difficult subset of ARC with
questions requiring reasoning and external
knowledge (Clark et al., 2018).

4 OpenBookQA 5,957 1M Common Sense Question Answering EMNLP 2018 A multiple-choice question-answering
dataset that requires knowledge from a
small “open book” of science facts (Mi-
haylov et al., 2018).

5 PIQA 16,113 1.6M Physics Reasoning AAAI 2020 A dataset for physical commonsense rea-
soning, testing knowledge of how objects
are used in everyday situations (Bisk et al.,
2020).

6 Hellaswag 10,421 10M Common Sense Reasoning ACL 2019 A dataset for commonsense reasoning and
next-sentence prediction with adversarially
mined, plausible distractors (Zellers et al.,
2019).

7 WinoGrande 44,321 5M Common Sense Reasoning AAAI 2020 A large-scale dataset for pronoun resolution
tasks, inspired by the Winograd Schema
Challenge (Sakaguchi et al., 2020).

8 CommonsenseQA 12,102 1.8M Common Sense Reasoning ICONIP 2023 A multiple-choice dataset testing broad
commonsense knowledge using questions
based on ConceptNet (Zhang and Li, 2023).

9 GSM8k 8,034 2M Math Problem Solving arXiv A dataset of grade-school math word prob-
lems designed to evaluate problem-solving
abilities (Liu et al., 2023).

10 AQuA 99,765 3M Math Problem Solving VLDB 2023 A dataset with multiple-choice questions
Algebraic Word Problems requiring reason-
ing over numeric expressions (Peng et al.,
2023).

11 RACE-Middle 24,798 7M Education Reading Comprehension EMNLP 2017 A subset of the RACE dataset with English
reading comprehension questions from
middle school exams (Lai et al., 2017).

12 RACE-High 26,982 10M Education Reading Comprehension EMNLP 2017 A subset of RACE with more challeng-
ing reading comprehension questions from
high school exams (Lai et al., 2017).

13 CoQA 127,542 5M Common Sense Question Answering LREC 2022 A conversational question-answering
dataset where each question depends on
the context of prior dialogue (Brabant et al.,
2022).

14 e2e_nlg 50,321 600K Food & Beverage Text Generation INLG 2018 A dataset for end-to-end natural lan-
guage generation for restaurant-related dia-
logue (Dusek et al., 2018).

15 viggo 9,842 500K Video Games Text Generation INLG 2019 A dataset for video game-related natu-
ral language generation, mapping struc-
tured input into natural language descrip-
tions (Juraska et al., 2019).

16 glue_qnli 104,543 6M Linguistics Question Answering arXiv A question-answering dataset reformulated
as a binary classification task for sentence
pair entailment (Shu and Du, 2024).

17 bc5cdr 20,764 5M Chemistry Recognition ICIMMI 2023 A biomedical dataset for disease and
chemical entity recognition, derived from
PubMed articles (Gupta et al., 2023).

18 conllpp 23,499 1.2M Linguistics Recognition EMNLP 2023 An enhanced version of the CoNLL-2003
dataset for named entity recognition (Al-
Shaibani and Ahmad, 2023).

19 customer_support 14,872 300K Customer Behaviors Classification CODS 2022 A dataset of customer support interactions
for intent classification and response gener-
ation (Prabhu et al., 2022).

20 legal 49,756 5M Legal Classification arXiv A legal domain dataset for natural language
processing tasks such as legal document
classification and contract analysis (Wan
et al., 2019).

21 reuters 9,623 2M News Topic Extraction JMLR 2004 A classic dataset for text classification, of-
ten used in topic modeling and news cate-
gorization (Lewis et al., 2004).

22 covid 19,874 3M Healthcare Sentiment Analysis TCSS 2021 A dataset containing COVID-19-related
texts from social media posts, typically
used for sentiment analysis (Naseem et al.,
2021).

23 drop 96,567 4M Common Sense Reasoning NAACL 2019 A reading comprehension dataset requiring
discrete reasoning over paragraphs, such as
arithmetic operations (Dua et al., 2019).

Table A1: Dataset Details
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No Model Provider License #Params (B) Context Length Training Time Size (GB) Throughput
(Tokens/s)

Latency (ms)

1 GPT-Neo-1.3B EleutherAI Apache 2.0 1.37 2,048 10 days (32 GPUs) 2.46 1,500 50
2 Dolly-v2-3B DataBricks Apache 2.0 3.00 2,048 10 days (32 GPUs) 5.8 1,250 55
3 Pythia-2.8B EleutherAI Apache 2.0 2.80 2,048 12 days (32 GPUs) 5.5 1,350 50
4 LLaMA-2-7B Meta LLAMA 2 L 6.47 4,096 21 days (64 GPUs) 13.0 1,200 62
5 TinyLlama-1.1B Hugging Face Apache 2.0 1.10 2,048 8 days (16 GPUs) 2.0 1,600 45
6 Mistral-7B Mistral AI Apache 2.0 7.00 8,192 15 days (128 GPUs) 13.0 1,400 55
7 Zephyr-7B Hugging Face Apache 2.0 7.00 8,192 20 days (64 GPUs) 13.74 1,300 52
8 ShearedLlama-2.7B Hugging Face Apache 2.0 2.70 2,048 12 days (32 GPUs) 5.0 1,300 54
9 Gemma-2B Google Proprietary 2.00 2,048 14 days (32 GPUs) 4.67 1,450 54
10 Phi-1.5B Microsoft Proprietary 2.70 2,048 12 days (32 GPUs) 2.45 1,400 52
11 StableLM-3B Stability AI Apache 2.0 3.00 2,048 14 days (64 GPUs) 6.5 1,250 50
12 Open-LLaMA-3B OpenLM Apache 2.0 3.00 4,096 18 days (64 GPUs) 6.8 1,300 60
13 Llama-3.2-1B Meta Llama 3.2 1.24 128,000 30 days (512 GPUs) 2.47 1,350 55
14 Phi-3-3.8B Microsoft MIT 3.82 128,000 7 days (512 GPUs) 2.2 1,300 55
15 Gemma-3-1B Google Proprietary 1.00 32,000 Unknown 2 1,400 50

Table A2: SLMs’ Details (sort by release time)

No Metric Evaluation Task Datasets Description

1 Accuracy Correctness Question Answering
Classification
Recognition
Reasoning
Problem Solving
Reading Comprehension

All
except [e2e_nlg, viggo, reuters]

This metric is used for tasks where a
model’s correctness can be measured by
its ability to predict a correct answer,
such as in Question Answering (QA)
and Classification tasks.

2 F1 Score Correctness Question Answering
Classification
Recognition
Reasoning
Problem Solving
Reading Comprehension

All
except [e2e_nlg, viggo, reuters]

A balanced metric that combines pre-
cision and recall, ideal for tasks like
Named Entity Recognition (NER) and
toxicity detection where both false posi-
tives and false negatives are crucial.

3 BLEU Correctness Text Generation
Topic Extraction

e2e_nlg, viggo, reuters Used primarily for evaluating the qual-
ity of text generation tasks, such as
translation and natural language gener-
ation, by comparing generated outputs
against reference texts.

4 ROUGE Correctness Text Generation
Topic Extraction

e2e_nlg, viggo, reuters Commonly used for summarization
tasks, measuring the overlap of n-grams
between the generated text and refer-
ence summaries.

5 METEOR Correctness Text Generation
Topic Extraction

e2e_nlg, viggo, reuters Evaluates generated text quality with
consideration for synonyms and para-
phrasing based on the harmonic mean
of unigram precision and recall, with re-
call weighted higher than precision.

6 Perplexity Correctness Text Generation
Topic Extraction

e2e_nlg, viggo, reuters It is a measurement of uncertainty in
the predictions of a language model. In
simpler terms, it indicates how surprised
a model is by the actual outcomes.

7 Runtime Computation All All Measures computational efficiency in
terms of running time.

8 FLOP Computation All All Measures computational efficiency in
terms of number of computation per sec-
ond.

9 Cost Consumption All All The total cost of fine-tuning, calculated
in USD.

10 CO2 Consumption All All An estimate of the environmental im-
pact in terms of CO2 emission of model
fine-tuning.

11 Energy Consumption All All The total energy consumed during the
training process, measured in kilowatt-
hours (kWh)

Table A3: Metric Details
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Model Cost (USD) Energy (kWh) CO2 Emissions (kg) FLOP Runtime (h)

GPT-Neo-1.3B 0.2237 0.0186 0.011 421,420 0.1417
Phi-1.5B 0.1632 0.0136 0.008 1,780,810 0.1033
Open-LLaMA-3B 0.3158 0.0263 0.0155 1,850,000 0.2
LLaMA-2-7B 0.2434 0.0203 0.0119 1,890,000 0.154
Mistral-7B 0.4211 0.0351 0.0206 5,407,500 0.2667
Zephyr-7B 0.3158 0.0263 0.0155 3,097,500 0.2
TinyLlama-1.1B 0.2763 0.023 0.0135 636,170 0.175
StableLM-3B 0.2368 0.0197 0.0116 855,000 0.15
ShearedLlama-2.7B 0.3684 0.0307 0.0181 1,955,250 0.2333
Dolly-v2-3B 0.2171 0.0181 0.0106 740,000 0.1375
Pythia-2.8B 0.2632 0.0219 0.0129 833,000 0.1667
Gemma-2B 0.3421 0.0285 0.0168 1,435,000 0.2167
Llama-3.2-1B 0.4342 0.0362 0.0213 7,083,330 0.275
Phi-3-3.8B 0.4079 0.034 0.02 6,000,000 0.2583
Gemma-3-1B 0.4474 0.0373 0.0219 5,666,670 0.2833

Table A4: SLMs’ Inference Cost
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