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Abstract
Autoregressive models excel in sequential mod-
eling and have proven to be effective for vision-
language data. However, the spatial nature of
visual signals conflicts with the sequential de-
pendencies of next-token prediction, leading
to suboptimal results. This work proposes a
plug-and-play refinement module to enhance
the complex spatial correspondence modeling
within the generated visual sequence. This
module operates as a post-pretraining step to
jointly refine all generated tokens of autoregres-
sive model, enhancing vision-language model-
ing under a shared sequential prediction frame-
work. By leveraging global context and re-
lationship across the tokens, our method miti-
gates the error accumulation issue within the se-
quential generation. Experiments demonstrate
that the proposed method improves the gener-
ation quality, enhancing the model’s ability to
produce semantically consistent results.

1 Introduction

Autoregressive (AR) models have achieved remark-
able success in recent years across multimodal
tasks (Brown et al., 2020; Achiam et al., 2023;
Touvron et al., 2023; Team et al., 2023; Bai et al.,
2023, 2024; Yu et al., 2024a; Sun et al., 2024c;
El-Nouby et al., 2024; Sun et al., 2025). Large
language models (LLMs) based on autoregressive
modeling (Brown et al., 2020; Achiam et al., 2023;
Touvron et al., 2023; Team et al., 2023) encode
text as sequences of tokens and predict each token
sequentially based on the preceding tokens. This
next-token prediction paradigm effectively captures
sequential dependencies and complex semantic re-
lationships in the text, and shown to excel in tasks
like question answering (Trischler et al., 2016; Mi-
naee et al., 2021; Sun et al., 2024a,b) and text gen-
eration (Hendrycks et al., 2021b,a).

*Work partially done during an internship at Bosch.
†Equal contributions.
‡Corresponding authors: Chen Qiu and Zhiqiang Tao

Building on this success, recent works have ex-
tended autoregressive modeling to visual data (Bai
et al., 2024; Yu et al., 2024a; Tian et al., 2024; Sun
et al., 2024c; El-Nouby et al., 2024). Among them,
Large Vision Model (LVM) (Bai et al., 2024) stands
out for its focus on in-context tasks. LVM encodes
images (or video frames) as a sequence of tokens
and uses next-token prediction to solve various im-
age translation and generation tasks. The focus on
in-context learning makes LVM well-suited to han-
dle vision tasks that require contextual information
for generating coherent and consistent outputs.

Unlike text, visual tokens exhibit strong spatial
correlations rather than purely sequential dependen-
cies. This spatial structure necessitates attention
to both prefix and future tokens for coherent gen-
eration. Consequently, generating tokens solely
based on preceding tokens may compromise global
contextual awareness, and the sequential nature
of generation further exacerbates this by allowing
early errors to accumulate, degrading both visual
fidelity and semantic consistency.

To address these challenges, we propose a plug-
and-play self-refinement module that operates on
the generated tokens while keeping the pretrained
backbone frozen for the post-pretraining finetuning
(see Figure 1). Specifically, the proposed module
jointly optimizes the generated tokens under the su-
pervision of the target image. The discrete tokens
are mapped to the embedding space to facilitate
the learning. To this end, the broader view enables
consistent corrections across the generated token
sequence, mitigating errors stemming from the pre-
fix context in the autoregressive generation.

We summarize the contributions as follows: 1)
We introduce a post-pretraining finetuning opera-
tion to improve the next-token prediction for the
visual data, without harming the generalizeability
of the pretrained AR model. 2) We propose to learn
a plug-and-play lightweight module to facilitate
the refinement, with small-scale data and negligi-
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Figure 1: Training and generation pipeline of the proposed method. Input images (K demonstrations pairs and
a query image) are encoded and fed into fAR(·) for generating tokens iteratively. A refinement network gϕ(·) is
introduced to improve the generated tokens yq in the embedding space, yielding e′seq. During training, we use
ground truth embedding e∗seq for supervision and minimize the cosine distance. During generation, the refined
embedding e′seq is decoded to the discrete tokens via nearest-neighbor search. Finally, the refined tokens y′q are
passed to VQGAN decoder to generate the image. We take edge detection as an example.

ble running time cost. 3) Experiments demonstrate
notable improvements and generalizeability of the
proposed method not only across various vision
tasks but also on different pretrained AR back-
bones, with supporting empirical evidence showing
improvement in token-wise prediction accuracy.

2 Related Work

Autoregressive modeling serves as main stream-
line for image generation. LlamaGen (Sun et al.,
2024c) develops text-conditioned visual genera-
tion, AIM (El-Nouby et al., 2024) studies scalabil-
ity in model capacity, data quantity and objective
function, RAR (Yu et al., 2024b) rearranges token
orders for bidirectional correspondence modeling,
ELM (Liu et al., 2024) studies the design space of
LLMs for vision tasks, and VAR (Tian et al., 2024)
incorporates visual inductive bias via a next-scale
prediction mechanism.

While these methods primarily focus on uncon-
ditional, and text/class-conditional generation, they
fail to utilize images as context. LVM (Bai et al.,
2024) address this gap by leveraging context image
pairs for inferring tasks and generation, allowing
a series of perception tasks (Wang et al., 2023)
or reconstruction tasks (Wang et al., 2022, 2025,
2024). However, its reliance on next-token predic-
tion leads to error accumulation and struggles to
model spatial correspondences (Tian et al., 2024).

3 Method

3.1 Preliminaries on LVM

Autoregressive modeling. aims to maximize
the likelihood of a discrete token sequence x =
[x1, x2, . . . , xT ] using a forward autoregressive fac-
torization, where each token xt, i.e., discrete value
index, is predicted based on all preceding tokens
[x1, x2, . . . , xt−1]:

max
θ

pθ(x) =
∏T

t=1 pθ(xt|x1, x2, . . . , xt−1), (1)

where pθ represents a token distribution predictor
parameterized by θ. This sequential next-token
prediction captures dependencies within the data
and thus dynamically adapt to new tasks based on
the contextual information.

In-Context Visual Generation. LVM (Bai et al.,
2024) extended this next-token prediction model-
ing to different image translation and generation
tasks through in-context learning. Given the in-
put consisting K demonstration pairs {(xi,yi)}Ki=1

and a query image tokens xq (e.g. rgb and
sketch images in Fig. 1) , the model dynamically
adapts to the translation tasks such as inpainting
or edge detection, and generates output tokens
yq = [yq,1, yq,2, . . . , yq,T ] sequentially using a au-
toregressive backbone fAR with parameters θ:
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yq,t =





fAR(xq, {(xi,yi)}Ki=1; θ), t = 1,

fAR(yq,<t,xq, {(xi,yi)}Ki=1; θ), t > 1,

(2)

fAR is iteratively applied to generate the target to-
kens yq, conditioned on the query and context.

3.2 Next-Token Prediction for Visual Tokens

The next-token prediction generates tokens one by
one in a fixed order, where each step counts on the
past context and fits the natural languages with a
sequential order. However, next-token prediction
lacks a full view of the whole sequence at each step,
being improper for the image data whose informa-
tion is spatially distributed and correlated (Tian
et al., 2024). This makes it hard for the mechanism
to maintain the global consistency and coherence
for the generated image. Prior methods typically
impose a predefined token generation order, such
as raster-scan or spiral patterns (Yu et al., 2024a).
However, these approaches generate each token
based solely on preceding tokens and disregards
useful information from future tokens that could
provide additional contextual coherence. As a re-
sult, this sequential dependency leads to suboptimal
outputs, particularly for complex visual tasks that
requires holistic context of the entire image.

3.3 Self-Refinement for Visual Generation

To address these limitations, we propose a post-
pretraining step to refine the generated visual to-
ken sequence yq. Specifically, we introduce a
self-refinement module to jointly transform all the
generated output tokens yq = [yq,1, yq,2, . . . , yq,T ]
into refined tokens y′

q = [y′q,1, y
′
q,2, . . . , y

′
q,T ],

while keeping the autoregressive backbone frozen.
By incorporating global context, the refinement
module captures holistic relationships across all
tokens, and thus significantly enhances the quality
and coherence of the final visual output. The refine-
ment process involves: 1) refining the generated
token embeddings with a self-attention module, 2)
decoding the refined embeddings to discrete tokens
via nearest-neighbor search.

Self-Refinement Design. The autoregressive
generated tokens yq are processed by pretrained
embedding layer fembed(·) as the embeddings
eseq = [e1, e2, . . . , eT ]. A refinement network

gϕ parameterized by ϕ, jointly processes these em-
beddings to produce refined embeddings e′seq =
[e′1, e′2, . . . , e′T ], which can be computed as:

e′seq = eseq + SelfAttention(eseq;ϕ) (3)

The self-attention module captures spatial relation-
ships, semantic coherence and long-range depen-
dencies across the sequence. Importantly, process-
ing all the embeddings simultaneously make the
refinement step to adjust for inconsistencies and
deviations introduced during sequential generation.

Self-Refinement Optimization. For post-
pretraining fine-tuning, the refinement module
gϕ(·) is optimized and operates as an plug-and-play
component upon the pretrained LVM. Specifically,
we jointly consider all the generated tokens in the
latent space and minimize the cosine distance be-
tween the sequence of refined embeddings e′seq
and the ground truth token embeddings e∗seq:

min
ϕ

1

T

T∑

t=1

(
1− e′t · e∗t
∥e′t∥2∥e∗t ∥2

)
, (4)

which provides the supervision for the generated
embedding to align with the target distribution, im-
proving the fidelity and coherence of the output
with small-scaled data.

Generation. A decoding step is then performed
to transform the refined embeddings e′seq into dis-
crete tokens y′

q to ultimately reconstruct the output
image. Given the embeddings of all tokens in the
codebook (i.e., embedding matrix from pretrained
fembed(·)), we identify the nearest token embed-
ding to each refined embedding based on cosine
similarity. The token associated with the closest
token embedding is selected as the refined token.
Once determined, the refined tokens are decoded
into images using the VQGAN decoder.

4 Experiment

We evaluate our method on three vision tasks: im-
age colorization, inpainting, and edge detection.

Datasets. We adopt the large-scale Unified Vi-
sion Dataset (UVDv1) curated by LVM (Bai et al.,
2024) for each task. The proposed self-refinement
module is tuned with small-scale data (e.g., 12K
image pairs). The image resolution is 256× 256.

Baselines. We compare with three prevalent
baselines. We adopt pretrained LVM (LLaMA-
7B) (Bai et al., 2024) for vanilla in-context gen-
eration (LVM). We include one baseline (+Context
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Table 1: Comparison of our self-refinement method
against baselines across different vision tasks.

Method
Colorization

Perp
↓

LPIPS
↓

FID
↓

IS ↑ PSNR
↑

SSIM
↑

LVM 20.06 0.29 59.70 27.20 17.93 0.4925
+Context Retrieval 19.94 0.30 59.63 26.59 17.87 0.4936
+LoRA 19.04 0.29 59.76 27.14 18.09 0.5005
+Self-Refinement 19.01 0.28 59.24 27.34 18.78 0.5086

Method
Inpainting

Perp
↓

LPIPS
↓

FID
↓

IS ↑ PSNR
↑

SSIM
↑

LVM 175.93 0.31 63.95 25.35 17.38 0.4340
+Context Retrieval 183.22 0.31 64.31 23.79 17.41 0.4356
+LoRA 172.80 0.31 64.42 25.49 17.54 0.4395
+Self-Refinement 82.63 0.27 59.60 26.71 18.40 0.4508

Method Edge Detection
Perp ↓ Acc ↑ Recall ↑

LVM 23.53 0.76 0.80
+Context Retrieval 23.24 0.76 0.81
+LoRA 22.17 0.84 0.86
+Self-Refinement 20.00 0.83 0.88

Table 2: Self-refinement for the image generation. We
fix the VAR and only fine-tune self-refinement module.

Metrics Vanilla VAR VAR w/ self-refinement (ours)
FID ↓ 3.55 3.43
IS ↑ 284.2 287.4
Precision ↑ 0.85 0.87
Recall ↑ 0.49 0.51

Retrieval) that enhances the generation with con-
text images retrieved based on similarity-search
(Zhang et al., 2023). We include another baseline
(+LoRA) that finetunes LVM with LoRA (Hu et al.,
2021) on each task. We apply LoRA with the rank
of 8 and insert them into query and value projec-
tion layers of the multi-head attention modules in
each Transformer block. Our method only learns
the refinement network gϕ(·) without LoRA mod-
ule (+Self-Refinement). Both LoRA fine-tuning
and our method are trained with batch size of 4 us-
ing AdamW optimizer and learning rate 1e−4 for 2
epochs. We adopt 4 context pairs for all tasks. We
provide more details on metrics in the appendix.

4.1 Performance Comparison

Image Perception. In Table 1, we demonstrate
the results of our self-refinement method and base-
lines on colorization, inpainting and edge detection
tasks. Our method demonstrates superior perfor-
mance across all three tasks. For colorization, our
method achieves the best performance across all
metrics, demonstrating superior visual quality and
consistency. For inpainting, our self-refinement
method significantly improves perplexity (82.63),
far outperforming all other methods. It also de-
livers the best LPIPS, FID, IS, PSNR, and SSIM,
demonstrating its robustness and superiority in re-
constructing realistic and coherent content. On

Table 3: Performance comparison under structural-error
scenario on colorization.

Methods Perplexity LPIPS FID IS PSNR
w/o Self-refinment 23.70 0.35 65.85 25.00 16.07
w/ Self-refinment 20.53 0.30 60.10 26.90 17.82

edge detection, our method achieves the lowest per-
plexity, indicating superior model confidence, and
the highest recall, showcasing its ability to capture
more relevant edges. While its accuracy (0.83) is
slightly below LoRA finetuning (0.84), it main-
tains better perplexity and recall, demonstrating a
balanced and robust performance. Note that the
number of the trainable parameters is 14.7M for
LoRA modules and 16.1M for the proposed self-
refinement module, being comparable regarding
the model size.

Image Generation. In Table 2, we extend the
proposed self-refinement design to the visual au-
toregressive model of VAR (Tian et al., 2024) un-
der the task of class-conditional generation. We
fine tune the self-refinement module on ImageNet
256x256 and evaluation on its benchmark dataset.
Overall, the proposed method demonstrates the gen-
eralizability on (1) different AR models and (2) on
different tasks including perception and generation.
We set the same temperature and the seed as the
vanilla VAR to improve the statistical stability for
the generation.

Error Accumulation Discussion. Fig. 2 com-
pares the cosine distance of generated embeddings
and the ground-truth embeddings between the LVM
with LoRA and with self-refinement under inpaint-
ing. LVM with self-refinement achieves signif-
icantly reduced cosine distance for early tokens
(25 < t < 70) and later tokens (t > 160), en-
abling smaller AUC value. The results highlight
that the self-refinement process corrects early er-
rors and mitigates error accumulation during gen-
eration. For the quantitative comparison, we feed
the first 70 refined tokens (which manifest reduced
cosine distance) into the LVM to generate the rest
tokens, and then comparing the quality of the re-
maining generated tokens with and without refine-
ment in Table 4. Both the token-level evaluation
(e.g., accuracy for the remaining generated tokens)
and the image-level evaluations are improved with
the proposed method. The self-refinement module
works differently with the next-token prediction by
jointly optimizing the entire generated sequence
and adjusting the structural inconsistency globally.
Thus better handle the potential fundamental mis-
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Figure 2: We compare the LVM with LoRA and the
LVM with self-refinement in terms of the cosine dis-
tance among generated embeddings and the ground truth
embeddings for 256 tokens. Self-refinement reduces the
error accumulation especially for latter tokens (> 160).
The accumulated errors (i.e., by AUC) are provided.

takes, improving the quality of the discrete tokens
and alleviates the error accumulation.

Structured Error Discussion. The proposed
module works differently with the next-token pre-
diction by jointly optimizing the entire generated
sequence and adjusts the structural inconsistency
globally. Thus better handle the potential fun-
damental mistakes that the next-token prediction
could not solve. In Table 3, we simulate the sce-
nario with structural error by locally permuting a
segment of the token embeddings (randomly select-
ing 10% of the continuous tokens from the gener-
ated sequence) and compare the performance after
decoding. The vanilla LVM (“w/o self-refinement”)
experiences large performance descent compared
to the baseline in Table 1, indicating severe sequen-
tial prediction errors. The proposed self-refinement
module brings remarkable performance boost.

Breakdown Running Time Analysis. We com-
pute the running time on a workstation with 2x
NVIDIA RTX A6000 GPUs, Intel Core i9-10900X
@ 3.70GHz, 10 cores / 20 threads CPU and system
memory of 128GB. As shown in Table 5, the self-
refinement module is lightweight and only requires
0.112s to process. We perform nearest-neighbor
lookup for 256 generated tokens in parallel, thus
being efficient. The token generation induces most
time cost and depends on the number of tokens
in the input sequence, which does not affect the
self-refinement.

5 Conclusion

This work proposed a lightweight post-processing
technique to improve the next-token generation for
the image perception and generation. By jointly
refining the tokens, the proposed method jointly in-
corporated the global contextual information in the

Table 4: Quality comparison of the remaining generated
tokens on colorization.

Metrics w/o Self-refinment w/ Self-refinement
Gen Token Acc ↑ 0.667 0.694
Perplexity ↓ 20.06 19.50
LPIPS ↓ 0.29 0.29
FID ↓ 59.70 59.66
IS ↑ 27.20 27.28
PSNR ↑ 17.93 18.53
SSIM ↑ 0.4925 0.5054

Table 5: Breakdown running time (s) analysis under k =
4 demonstration pairs. We compute average generation
time (per image) and compare under the same platform.

Operations LVM Baseline Ours
Token generation 4.578 4.578
Self-Refinement module processing – 0.112
Nearest-neighbor look-up – 0.155
VQGAN decoding 0.233 0.233
Total time cost (s) 4.811 5.078

image, mitigating the error accumulation in vanilla
next-token prediction without affecting the gener-
ative capabilities of the pretrained AR model, en-
hancing the visual coherence and the performance.

Limitations. As a post-processing step, refine-
ment process does not directly influence the initial
autoregressive generation. Errors introduced dur-
ing the sequential token generation stage are mit-
igated with refinement but not eliminated. Future
works could explore tighter integration between re-
finement and generation for improved results. Be-
sides, the generalization and portability to other
problems could be validated.
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A Appendix

Metrics. On colorization and inpainitng, we em-
ploy the Fréchet inception distance (FID) (Heusel
et al., 2017), Inception Score (IS) (Salimans et al.,
2016), Perplexity, and LPIPS (Zhang et al., 2018)
to measure the generation quality, and incorpo-
rate PSNR (Korhonen and You, 2012) (dB) and
SSIM (Wang et al., 2004) to assess the image qual-
ity comparing to ground-truth image. On edge
detection, we measure the performance in terms of
detection accuracy and recall.

UVDv1 Dataset. As introduced in Section 4,
we adopt the UVDv1 dataset curated by LVM (Bai
et al., 2024), which covers images from over 50
large-scale datasets including ImageNet, COCO,
and LAION, etc. and inherits the multi-source na-
ture. We split 12K image pairs for training and
1K for inference in each task. Notably, the dataset
avoids randomness and ensures stability for two
reasons. (1) We adopt a fixed split of image pairs
for training across all experiments, ensuring the
consistency and stability. (2) UVDv1 dataset cov-
ers a wide range of visual variations and ensuring
that the initial selection in the split does not affect
the reliability of the training.

More Details on LVM. LVM (Bai et al., 2024)
fine tunes the VQGAN tokenzier for image en-
coding and reconstruction. For visual in-context
learning, LVM generates the image token sequence
yq for the given query image token sequence xq

depending on tasks defined by the given K demon-
stration pairs, i.e., {xi,yi}Ki=1, where each pair
consiste of a RGB image token sequence xi and
a sketch image token sequence yi (exampled by
edge detection). For each token sequence (e.g.,
{xi,yi,xq,yq}), there are 256 tokens set by LVM.
Owning to this property, LVM readily enables di-
verse image translation tasks or generation tasks.

More Details on VQGAN Tokenizer. In VQ-
GAN tokenizer (Esser et al., 2021), each image
is divided into non-overlapping patches (e.g., for
LVM), and each patch is encoded into a latent vec-
tor by the pretrained VQGAN encoder. These vec-
tors are then quantized by mapping to a discrete
token. Specifically, A token refers to a discrete
index value. These tokens are good representations
as (1) they can reflect meaningful visual patterns
like edges, textures, or object parts by capturing
the local visual structures. (2) Their discrete na-
ture allows autoregressive modeling, facilitating
the image generation.

More Details on Decoding. In the baseline
method of LVM, each image will be encoded
into 256 discrete tokens. Besides, the “codebook”
refers to the embedding matrix provided by the to-
ken embedding layer fembed(·) , which defines the
mapping between discrete tokens and their corre-
sponding embedding vectors. The embedding layer
comes from the pretrained LVM model and is kept
fixed throughout the training, as indicated by the
“frozen” symbol in Fig. 1. It is also used during
generation as shown in Fig. 1 (lower right block).
Based on the codebook, the continuous refined em-
bedding is mapped back to the discrete tokens via
nearest-neighbor lookup.

More Technical Details of the Self-Refinement.
The proposed method jointly adjusts the discrete to-
kens in the latent space. To achieve this, we firstly
map the generated distrete tokens to the embed-
ding space for fine-tuning and map the embedding
back to the discrete token space for generation (in-
ference). Specifically, as shown in Fig. 1, during
training, the loss is computed purely under the em-
bedding space. No nearest embedding lookup is
needed. Differently, during inference, it involves
finding the nearest embedding in the codebook to
reconstruct the image.

The proposed self-refinement network gϕ(·)
adopts a Transformer architecture with multi-head
self-attention and residual connections. Each block
consists of (1) MultiHead-Attention + Add &
LayerNorm and (2) Feedforward Network (FFN)
+ Add & LayerNorm. The full refinement net-
work stacks multiple such blocks (e.g., #head= 8,
#blocks= 1). This structure enables the model
to capture global dependencies across generated
token embeddings and the joint refinement. In Ta-
ble 7, we discuss different network structures of the
proposed self-refinement module, including self-
attention, MLP, and 1D convolutional structure. All
variants preserve residual structure and comparable
parameter scale. Self-attention significantly outper-
forms both MLP and CNN. MLP does not bring
the performance boost for LVM baseline, due to its
token-wise nature. Convolutional network enables
local structure modeling and improve over MLP
but remain less effective than self-attention.

More Details on Image Generation. We
choose VAR-d16 as the baseline model. The exper-
iments are conducted on 2 A6000 GPUs. Table 2
shows that the proposed self refinement module
enables further performance boost compared to
pretrained VAR after training for 10K iterations.
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Algorithm 1 Training with Refinement Network

1: Input: Context image pairs x1,y1, . . . ,xK ,yK , query image xq, ground truth label image xGT
2: Modules: VQGAN tokenizer T , AR model fAR(·), refinement network gϕ(·), loss function L
3: Output: Refined token embeddings e′seq
4: Encode all images into token sequences: Input Ids← T.encode([x1,y1, . . . ,xK ,yK ,xq])
5: Generate output tokens with AR model: yq ← fAR(Input Ids)
6: Embed predicted tokens: e← fembed(yq)
7: Refine embeddings: e′ ← gϕ(e)
8: Compute target embeddings: e∗ ← fembed(T.encode(xGT))
9: Compute loss: L ← CosineDistance(e′, e∗)

10: Backpropagate to update parameters of gϕ only

Table 6: Distance measuring discussion for self-refinement network learning, e.g., upon colorization and inpainting.

Distance Colorization Inpainting
Perp LPIPS FID IS PSNR SSIM Perp LPIPS FID IS PSNR SSIM

Cosine 19.01 0.28 59.24 27.34 18.78 0.5086 82.63 0.27 59.60 26.71 18.40 0.4508
L2 20.06 0.30 59.75 27.24 17.89 0.4922 176.00 0.31 64.05 25.40 17.24 0.4337

Context Length Discussion. In Figure 3,
we provide a detailed comparison of our self-
refinement method (red) against the ICL baseline
(yellow) across various metrics on colorization task
as the context image length increases. The results
demonstrate the consistent superiority of our ap-
proach. As shown in first row in Figure 3, our
method consistently achieves significantly lower
perplexity, LPIPS, and FID across nearly all con-
text image lengths, demonstrating more confident
predictions and better fidelity as well as alignment
with real-world image distributions. While for IS,
PSNR and SSIM, our self-refinement method main-
tains higher metric score compared with ICL base-
line. We also observe that increasing the context
image length does not always lead to improved per-
formance, a trend that aligns with similar findings
in LVM (Bai et al., 2024).

More Ablation Studies. In Table 6, we compare
different similarity metrics to be used for learning
the refinement network gϕ(·). As shown by both
colorization and inpainting, cosine distance enables
promising performance and can be better than L2

distance. This is because during decoding, VQ-
GAN model adopts a cosine similarity as the dis-
tance measuring to identify the closest element in
codebook for the given input. Accordingly, bridg-
ing the embedding with the cosine distance benefits
the token identification.

Social Impacts. Like other generative models,
the proposed method could be misused to create
misleading or harmful content if applied irrespon-

sibly. However, our focus is on improving control-
lability and quality in image generation, which can
benefit creative and commercial applications.
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Metric LVM +MLP +Convolutional network +Self-Attention (proposed)

Perplexity ↓ 20.06 19.70 19.26 19.01
LPIPS ↓ 0.29 0.30 0.29 0.28
FID ↓ 59.70 60.95 59.40 59.24
IS ↑ 27.20 26.50 27.00 27.34
PSNR ↑ 17.93 17.90 18.30 18.78
SSIM ↑ 0.4925 0.4800 0.5001 0.5086

Table 7: Ablation study of refinement network structure on colorization.
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Figure 3: Effect of demonstration image length for the proposed self-refinement (e.g., upon colorization). The input
image sequence is composed of one or more image pairs plus one query RGB image. The proposed method enables
notable performance boost under different context lengths, demonstrating the robustness to the context length.
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