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Abstract

Large language models have shown impressive
capabilities in various mathematical tasks, yet
they often struggle with rigorous, proof-based
reasoning required for research-level mathemat-
ics. Retrieval-augmented generation presents
a promising path to address this limitation.
This paper systematically explores RAG for
natural language theorem proving. We reveal
that LLMs, when augmented with retrieved
proofs, can function as powerful mimetic theo-
rem provers: models can effectively generalize
proof techniques from unstructured retrieved
contexts to construct correct proofs for novel
theorems. Building upon this insight, we intro-
duce Dual RAG, a simple yet effective RAG
framework that retrieves both relevant theorems
and proof techniques. Dual RAG uses LLMs
to identify the underlying reasoning challenges
posed by theorems, enhancing both queries and
document contexts to improve retrieval quality.
Our experiments show that Dual RAG achieves
substantial improvements in retrieval perfor-
mance, with gains of up to 34.19%. Expert eval-
uations further confirm that these retrieval en-
hancements directly translate into higher qual-
ity proof generation. Notably, when integrated
with the arXiv API, Dual RAG demonstrates
the ability to prove research-level theorems in
theoretical machine learning, highlighting its
strong potential as a foundational element of a
practical mathematical copilot.

1 Introduction

Recent large language models (LLMs), such as
OpenAI-o1 (OpenAI, 2024) and DeepSeek-R1
(DeepSeek-AI, 2025), have demonstrated strong
performance on a variety of mathematical bench-
marks. However, their capabilities in rigor-
ous, proof-based reasoning remain underexplored.
Early studies have revealed substantial limitations
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Target theorem:
Let Xn be independent Poisson r.v.’s with
EXn = λn, and let Sn = X1 + · · · + Xn.
Show that if

∑
λn = ∞ then Sn/ESn → 1

a.s.

DeepSeek-R1 w/o RAG:
... The series

∑∞
n=1 e

−cϵ2µn converges be-
cause: µn ≥ µn−1 + λn ≥ µn−1, so µn is
non-decreasing. For large n, µn ≥ Cn for
some C > 0 (if λn does not decay too rapidly).
Even if µn grows sublinearly, e−cϵ2µn is still
summable...
Expert evaluation: Wrong

Retrieved documents:
[Document 3] Theorem 2.3.9. If A1, A2, . . .
Proof: ... To get almost sure convergence, we
have to take subsequences...

DeepSeek-R1 w/ RAG:
To prove that Sn/ESn → 1 almost surely
when Sn = X1+ · · ·+Xn (with independent
Poisson Xi such that

∑
λn = ∞), we adapt

the strategy from Theorem 2.3.9 in Document
3...
**Step 2: Subsequence for Almost Sure Con-
vergence**...
Expert evaluation: Correct

Table 1: A demonstration of the mimetic theorem prov-
ing capability of retrieval-augmented language models.
When addressing the example theorem, the raw LLM
fails, whereas the RAG variant successfully adopts the
subsequence-based approach from Theorem 2.3.9 in a
retrieved document to achieve a correct proof. The proof
technique in the document is underlined. Critical steps
of the mimetic proof are shaded.

of LLMs in tackling graduate-level theorem prov-
ing (Frieder et al., 2023), and more recent works
show that even the most advanced reasoning mod-
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els struggle with competitions such as the USAMO
(Petrov et al., 2025). Despite these setbacks, the
demand for a reliable “mathematical copilot” is
growing ever more urgent (Frieder et al., 2024).

Retrieval-augmented generation (RAG) is a natu-
ral direction for developing a mathematical copilot,
as it has proven effective in other mathematical rea-
soning tasks (Yang et al., 2025a). Several key chal-
lenges must be carefully addressed when designing
such a RAG system: (1) What to retrieve? Prior
work has primarily focused on retrieving premise
theorems (Welleck et al., 2021), but are there other
types of information that could be beneficial for
theorem proving? (2) How to retrieve? While it is
straightforward to build a standard dense retrieval
system by following approaches from other tasks
(Lewis et al., 2020), an open question remains: can
domain-specific knowledge improve retrieval effec-
tiveness in the context of a mathematical copilot?

In this paper, we thoroughly investigate the role
of RAG in natural language theorem proving, with
the goal of building a practical mathematical copi-
lot. We find that retrieval-augmented language
models act as strong mimetic theorem provers: they
can follow proof techniques found in unstructured
contexts and effectively apply them to construct
correct proofs for new theorems. An example is
shown in Table 1. Without RAG, DeepSeek-R1
fails to generate a valid proof. However, when pro-
vided with a context containing a relevant proof
technique, the LLM is able to complete the proof,
even when the retrieved and target theorems are
not exactly the same. This finding suggests that, in
addition to theorems themselves, proofs can also
be valuable retrieval targets, as they often contain
techniques that generalize to new problems. To
leverage this insight, we propose a simple yet ef-
fective system called Dual RAG that retrieves both
relevant theorems and proof techniques, designed
specifically for natural language theorem proving.
Unlike standard RAG approaches, Dual RAG em-
ploys a dual augmentation mechanism that rewrites
both the target theorem and the context, ensuring
they are better aligned in the embedding space.
This dual augmentation process enhances retrieval
quality by bridging the gap between semantically
dissimilar theorems that rely on similar proof strate-
gies. The key idea behind our approach is grounded
in domain knowledge: theorems that rely on simi-
lar proof strategies may not be semantically similar,
but they tend to present similar challenges.

To assess the performance of Dual RAG, we

introduce a new dataset, Exercise100, curated
from graduate-level mathematics textbooks. While
comparable in difficulty to the GHOSTS dataset
(Frieder et al., 2023), our dataset includes a manu-
ally annotated gold context for each exercise. This
allows for direct evaluation of retrieval quality and
its downstream impact on theorem proving. Dual
RAG achieves notable improvements in retrieval
accuracy, with gains of up to 34.19%. Expert eval-
uations further validate that these improvements in
retrieval lead to corresponding gains in proof gener-
ation quality. When integrated with the arXiv API
for academic search, Dual RAG is capable of prov-
ing research-level theorems in theoretical machine
learning, highlighting its potential as a foundation
for a practical mathematical copilot. Our main
contributions are as follows:

• We systematically study RAG for natural lan-
guage theorem proving, with the goal of build-
ing a practical mathematical copilot. We
show that language models equipped with
both retrieved theorems and proofs, can act as
mimetic theorem provers, effectively general-
izing proof techniques from retrieved exam-
ples to novel problems.

• With the empirical insight, we propose Dual
RAG, a simple yet effective RAG framework
guided by domain knowledge. It identifies rea-
soning challenges using LLMs, and augments
both target theorems and context to improve
retrieval quality.

• We introduce a new dataset, Exercise100,
from graduate-level math textbooks, with
manually annotated gold contexts. This en-
ables retrieval-level evaluation, where Dual
RAG shows significant improvements in both
retrieval and generation performance.

• Integrated with the arXiv API, Dual RAG can
prove research-level theorems in theoretical
machine learning, highlighting its potential
for real-world mathematical assistance.

2 Related Works

LLMs for theorem proving. Automated theorem
proving, a cornerstone of mathematical education
and research, has long been a significant challenge
in computer science (Robinson and Voronkov,
2001; Kovács and Voronkov, 2013). Recent ad-
vances in LLMs have introduced new possibilities
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for mathematical reasoning, revitalizing research
in this domain (Li et al., 2024). On benchmarks
such as GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021), which only assess the fi-
nal answers, LLMs have demonstrated remarkable
performance. Substantial progress has also been
made in theorem proving using formal languages
like Lean, with numerous studies exploring LLM-
based approaches (Zheng et al., 2021; Yang et al.,
2023; Wang et al., 2024a; Xin et al., 2025; Hu et al.,
2025). However, natural language theorem proving
remains relatively understudied, primarily due to
the challenges in evaluation (Yang et al., 2025b).
Even state-of-the-art LLMs struggle with this task:
GPT-4 failed to pass a graduate-level mathemat-
ics exam (Frieder et al., 2023), and recent models
like o3-mini exhibit significant difficulties on ad-
vanced benchmarks such as the USAMO (Petrov
et al., 2025). At present, the demand for mathe-
matical copilots (i.e., agents capable of assisting in
real-world education and research) has become in-
creasingly urgent (Frieder et al., 2024). Our work,
which reveals the mimetic capabilities of retrieval-
augmented language models, represents a meaning-
ful step toward this goal.

Premise selection. A related but distinct task is
premise selection, which focuses on retrieving rel-
evant lemmas from a large, structured library of
proven theorems. Unlike our setting where retrieval
operates over raw and unstructured mathematical
contexts, premise selection addresses a more sim-
plified and idealized retrieval scenario. As a re-
sult, it has been extensively studied in the literature
(Kucik and Korovin, 2018; Piotrowski and Urban,
2020; Welleck et al., 2021, 2022). For a compre-
hensive overview of advances in this field, we refer
readers to recent surveys such as (Li et al., 2024).

Retrieval-augmented generation. Recent ad-
vances in RAG have demonstrated significant ef-
fectiveness in enhancing the response quality of
LLMs while reducing hallucination issues (Wang
et al., 2024b; Zhao et al., 2024). Substantial re-
search efforts have been devoted to optimizing
RAG frameworks, particularly through innovations
in three key components, such as document chunk-
ing (LangChain, 2024; Chen et al., 2024), embed-
ding techniques (Zhang et al., 2023; Chen et al.,
2023), and reranking methods (Sun et al., 2023).
RAG systems have also been applied to mathemat-
ical question-answering, to improve the middle-
school education (Henkel et al., 2024).

3 Problem Statement

In this paper, we study the task of natural lan-
guage theorem proving with unstructured con-
text. Formally, given a target theorem1 T , the
goal is to generate a valid proof by leveraging
a collection of potentially relevant documents
D = {D1, D2, · · · , DN}, where each Di may be
a theorem-related textbook or research paper. To
construct the proof, the system must first retrieve
a set of chunks CT = {C1, C2, ..., Cn} from these
documents, where each chunk Ci ⊆ Dj for some
j ∈ [N ] is automatically segmented by the RAG
system. Our setting differs from the classic premise
selection task (Kühlwein et al., 2012; Irving et al.,
2016; Ferreira and Freitas, 2020; Welleck et al.,
2021) in important ways. While typical premise se-
lection works with clean, pre-separated mathemat-
ical statements (usually from structured theorem
libraries), we aim to handle raw documents where
mathematical content appears alongside explana-
tions, examples, and discussion. This better reflects
how mathematicians actually work - they usually
develop proofs by working with complete papers
or books, instead of isolated formal statements.

4 Methodology

To optimize retrieval performance in natural lan-
guage theorem proving with unstructured data, we
introduce Dual RAG, a simple yet effective RAG
framework. Our method employs dual data aug-
mentation to align target theorems with their rele-
vant context in the embedding space. We meticu-
lously develop a complete retrieval pipeline for our
task, from chunking to reranking. We systemati-
cally introduce our framework in this section.
Chunking. Segmenting unstructured documents
effectively is a cornerstone for retrieval (Chen et al.,
2024; Wang et al., 2024b), especially in theoretical
texts where maintaining logical flow is essential.
In our task, the documents include theorems, their
proofs, along with examples and remarks. These
examples show how to apply the known theorems,
while the remarks provide intuitive explanations,
both of which are extremely helpful when develop-
ing new proofs. To ensure no critical information
is lost, we utilize an LLM-based chunking method.
Specifically, we instruct the LLM to divide the

1Throughout this paper, we refer to the theorem or conjec-
ture that needs to be proved as the “target theorem” or “query,”
and the theorems contained in the documents as “known theo-
rems.”
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Embedding
Space

Original Query
{𝑋!} are i.i.d. sampled with 
𝑃 𝑋! > 𝑥 = "

#
log 𝑥 for x ≥ 𝑒. Show 

that 𝐸 𝑋! = ∞, but there is a 
sequence of constant 𝜇$ → ∞ so 
that %!

$
− 𝜇$ → 0 in probability.

Original Context
(Theorem 2.2.12.) Let 𝑋&, 𝑋', … be 
i.i.d. with 𝑥𝑃 𝑋 ! > 𝑥 → 0 as 𝑥 →
∞. Let 𝑆$ = 𝑋& +⋯+ 𝑋$ and let 
𝜇$ = 𝐸(𝑋&𝐼( 𝑋& ≤ 𝑛)). Then %!

$
→

𝜇$ → 0 in probability.

Augmented Query
…
The random variables 𝑋! have 
infinite expectation, so the 
standard law of large numbers 
does not apply…

Augmented Context
…
When is this theorem useful?
For distribution with infinite 
expectation, where the standard 
law of large numbers fails…

Analyzing 
Challenges

Proposing 
Applications

Figure 1: An example of dual augmentation. The original query (i.e., the target theorem) initially lies far from the
original context in the embedding space. Dual augmentation reduces this distance by jointly analyzing the proof
challenges of the query and identifying applications of known theorems in the context. Underlined text indicates
semantically similar phrases between the augmented query and augmented context.

documents D in a manner that preserves the logi-
cal structure by grouping each known theorem, its
proof, and associated examples/remarks into con-
tiguous segments C. This approach keeps logically
connected content together, making it easier to re-
trieve and use for further analysis.

Dual augmentation. Dense retrieval, which lever-
ages text embeddings to identify semantically prox-
imate documents, has emerged as the mainstream
approach in RAG systems (Lewis et al., 2020;
Zhang et al., 2023; Chen et al., 2024). However,
in our task, the target theorem T and relevant con-
textual information CT may not be close within
the embedding space. For instance, when attempt-
ing to retrieve useful knowledge to prove a target
theorem related to “Gaussian distribution,” dense
retrieval might inadvertently prioritize semantically
proximate but irrelevant properties of Gaussian dis-
tributions, while the semantically distant yet criti-
cal knowledge (e.g., the law of large numbers) is
missing due to its broader conceptual scope.

To address this issue, we propose a dual augmen-
tation strategy that operates on both the target theo-
rem and the documents. Specifically, for the target
theorem, we leverage the LLM to analyze its un-
derlying challenges and generate preliminary proof
sketches that outline potential solution pathways.

For the existing context, we employ the LLM to
propose possible applications of known theorems
and extract key techniques used in their proof. The
proposed applications identified in the augmented
context frequently align with the challenges posed
by the target theorem, thereby reducing the seman-
tic distance in the embedding space. Figure 1 illus-
trates this dual augmentation mechanism through a
concrete example.

After augmenting the context, we feed the
chunks into an embedding model and store the re-
sulting representations in a vector database. Target
theorem augmentation is carried out during infer-
ence, before the similarity search. We acknowledge
the existence of some excellent RAG frameworks
that employ similar query rewriting strategies, such
as Rewrite-Retrieve-Read (Ma et al., 2023) and
HyDE (Gao et al., 2023). However, directly adopt-
ing these methods without domain-specific adapta-
tions is not feasible, as our task of theorem proving
substantially diverges from conventional question-
answering tasks. We provide empirical validation
of this claim in §5.

Reranking. Reranking is also a powerful tech-
nique for enhancing retrieval performance (Wang
et al., 2024b). Similar to the previous stages, we
perform reranking in a zero-shot manner using
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LLMs. Specifically, for the retrieved chunks con-
taining known theorems and their corresponding
proofs or explanations, we prompt an LLM to rank
these chunks based on their relevance and useful-
ness to the target theorem T . The ranked chunks
are then used as context for powerful generative
models (e.g., large reasoning models like OpenAI-
o1 (OpenAI, 2024) and DeepSeek-R1 (DeepSeek-
AI, 2025)) to assist in proving the target theorem.

5 Experiments

In this section, we conduct extensive experiments
to study the task of natural language theorem prov-
ing with unstructured context. Specifically, we aim
to answer the following research questions:

• RQ1: How does Dual RAG enhance retrieval
performance on the Exercise100 dataset com-
pared to existing RAG baselines?

• RQ2: Can improvements in retrieval qual-
ity translate into better proof generation for
state-of-the-art reasoning models in natural
language theorem proving?

• RQ3: Can the methods and insights devel-
oped in this work extend beyond textbook-
level problems, e.g., support LLMs in address-
ing research-level theorem proving?

• RQ4: Do the retrieval improvements differ
between exercises that rely solely on theorems
and those that require proof techniques?

• RQ5: How do different components of Dual
RAG contribute to its overall effectiveness?

5.1 Experimental setup

Datasets. To comprehensively evaluate both the
retrieval and generation capabilities of our RAG
framework, we constructed a new dataset, termed
Exercise100, collected from graduate-level math-
ematics textbooks. Exercise100 comprises 100
theorem-proving problems evenly sampled from
four standard textbooks: Probability: Theory and
Examples (Durrett, 2010), High-dimensional prob-
ability: An introduction with applications in data
science (Vershynin, 2018), Introduction to Real
Analysis (Trench, 2009), and Basic Topology (M.A.,
2004). For each problem, we manually annotated
the most relevant contextual passages from the
source textbooks as ground truth GT for retrieval

evaluation. We will make this dataset publicly avail-
able to the greatest extent possible, adhering to the
release policies of prior work (Frieder et al., 2023).
Retrieval setup. We evaluate the retrieval perfor-
mance of Dual RAG and baseline methods on the
Exercise100 dataset. Specifically, for each target
theorem, we retrieve K chunks CT using different
RAG frameworks and compute:

Coverage@K(T ) = |GT ∩ (∪CT )|
|GT |

, (1)

which measures the proportion of ground truth con-
text covered by the retrieved chunks. We average
the scores across all target theorems to obtain the
dataset-level Coverage@K metric. A higher cov-
erage ratio indicates superior retrieval performance,
which consequently enhances theorem proving ca-
pability of LLMs by providing more relevant con-
textual information.

For RAG baselines, we use Vanilla RAG (Lewis
et al., 2020), Semantic Chunking (LangChain,
2024), Rewrite-Retrieve-Read (Ma et al., 2023),
and HyDE (Gao et al., 2023). Since our work in-
vestigates a new task setting, we carefully devel-
oped our own implementations of the baseline ap-
proaches. The complete implementation code will
be made publicly available to ensure reproducibil-
ity. For our framework, Dual RAG, we employ
DeepSeek-V3 (DeepSeek-AI, 2024) as the base
model due to its balance between performance and
computational cost. The prompts used for each
module are provided in Appendix A.
Generation setup. To evaluate the impact of re-
trieval on theorem proving and investigate whether
enhanced retrieval performance translates to im-
proved generation capabilities, we conduct a com-
parative analysis of three approaches: Raw LLMs,
Vanilla RAG, and our framework Dual RAG.
The experiments employ state-of-the-art reasoning
models: DeepSeek-R1 (DeepSeek-AI, 2025) and
OpenAI-o1 (OpenAI, 2024) as the backbone gener-
ative models. Detailed prompts for generation are
provided in Appendix A. After collecting proofs
for each target theorem, we compile them into a
PDF format for manual evaluation. Our grading
team for the Exercise100 dataset consists of four
experts, all of whom are at least graduate-level stu-
dents in mathematics-related fields and are familiar
with the exercises they assess. We employ a 0/0.5/1
scoring scale, where 1 represents a perfect proof,
0.5 indicates a correct approach with minor errors
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PT HDP RA TP
# Chunks 4 8 4 8 4 8 4 8

Baselines

Vanilla RAG 50.09 50.54 65.38 81.38 33.81 59.63 32.23 60.45
Semantic Chunking 15.80 21.55 46.67 55.20 33.62 60.95 23.47 25.09
Rewrite-Retrieve-Read 35.93 52.32 54.44 82.49 28.46 41.79 36.00 56.23
HyDE 51.21 56.65 64.00 83.38 33.02 59.02 44.23 68.23

Ours

Dual RAG 68.00 80.67 84.00 92.00 68.00 76.00 64.23 80.00

∆r 17.91 30.13 18.62 10.62 34.19 16.37 32.00 19.55

Table 2: Retrieval performance of various RAG systems on Exercise100. We report the Coverage@K (in percentage)
metric with K ∈ {4, 8}. ∆r denotes the improvement of our proposed Dual RAG compared to Vanilla RAG. PT,
HDP, RA, and TP refer to the four book sources, respectively. The best results are bolded.

PT HDP RA TP

DeepSeek-R1 62 90 80 64
+Vanilla RAG 70 94 86 82
+Dual RAG 82 96 90 88

∆g 12 2 4 6

OpenAI-o1 54 92 60 68
+Vanilla RAG 64 92 68 78
+Dual RAG 76 98 76 86

∆g 12 6 8 8

Table 3: Generation performance of two advanced rea-
soning models on Exercise100. We report the results of
raw LLMs, LLMs with Vanilla RAG, and LLMs with
Dual RAG. The scores are presented in percentages. ∆g

denotes the improvement of our proposed Dual RAG
compared to Vanilla RAG. The best results are bolded.

or oversights, and 0 denotes an incorrect proof. For
each textbook, we normalize the total scores to a
scale of 100 to enhance readability.

5.2 Retrieval performance (RQ1)
The retrieval performance of Dual RAG and base-
line methods on the Exercise100 dataset is detailed
in Table 2. These results unequivocally demon-
strate that Dual RAG consistently and substantially
outperforms all evaluated RAG baselines across
all four textbook sources. The magnitude of this
improvement is highlighted by ∆r, which indicates
that Dual RAG surpasses Vanilla RAG by a mar-
gin ranging from 10.62% to as high as 34.19%
in Coverage@K. This robust enhancement in re-
trieval effectiveness underscores the advanced ca-
pabilities of our proposed framework. As we will

demonstrate in §5.3, this marked improvement in
retrieval quality subsequently translates into supe-
rior proof generation performance.

Notably, Dual RAG also exhibits a significant
performance advantage over previous query rewrit-
ing techniques such as Rewrite-Retrieve-Read (Ma
et al., 2023) and HyDE (Gao et al., 2023). While
these methods also aim to improve retrieval by
refining the query, our experiments reveal their lim-
itations in the complex domain of natural language
theorem proving. As shown in Table 2, these query
rewriting approaches often yield inconsistent ben-
efits over Vanilla RAG and, in several instances,
even result in degraded performance (e.g., for ex-
ercises in the RA textbook with K = 4, where
HyDE shows a 0.79% drop and Rewrite-Retrieve-
Read shows a 5.35% drop compared to Vanilla
RAG). This result confirms the importance of do-
main knowledge in retrieval performance.

5.3 Generation performance (RQ2)

The generation performance of two reasoning mod-
els, with and without RAG systems, is presented
in Table 3. We observe that even these most ad-
vanced models struggle to excel in graduate-level
theorem-proving tasks. However, incorporating
retrieval mechanisms consistently enhances their
performance. Notably, improvements in retrieval
quality directly correlate with better proof genera-
tion. We observe that the generation gap (∆g) is
smaller than the retrieval gap (∆r), primarily due
to two types of exercises: (1) exercises requiring
complex reasoning or deep search processes that
exceed the capabilities of current LLMs, and (2)
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Target theorem: For an oblivious adversarial crosslearning contextual bandit with a strongly
observable feedback graph G and stochastic context distribution ν, a proposed algorithm for
the problem achieves a regret bound of order Õ(

√
αT ).

Retrieved documents: [Arxiv 2401.01857] We perform all our analysis conditioned on the
following two events occurring with high probability, ..., conditioned on these two concentration
events holding, ..., we then split Reg(u) into four terms, ..., terms bias1 and bias2, ..., term
ftrl...
[Arxiv 2012.05756v3] Lemma 4. Let Gt be a directed or undirected graph with vertex set
V := {1, . . . ,K}. Let α(Gt) be the independence number of Gt and π be a distribution over
V . Then,

∑

i∈V

π(i)

c+ π(i) +
∑

j:j
t−→i

π(j)
≤ 2α(Gt) log

(
1 +
⌈K2/c⌉+K

α(Gt)

)
+ 2,

where c is a positive constant.

Generated proof: The proof follows the structure outlined in the analysis overview of Arxiv
2401.01857 (Section 3.2 and Appendix C), ..., 2. establishing high probability events, ..., 3.
showing implications of event G, ..., 4. decomposing regret, ..., FTRL term, Bias terms...
Using Lemma 4 from (Arxiv: 2012.05756v3), we have

∑
a∈V

π(a)
c+π(NodeIn(a)) ≤ 2α(G) log(1+

⌈K2/c⌉/α(G)) + 2.

Table 4: An end-to-end example of using a retrieval-augmented language model to prove a research-level theorem in
theoretical machine learning. The LLM generates a correct proof for a recently proposed open problem by retrieving
and leveraging relevant results from the arXiv corpus. We use Gemini2.5-Pro for its superior long context ability.
The useful proof technique in the retrieved arXiv paper is underlined. Critical steps of the mimetic proof are shaded.

exercises based on well-known contexts that LLMs
already encode in their parameters. Despite this
disparity, Dual RAG remains an effective approach
for advancing state-of-the-art LLMs in natural lan-
guage theorem-proving.

5.4 Research-level example (RQ3)

A natural question to explore is whether RAG
systems can extend their capabilities to solving
research-level theorems, which is a key aspira-
tion for developing mathematical copilots. Our
study provides promising evidence toward this goal,
demonstrating that language models augmented
with retrieval can emulate advanced theorem-
proving techniques.

As a case study, we applied our system to a
recently proposed open problem in theoretical ma-
chine learning. This problem, introduced by Han
et al. (2020); Wen et al. (2024), remained unsolved
until late 2024, despite its seemingly modest com-
plexity. It originates from the domain of online
ad display auctions and is also of significant the-
oretical interest in its own right. Specifically, the
problem lies in the field of Multi-Armed Bandits,

a core area that investigates the tradeoff between
exploration and exploitation, and is closely tied to
reinforcement learning. The goal was to character-
ize the tight bound for a novel variant of a bandit
problem. The details of this task are deferred to the
Appendix B due to page limit.

We approached the task by feeding the problem
statement and algorithm description to an LLM,
prompting it to generate search queries. These
were used with Dual RAG, which interfaces with
the arXiv API to retrieve relevant LATEX sources.
Using this retrieved context, the LLM produced a
complete proof that closely mirrors the structure
of related works. Experts in theoretical machine
learning have verified the essential correctness of
the proof, and confirm that it only need minor ad-
justments to be fully correct.

Table 4 presents an overview of the generated
proof, along with the documents retrieved from
arXiv that the model relied on during reasoning.
The complete proof is included in our supplemen-
tary data. This case illustrates the key insight of our
work: retrieval-augmented LLMs can go beyond
simply quoting or applying relevant theorems, they
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are also capable of picking up on and adapting the
proof strategies used in related literature. In this
example, the model not only incorporates a lemma
from one retrieved paper, but also mirrors the struc-
tural techniques of another, including conditioning
on high-probability events and decomposing regret
terms. This suggests that LLMs, when equipped
with the right context, can begin to internalize and
reproduce the reasoning patterns found in advanced
mathematical writing.

5.5 Divided exercises (RQ4)

Theorem Technique
# Chunks 4 8 4 8

Vanilla RAG 46.25 46.85 62.25 62.25
Dual RAG 63.16 73.68 83.34 100.0

∆r 16.91 26.83 21.09 37.75

Table 5: Retrieval performance on exercises from the
Probability Theory textbook, divided into Theorem and
Technique subsets.

As discussed in §1, a key contribution of our
work is highlighting the importance of retrieving
proof techniques. After demonstrating the effective-
ness of Dual RAG and its retrieval improvements
on Exercise100, we further investigate where these
improvements originate. To this end, we divide the
exercises in the textbook Probability: Theory and
Examples (Durrett, 2010) into two subsets: Theo-
rem, which require only retrieving theorems, and
Technique, which rely on identifying and applying
proof strategies.

Table 5 reports the retrieval performance of
Vanilla RAG and Dual RAG on these subsets. We
observe consistent improvements across both sub-
sets with Dual RAG, but the gains are significantly
higher for the Technique-based exercises. This sug-
gests that LLM-augmented retrieval and domain
knowledge is particularly beneficial in scenarios
where reasoning and methodological insight are
needed. By dually augment both target theorems
and context, Dual RAG achieve superior retrieval
performance on natrual language theorem proving
task.

5.6 Ablation study (RQ5)
To better understand the contribution of each design
component in Dual RAG, we conduct an ablation
study on three key aspects: reranking, data aug-
mentation, and chunking. Table 6 shows results on

PT RA
# Chunks 4 8 4 8

Dual RAG 68.00 80.67 68.00 76.00

w/o Rerank 65.23 72.00 64.00 72.00
w/o Aug. 53.23 60.21 54.64 68.99
w/o Chunk. 34.10 42.10 58.42 66.89

Table 6: Ablation study results for Dual RAG on prob-
lems from two textbooks in the Exercise100 dataset. We
show the impact of removing individual components:
reranking (w/o Rerank), data augmentation (w/o Aug.),
and chunking (w/o Chunk.).

problems from two textbooks in the Exercise100
dataset: Probability: Theory and Examples and In-
troduction to Real Analysis. Removing the reranker
leads to moderate performance drops, confirming
its role in refining retrieval. Excluding data aug-
mentation causes a larger degradation, highlighting
its importance in bridging semantic gaps. We also
find chunking to be essential, as it underpins other
modules. Overall, all components are critical to the
effectiveness of Dual RAG.

6 Conclusion

In this paper, we study the task of natural language
theorem proving with unstructured context. This
setting is both practical and important for building
a mathematical copilot. We observe that advanced
LLMs exhibit strong mimetic capabilities in such
scenarios. This insight suggests that effective re-
trieval should involve both related theorems and
relevant proof techniques for each target theorem.
Motivated by domain knowledge, we propose Dual
RAG, a RAG system that dually augments the tar-
get theorem and its context with LLM-generated
analyses. These analyses highlight the difficulties
of the target theorem and suggest potential applica-
tions of the context, bringing semantically aligned
query-context pairs closer and improving retrieval
quality. This in turn leads to better proof gener-
ation on our graduate-level dataset, Exercise100.
We further integrate Dual RAG with the arXiv API
to address research-level problems in theoretical
machine learning. Remarkably, we identify a case
where an LLM, given the right context, successfully
solves an unpublished research problem. While
current models remain limited in their ability to
tackle novel theorems requiring fundamentally new
techniques, our work represents a meaningful step
toward building a practical mathematical copilot.
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Limitations

This paper investigates the effectiveness of
retrieval-augmented language models for natural
language theorem proving. While our method
demonstrates strong mimetic capabilities on the-
orems that can be solved using existing proof tech-
niques (both at the textbook and research level),
it shows no significant improvement on problems
that require fundamentally novel proof strategies.
Although the theoretical machine learning exam-
ple in our paper addresses an open question, its
complexity is considered moderate by domain ex-
perts. This limitation is expected, as such problems
can be viewed as extremely challenging out-of-
distribution cases, where the necessary proof tech-
niques are neither encoded in the LLM parameters
nor present in the retrieved context. Addressing
these types of problems is an important and open
research direction, which we leave for future work.
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A Prompt

Prompt for raw LLMs generation. We use the
following prompt for raw LLMs generation (i.e.,
without RAG):

Raw LLMs Prompt

You are a helpful and highly
knowledgeable assistant specialized in
mathematical proofs. Your task is to
provide a rigorous proof for the given
problem. Ensure that the proof is
logically sound, clearly explained, and
formatted in correct LaTeX syntax. Break
the proof into distinct steps and
summarize the conclusion at the end.
Avoid any logical fallacies or omissions
.

{Target theorem}

Prompt for retrieval-augmented generation. We
use the following prompt for retrieval-augmented
generation:

RAG Prompt

You are a helpful and highly
knowledgeable assistant specialized in
mathematical proofs. Your task is to
provide a rigorous proof for the given
problem. Ensure that the proof is
logically sound, clearly explained, and
formatted in correct LaTeX syntax. Break

the proof into distinct steps and
summarize the conclusion at the end.
Avoid any logical fallacies or omissions
.

{Target theorem}

Here are relevant context documents that
may help with the proof:

[Document 1]
{Document 1}
[End Document 1]
...

Prompt for LLM-based chunking. We use the
following prompt for LLM-based chunking:

Chunking Prompt

Please carefully segment the provided
LaTeX source code while adhering to
these requirements:
1.Keep all theorem/proposition/lemma
environments and their corresponding
proofs intact within the same segment.
2.Create segments whenever 1-2 theorems/
propositions appear.
3.Preserve all original content exactly
- only insert '[SEP]' markers between
segments
4.Output only the processed text with
segmentation markers - no additional
commentary

{LaTex source code}

Prompt for query augmentation. We use the
following prompt to augment target theorems:

Target Theorem Augmentation Prompt

You are a mathematics expert skilled in
analyzing and solving complex
mathematical proof problems. Your task
is to analyze the following proof
problem, identify its challenges, and
determine the potential theorems and
proof techniques that might be required.
You do not need to finish the proof,
but you should provide a detailed
analysis of the problem and the
potential strategies to solve it.

{Target theorem}

Prompt for document augmentation. We use the
following prompt to augment known theorems in
documents:
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Known Theorem Augmentation Prompt

You are a mathematics expert skilled in
understanding and analyzing mathematical
theorems and their proofs. I will
provide you with some mathematical
theorems and their proofs. Please help
me with the following tasks:

Theorem Summary: Summarize the core idea
of the theorem in concise language.
Potential Applications: Based on your
knowledge, suggest possible applications
of this theorem (e.g., give example
exercise that can be proved with this
theorem).
Proof Technique Analysis: Identify the
key techniques or methods used in the
proof (e.g., induction, contradiction,
constructive proof, limit arguments, etc
.) and briefly explain how these
techniques are applied.
Please analyze the following theorem and
its proof:

{Known theorems}

Prompt for chunk reranking. We use the follow-
ing prompt to rerank the retrieved chunks:

Reranking Prompt

You are an intelligent assistant that
can rank mathematical theorems and
statements based on their usefulness in
proving a given theorem. Your goal is to
identify the most relevant theorems or
statements that directly contribute to
the proof of the target theorem, while
avoiding those that are semantically
similar but irrelevant to the specific
proof.

I will provide you with {K} passages,
each indicated by number identifier [].
Your task is to rank these passages
based on their usefulness in proving the
following theorem:
{Target theorem}.

Focus on selecting theorems or
statements that are directly applicable
to constructing the proof, rather than
those that are merely semantically
similar but do not contribute
meaningfully to the proof.

B Details of the theoretical machine
learning example

We present the details of the theoretical machine
learning example. Specifically, we want to use
LLMs to prove the following theorem. For read-
ers not familiar with theoretical machine learning,
we provide a detailed problem statement in the fol-

lowing subsection. The full proof generated by
Gemini-2.5-pro-preview is uploaded as data.

B.1 Problem Statement
We study a contextual K-armed bandit problem
over T rounds with graphical feedback, where con-
texts belong to the set [M ]. We consider the obliv-
ious adversarial bandits. At the beginning of the
problem, an oblivious adversary selects a sequence
of losses ℓt,c(a) ∈ [0, 1] for every round t ∈ [T ],
every context c ∈ [M ], and every arm a ∈ [K].
Note that all of our results apply to stochastic ban-
dits as well, since the oblivious adversarial bandits
are strictly stronger than stochastic bandits.

We assume that there is a directed feedback
graph G over the set of arms [K] with edge set
E. We use the following graph-theoretic notations.
For each arm a, let Nout(a) = {v ∈ [K] : a→ v}
be the set of out-neighbors of a (including a it-
self), and let Nin(a) = {v ∈ [K] : v → a} be the
set of in-neighbors of a. The independence num-
ber α(G) is defined as the cardinal number of the
maximal independence set of G. For any vector
p of dimension [K] and set V ⊂ [K], we denote
p(V ) ≜

∑
v∈V p(v). For example, the notation

p(Nin(a)) means
∑

a′→a p(a
′).

In each round t, we begin by sampling a con-
text ct ∼ ν i.i.d. from an unknown distribution ν
over [M ], and we reveal this context to the learner.
Based on this context, the learner selects an arm
at ∈ [K] to play. The adversary then reveals
the function ℓt,c (a) for all a ∈ Nout(at), and the
learner suffers loss ℓt,ct (at). Notably, the learner
observes the loss for every context c ∈ [M ] and
every arm a ∈ Nout(at).

We aim to design learning algorithms that min-
imize regret. Fix a policy π : [M ] → [K].
With a slight abuse of notation, we also denote
πc = ek ∈ ∆([K]) for each c ∈ [M ]. The ex-
pected regret with respect to policy π is

Reg(π) = E

[
T∑

t=1

ℓt,ct (at)− ℓt,ct (πct)

]

We aim to upper bound this quantity (for an arbi-
trary policy π).

B.2 The Theorem
Theorem 1. For an oblivious adversarial cross-
learning contextual bandit with a strongly ob-
servable feedback graph G and stochastic con-
text distribution ν, for ι = 2 log(8KT 2), L =
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√
ιαT

log(K) = Θ̃(
√
αT ), γ = 16ι

L = Θ̃(1/
√
αT ),

and η = γ
2(2Lγ+ι) = Θ̃(1/

√
αT ), Algorithm 1

yields a regret bound of

Reg(π) = Õ(
√
αT ).

Algorithm 1 The algorithm for the unknown distri-
bution setting
Input: Parameters η, γ > 0 and L < T .
ŵ2 ← 0
s1,c ← 1

K for each c
s2,c ← 1

K for each c
for t = 1, . . . , L do

Observe ct
Play At ∼ s1,ct
for a ∈ [K] do

ŵ2(a)← ŵ2(a) +
s2,ct (Nin(a))

2L

for e = 2, . . . , T/L do
ŵe+1 ← 0
for t = (e−1)L+1, t = (e−1)L+3, . . . , eL−
1 do

Set pt,c =

argmin
p∈∆[K]

(〈
p,
∑t−1

s=1 ℓ̂s(c)
〉
− η−1F (p)

)

for t′ = t, t+ 1 do
Observe ct′

if pt,ct′ (a) ≥ se,ct′ (a)/2 for all a ∈
[K] then

Set qt′,ct′ = pt,ct′

else
Set qt′,ct′ = se,ct′

Play At′ ∼ qt′,ct′
Observe ℓt′,At′

tf , tℓ ← RandPerm(t, t+ 1)
for a ∈ [K] do

ŵe+1(a)← ŵe+1(a) +
se+1,ctf

(Nin(a))

2(L/2)

Sample St,a ∼ B
(

se,ctℓ
(Nin(a)

2qt,ctℓ
(Nin(a))

)

ℓ̂tℓ,c(a) ←
2ℓtℓ,c(a)

ŵe(Nin(a))+
3
2
γ
I (Atℓ → a, St,a = 1)

se+2 ← pt

C Potential risks

Our approach has the potential to assist researchers
in tackling complex mathematical proofs, which
could enhance productivity in mathematical and
theoretical research. However, we caution against

the uncritical use of language models for tasks such
as automatic paper writing or theorem generation
without human oversight. The mimetic capabili-
ties demonstrated by our system should be viewed
as a tool for exploration and support, rather than
a replacement for rigorous human reasoning and
scholarly standards.

D Artifacts information

Similar to the GHOST dataset (Frieder et al., 2023),
some parts of the datasets contain information
that may be protected under copyright, so we
will release data without these information. The
retrieved documents in the theoretical machine
learning example are all arXiv papers, the license
can be found in https://info.arxiv.org/help/
license/index.html. The data contains no infor-
mation that names or uniquely identifies individual
people or offensive content.

E Human Subjects

We use humman annotators for the evaluation of
both the textbook-level and research-level theorem
proving. The annotators are recruited from the
graduate school and supported by grants. All an-
notators agree to share data. The data collection
protocol is approved by an ethics review board.
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