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Abstract
In this paper, we introduce EmoGist, a training-
free, in-context learning method for performing
visual emotion classification with LVLMs. The
key intuition of our approach is that context-
dependent definition of emotion labels could
allow more accurate predictions of emotions, as
the ways in which emotions manifest within im-
ages are highly context dependent and nuanced.
EmoGist pre-generates multiple descriptions
of emotion labels, by analyzing the clusters of
example images belonging to each label. At
test time, we retrieve a version of description
based on the cosine similarity of test image to
cluster centroids, and feed it together with the
test image to a fast LVLM for classification.
Through our experiments, we show that Em-
oGist allows up to 12 points improvement in
micro F1 scores with the multi-label Memotion
dataset, and up to 8 points in macro F1 in the
multi-class FI dataset.

1 Introduction

Automated classification of visual emotion (Ekman,
1993; Lang et al., 1999; Mikels et al., 2005) is an ex-
tremely challenging problem, as the ways in which
emotions are embedded within images are inher-
ently nuanced. Hence, even large vision-language
models (LVLMs) that are extensively trained for
reasoning over visual inputs struggle in detecting
these emotions (Bhattacharyya and Wang, 2025),
as their training may not necessarily involve the
ability to understand such nuanced patterns.

In this paper, we introduce EmoGist, a training-
free, in-context learning method for performing
visual emotion classification with LVLMs. The key
intuition of our approach is that the real meaning of
different emotion labels could be dependent on the
image’s context. For example, we could intuitively
imagine that the way the emotion of ‘excitement’
for sporting events could be significantly different
from the ‘excitement’ of the academics for an up-
coming conference. Hence, guiding LVLMs with

Figure 1: For visual emotion classification, naive in-
context learning (ICL) struggles as providing multiple
nuanced visual examples often lead LVLMs to make
incorrect predictions. EmoGist guides LVLMs using
pre-generated multiple descriptions of emotion labels
obtained by analyzing the clusters of example images.

such context dependent definition of emotion la-
bels could allow the models to better focus on the
nuanced patterns of the image.

EmoGist automatically pre-generates nuanced,
context-specific descriptions of emotion labels, by
analyzing the clusters of example images belong-
ing to each label. At test time, we retrieve a version
of description based on the cosine similarity of
test image to cluster centroids, and feed it together
with the test image to a fast LVLM for classifica-
tion. Through our experiments, we show that Em-
oGist allows up to 12 points improvement in micro
F1 scores with the multi-label emotion classifica-
tion, and up to 8 points improvement in macro F1
for the multi-class case. We also demonstrate that
EmoGist could achieve improvements in smaller
LVLMs with 2 billion parameters.1

1All the program codes used to produce results presented in
this paper are available at https://tinyurl.com/emo-gist.
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2 Related Work

While visual emotions has been extensively stud-
ied in the many related fields including computer
vision and psychology (Mikels et al., 2005; Macha-
jdik and Hanbury, 2010; Peng et al., 2015; You
et al., 2016; Yang et al., 2023), we are only starting
to see the efforts to exploit large vision-language
models for automated understanding of visual emo-
tions (Xie et al., 2024; Etesam et al., 2024; Xenos
et al., 2024; Lei et al., 2025; Bhattacharyya and
Wang, 2025).

Visual in-context learning (ICL) has seen consid-
erable amount of interest in recent literature (Zhang
et al., 2023; Zhou et al., 2024; Zhang et al., 2024),
where many work have investigated effective strate-
gies for choosing visual ICL examples given the
test instance. However, we believe that our work is
first to investigate ICL strategies with LVLMs in
detail for evoked emotion classification.

3 EmoGist

We describe the major components of EmoGist, our
in-context learning method with LVLMs for emo-
tion classification. Instead of naively retrieving
individual examples based on the visual similarity
of the image, the key idea is to obtain an nuanced
description of emotion labels, which could effec-
tively serve as the decision boundary for the LVLM
to make its predictions on.

Because the same emotion could manifest in
many different ways for across different images,
we develop a strategy where we utilize stronger
LVLMs to pre-generate multiple descriptions of
different emotion labels, by analyzing the clusters
of example images belonging to each category.

Embedding and storing the pool of emotion label
examples In order to generate multiple descrip-
tions of emotion labels, we begin by embedding the
pool of example images with an embedding model.
We use the MM-E5 model, the state-of-the-art mul-
timodal embedding model by Chen et al. (2025).
Then we store the embeddings into a HNSWLIB

vector database (Malkov and Yashunin, 2018).

Clustering After creating the vector database of
example images, we run the k-means clustering
algorithm (Lloyd, 1982) against the set of embed-
dings to get different clusters. Because we are inter-
ested in creating multiple versions of descriptions
for specific labels, clustering is done separately for
each emotion label. We tune the hyperparameter k

by setting a portion of example images aside as a
validation set, and tune by evaluating the end task
performance on them. Due to the limited compu-
tational resources available, we only experiment
with the k values of 2, 4, and 6.2

Generating label descriptions With the cluster
information, we provide a strong LVLM with im-
ages from each cluster, and prompt them to explain
why the given images belong to the emotion label.
For our experiments, we use the Qwen2.5-VL 72B
model (Bai et al., 2025) for generating descriptions.
As it is not possible to provide the LVLM with all
images from the cluster due to GPU memory limits
and context length, we select 4 images from each
cluster to create one version of label description.
Figure 2 shows the prompt used and examples of
generated descriptions.

Selection of clusters at test time We note that
EmoGist addresses both multi-label and multi-class
classification cases. For multi-label classification,
we assume that all test instances are binarized, and
perform predictions for each candidate label given
the image. For each candidate label, we retrieve
the closest cluster among the candidates with the
corresponding label.

For multi-class classification where the classes
are exclusive to each other, we perform the clas-
sification only once by providing the list of all
candidate classes to the model. We perform the
search across the entire set of clusters regardless of
their classes, and use the closest cluster to the test
image in terms of its distance to the centroid.

Once the cluster and associated label description
has been chosen, we prepend the description to the
test image and classification prompt.3

Ensembles As we only select a subset of images
from each cluster for generating an description,
it may be the case that the selected images and
descriptions may not sufficiently match the test im-
age. In order to mitigate this issue, we introduce a
simple ensemble scheme, where we generate mul-
tiple versions of descriptions for each cluster, per-
form multiple predictions against a single example
and take the majority vote. We generate multiple
descriptions for the cluster by ranking all images
within the cluster by their distance to the centroid,

2Please see Appendix C for hyperparameter tuning proce-
dures and sensitivity analysis.

3Please see Appendix E for the full prompts used for clas-
sification.
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Figure 2: Example label descriptions for clusters within the contentment class of the FI dataset, as generated by
the Qwen2.5-VL 72B model.

and generate descriptions for every top 4 images in
the ranked list.

4 Experiments

We used two datasets: one is the Memotion 1.0
dataset (Sharma et al., 2020; Jin et al., 2024), a col-
lection of meme images from social media where
we perform a multi-label classification across 4
labels: sarcastic, humorous, offensive, and
motivational. The second dataset is the FI
dataset (You et al., 2016), a collection of every-
day images across the internet tagged based on
the Ekman model (Ekman, 1993) of 8 classes:
amusement, anger, awe, contentment, disgust,
excitement, fear, and sadness.4

4.1 Baselines

In order to save computational resources and make
our discussions more clear, we choose three differ-
ent SOTA LVLMs of similar sizes for our exper-
iments: Qwen2.5-VL 7B (Bai et al., 2025), Aya
Vision 8B (Dash et al., 2025), and InternVL2.5
8B-MPO (Wang et al., 2024). To ensure that our
findings are not tied to particular pretraining, these
three VLMs were chosen to ensure that they do
not share the same image encoder or backbone
LLM. We additionally provide a subset of results
for smaller LVLMs in Table 2.

We compare EmoGist with the following com-
parable in-context learning methods:

4Please see Appendix A for more detailed dataset statistics.

• Zero-Shot: We simply prompt a LVLM with
the test image and prediction prompt.

• Global Exp: Instead of providing example
images for a description, we prompt a large
LVLM for “global" description, where we ask
the model to describe the common features of
the images with the candidate emotion label,
without providing any references.

• ICLsim: We retrieve 4 images from the pool of
images based on cosine similarity, regardless
of their labels. This is closest to EmoGistn, in
terms of the number of examples.

• ICLall: We also test another case of perform-
ing ICL for multiclass classification, where we
provide one image each for all classes. Note
that the FI dataset have 8 classes, resulting in
8 example images to be provided to a LVLM.

We also test two variants of EmoGist:

• EmoGistn: This variant of EmoGist uses 4
images from the cluster for description gener-
ation.

• EmoGiste: This variant of EmoGist performs
ensembling, where we generate 3 versions of
label description, each of them using 4 images
without any overlap between them.

4.2 Results
EmoGist achieves robust performance gains
over all the baselines. In Table 1, we can see
that both EmoGistn and EmoGiste achieve consis-
tent improvements over all the baselines. For FI,
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Method
Model

Qwen2.5-VL 7B Aya Vision 8B InternVL2.5 8B-MPO
Precision Recall F1 Precision Recall F1 Precision Recall F1

Zero-Shot 47.121 50.381 40.089 50.094 47.181 44.188 47.237 50.379 42.939
±0.065 ±0.090 ±0.065 ±0.285 ±0.188 ±0.102 ±0.297 ±0.171 ±0.223

Global Exp
30.503 30.156 23.480 26.416 20.782 15.405 32.242 35.224 30.583
±0.325 ±0.439 ±0.404 ±1.670 ±0.468 ±0.322 ±0.316 ±0.452 ±0.312
-16.619 -20.226 -16.609 -23.678 -26.398 -28.783 -14.996 -15.155 -12.355

ICLsim
48.656 49.898 42.733 48.649 42.444 35.257 42.613 43.658 37.653
±0.029 ±0.022 ±0.016 ±0.592 ±0.122 ±0.185 ±0.215 ±0.171 ±0.161
+1.534 -0.483 +2.643 -1.445 -4.736 -8.931 -4.624 -6.721 -5.286

ICLall
23.464 14.633 5.664 13.223 12.609 1.511 16.682 16.107 13.454
±0.948 ±0.024 ±0.081 ±3.242 ±0.042 ±0.102 ±0.517 ±0.259 ±0.298
-23.657 -35.749 -34.425 -36.871 -34.572 -42.677 -30.555 -34.272 -29.485

EmoGistn
52.944 52.163 48.497 52.579 51.389 47.906 52.592 51.767 48.094
±0.364 ±0.265 ±0.572 ±0.381 ±0.271 ±0.565 ±0.261 ±0.220 ±0.303
+5.822 +1.782 +8.408 +2.485 +4.208 +3.718 +5.354 +1.388 +5.155

EmoGiste
52.772 51.704 48.118 52.632 51.146 47.579 52.449 51.712 47.795
±0.377 ±0.235 ±0.552 ±0.371 ±0.316 ±0.599 ±0.158 ±0.202 ±0.167
+5.650 +1.323 +8.029 +2.538 +3.965 +3.391 +5.211 +1.333 +4.856

(a) FI

Zero-Shot 77.343 48.260 59.434 75.799 63.814 69.292 73.520 63.377 68.070
±0.013 ±0.104 ±0.080 ±0.023 ±0.065 ±0.035 ±0.195 ±0.358 ±0.254

Global Exp
77.134 35.206 48.159 73.430 68.159 70.665 74.885 62.160 67.928
±0.180 ±2.182 ±1.976 ±0.702 ±0.654 ±0.116 ±0.191 ±0.360 ±0.234
-0.209 -13.054 -11.276 -2.369 +4.345 +1.373 +1.365 -1.217 -0.142

ICLsim
75.061 64.642 69.462 76.721 60.915 67.910 72.601 55.476 62.890
±0.025 ±0.107 ±0.071 ±0.043 ±0.077 ±0.062 ±0.101 ±0.432 ±0.290
-2.282 +16.381 +10.028 +0.922 -2.900 -1.382 -0.918 -7.901 -5.181

EmoGistn
75.610 62.693 68.540 68.693 84.265 75.611 72.162 72.438 72.289
±0.183 ±0.492 ±0.237 ±0.548 ±1.958 ±0.747 ±0.204 ±0.708 ±0.338
-1.732 +14.432 +9.105 -7.107 +20.451 +6.319 -1.358 +9.061 +4.219

EmoGiste
78.682 65.374 71.411 70.263 87.165 77.795 75.898 74.596 75.240
±0.067 ±0.315 ±0.188 ±0.314 ±0.647 ±0.171 ±0.257 ±0.173 ±0.170
+1.339 +17.114 +11.977 -5.536 +23.350 +8.502 +2.379 +11.219 +7.170

(b) Memotion

Table 1: Results of our methods and baselines. We report macro scores for FI and micro scores for Memotion.
All scores are averaged over six random seeds. We show standard errors as their confidence intervals. Boldfaces
indicate the best performance for each metric across all methods for each model. Green and red numbers indicate
the performance changes over the zero-shot baseline.

EmoGistn gains 8.41 points in terms of macro F1
score over Zero-Shot, and 5.76 points over ICLsim.
The trend is largely similar for Memotion, where
EmoGiste gains 11.98 points in terms of micro F1
score over Zero-Shot, and 1.95 points over ICLsim.

It is interesting to note that Global Exp, which
is essentially providing the strong LVLM’s general
knowledge about emotion labels, is considerably
worse than the Zero-Shot baseline. Therefore, we
could see that having EmoGist’s localized, cluster-
specific label description makes a substantial differ-
ence. Lastly, adding ensembling EmoGiste shows
consistent improvements over EmoGistn, with no-
table gains in precision for Memotion.

Naively performing visual ICL could be detri-
mental. Another observation from Table 1 is
that our ICL baselines, ICLsim and ICLall, are ei-
ther under-performing, or marginally better than

the Zero-Shot baselines. In the most extreme
case, ICLall for FI sees over 42 points drop in F1
score, way below random guessing. In addition,
while ICL achieves considerable performance with
Qwen2.5-VL 7B on Memotion, Aya Vision 8B and
InternVL 2.5 8B-MPO failed to achieve compa-
rable scores. As reasoning over multiple image
inputs is still an area of active research in pretrain-
ing and post-training for LVLMs (Li et al., 2024),
it is likely the case that not all publicly available
LVLMs are equal in terms of their ability to utilize
ICL examples for classification.

Small LVLMs could also become decent emo-
tion reasoners with EmoGist. As many practical
uses of visual emotion understanding often take
place within resource-constrained systems with low
latency requirements such as web applications or
personal computing devices, even relatively small
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7 billion models may be beyond typical computing
budget under such scenarios. In Table 2, we test 2
small LVLMs with the same number of 2 billion pa-
rameters, SmolVLM2 2.2B (Marafioti et al., 2025)
and InternVL2.5 2B-MPO (Wang et al., 2024), to
examine whether EmoGist performance benefits
hold for these smaller models.

We could see that EmoGiste achieve similar lev-
els of performance gains over the Zero-Shot and
ICL baselines, with SmolVLM2.2 achieving perfor-
mances similar to the 7B models in Table 1. Given
that EmoGist only requires storing cluster centroids
and text descriptions at test time, we believe that
EmoGist shows some interesting future directions
for implementing visual emotion understanding
into a wide variety of applications.

Model Method FI Memotion
Precision Recall F1 Precision Recall F1

InternVL2.5 2B-MPO

Zero-Shot 38.039 34.813 30.499 74.272 54.972 63.181
±0.285 ±0.320 ±0.318 ±0.164 ±0.129 ±0.113

ICLsim
45.376 11.215 16.078 64.674 75.157 69.522
±0.587 ±0.221 ±0.309 ±0.104 ±0.090 ±0.074
+7.337 -23.598 -14.421 -9.599 +20.184 +6.341

EmoGiste
50.706 41.421 37.442 70.873 60.658 65.353
±0.412 ±0.442 ±0.675 ±0.142 ±0.840 ±0.504

+12.667 +6.608 +6.943 -3.400 +5.685 +2.173

SmolVLM2 2.2B

Zero-Shot 39.567 30.762 20.703 73.124 67.617 70.263
±0.056 ±0.019 ±0.016 ±0.011 ±0.012 ±0.010

ICLsim
47.478 48.463 41.798 74.896 12.113 20.852
±0.030 ±0.029 ±0.028 ±0.097 ±0.087 ±0.130
+7.912 +17.700 +21.096 +1.773 -55.505 -49.411

EmoGiste
52.358 50.641 46.713 67.455 96.311 79.329
±0.542 ±0.098 ±0.445 ±0.381 ±0.540 ±0.118

+12.791 +19.879 +26.010 -5.668 +28.694 +9.066

Table 2: Results on small VLMs with 2B parameters.

Knowledge transfer across different domains
with EmoGist. Lastly, we explore whether the
knowledge about different emotion labels we ac-
quire from example images could be used for pre-
dictions against the images from the domains dif-
ferent from example images. Using the label de-
scriptions obtained from the example images of the
FI dataset, we evaluate EmoGiste on the ArtPhoto
dataset (Machajdik and Hanbury, 2010), a collec-
tion of artistically photographed images annotated
with the same class labels as FI.

In Table 3, we can see that while EmoGist
achieves slightly better scores over naive ICL, the
overall performance is actually worse than the Zero-
Shot baselines. As EmoGist captures more context-
specific, nuanced knowledge of emotion labels,
there seems to be a significant semantic gap be-
tween the images from FI and ArtPhoto that most
of the FI clusters do not adequately explain the
test images from ArtPhoto. Making EmoGist to
capture both general and context-specific knowl-
edge of emotions across different subject domains
and visual compositions could be an interesting
direction for future research.

Model Method ArtPhoto
Precision Recall F1

Qwen2.5-VL 7B

Zero-Shot 52.594 42.306 41.178

ICLsim 43.332 33.165 33.745

EmoGiste 46.535 38.555 39.227

Aya Vision 8B

Zero-Shot 55.602 43.706 43.473

ICLsim 43.328 26.902 26.742

EmoGiste 46.216 38.307 38.921

InternVL2.5 8B-MPO

Zero-Shot 48.824 42.365 43.518

ICLsim 39.606 32.083 33.018

EmoGiste 47.739 39.104 39.993

Table 3: Results on ArtPhoto with the emotion label
descriptions from FI.

5 Conclusion and Future Work

In this paper, we introduced EmoGist, a training-
free in-cotext learning method for visual emotion
understanding with large vision-language models.
We observe a significant amount of improvements
over the zero-shot and naive ICL baselines across
SOTA LVLMs of 2 and 7 billion parameters. In
particular, we find that EmoGiste, the variant of our
method with simple ensembling, achieves robust
performance improvements with higher precision.
In future work, we’d like to explore more deeply
into the label descriptions generated by the strong
LVLMs and investigate various reasoning strategies
for obtaining emotion label descriptions that are
more transferrable across different domains.
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A Dataset Information

For each dataset, we treat the training set as the
pool of example images for description generation,
use the validation set for hyperparameter tuning,
and test our method and baselines against the test
set.

A.1 Memotion

We use the split introduced by Jin et al. (2024) for
our experiments.5. Dataset statistics are provided
below:

Split Number of unique images sarcastic humorous offensive motivational

Training 5593 4367 4259 3417 1972
Validation 699 538 539 437 253

Test 700 543 543 425 242

Table 4: Memotion dataset statistics.

A.2 FI

For the test set, we use the FI hard set introduced
by (Bhattacharyya and Wang, 2025). As there is no
separate training and validation set provided, we
filter all the images includes in the FI hard set from
the original FI set, and randomly split the set of
remaining images into the training and validation
set. Dataset statistics are provided below:

Split amusement anger awe contentment disgust excitement fear sadness

Training 3608 842 2698 4309 1391 2592 852 2634
Validation 190 45 142 259 74 137 45 139

Test 1125 368 293 188 192 185 149 128

Table 5: FI dataset statistics.

B Experimental Settings

B.1 Hardwares and Softwares Used

To fully utilize all the GPU resources available to
us, we ran all of our validation and test predic-
tions, and embedding generations using multiple
NVIDIA V100, GTX TITAN Xp and GTX TITAN
X GPUs.

We use the version 4.50.0 of HuggingFace Trans-
formers library (Wolf et al., 2020), the version 0.7.3
of vLLM (Kwon et al., 2023) alongside PyTorch
version 2.5.1 (Paszke et al., 2019).

For our label description generation, we used
a Mac Studio hardware with M1 Ultra CPU and
128GB of RAM, using the version 0.25.0 of mlx
(Hannun et al., 2023) and 0.1.23 of mlx-vlm.

5https://huggingface.co/datasets/Ahren09/
MMSoc_Memotion

B.2 Random Seeds

For the results shown in Table 1 and Table 2, we
run each test for 6 different random seeds: 21, 42,
63, 84, 105, 126.

C Sensitivity analysis and
hyperparameter tuning for the number
of clusters k

We determine the optimal number of clusters for
each dataset and test-time LVLM combination. Ini-
tially, we apply k-means clustering to both FI and
Memotion datasets for k values of 2, 4, and 6.
Subsequently, we generate cluster-based label de-
scriptions for each k using the Qwen2.5-VL 72B
model. We then classify the validation set based on
these clusters and text descriptions, 3 times for each
7B/2B LVLM using the following random seeds:
21, 42, 63. The optimal k is ultimately identified
by identifying k that achieved the most number of
highest validation F1 scores across the three seeds.
If there’s no winner, we ran the validation for addi-
tional seeds (84, 105, 126) until the clear winner is
found.

Please see Figure 9 and Figure 10 for the vali-
dation set results of EmoGistn and EmoGiste with
7B models on FI, Figure 11 and Figure 12 for the
validation set results of EmoGistn and EmoGiste
with 7B models on Memotion, and Figure 13 and
Figure 14 for the validation set results of EmoGiste
with 2B models on FI and Memotion.

D Prompts used for label description
generation

**Images from the cluster go here**

These are the examples of images with the sentiment of “{s_label}".
Based on these examples, what are the common features of images to be
felt “{s_label}" by its viewers? Do not reference example images directly.

Figure 3: Prompts used for label description generation.

E Prompts used for zero-shot and
EmoGist

**Test image goes here**

**For EmoGist, label description goes here**

Question: Does this image match the sentiment label ‘{s_label}’? An-
swer:

Answer with ‘Yes’ or ‘No’.

Figure 4: Prompts used for multi-label zero-shot classi-
fication and EmoGist.
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**Test image goes here**

**For EmoGist, label description goes here**

Question: Which of the sentiment labels in the following list does this
image belong to? List: [“amusement", “anger", “awe", “contentment",
“disgust", “excitement", “fear", “sadness"] Answer:

Answer with the exact sentiment label as it appears in the list.

Figure 5: Prompts used for multi-class zero-shot classi-
fication and EmoGist.

F Prompts used for ICL baselines

**ICL example images 1 to 4 goes here**

**Test image goes here**

## Image 1

Question: Does this image matches the sentiment label

’{s_label}’? Answer: Yes

## Image 2

Question: Does this image matches the sentiment label

’{s_label}’? Answer: Yes

## Image 3

Question: Does this image matches the sentiment label

’{s_label}’? Answer: Yes

## Image 4

Question: Does this image matches the sentiment label

’{s_label}’? Answer: Yes

## Image 5

Question: Does this image matches the sentiment label

’{s_label}’? Answer:

Answer with ‘Yes’ or ‘No’.

Figure 6: Prompts used for multi-label ICLsim.

**ICL example images 1 to 4 goes here**

**Test image goes here**

## Image 1

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: {s_label}

## Image 2

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: {s_label}

## Image 3

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: {s_label}

## Image 4

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: {s_label}

## Image 5

Question: Which of the sentiment labels in the following list does this
image belong to? List: [“amusement", “anger", “awe", “contentment",
“disgust", “excitement", “fear", “sadness"] Answer:

Answer with the exact sentiment label as it appears in the list.

Figure 7: Prompts used for multi-class ICLsim.
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**ICL example images 1 to 8 goes here**

**Test image goes here**

## Image 1

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: amusement

## Image 2

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: anger

## Image 3

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: awe

## Image 4

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: contentment

## Image 5

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: disgust

## Image 6

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: excitement

## Image 7

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: fear

## Image 8

Question: Which of the sentiment labels in the following

list does this image belong to? List: [“amusement",

“anger", “awe", “contentment", “disgust", “excitement",

“fear", “sadness"] Answer: sadness

## Image 9

Question: Which of the sentiment labels in the following list does this
image belong to? List: [“amusement", “anger", “awe", “contentment",
“disgust", “excitement", “fear", “sadness"] Answer:

Answer with the exact sentiment label as it appears in the list.

Figure 8: Prompts used for multi-class, ICLall.
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Figure 9: Validation set results for EmoGistn with 7B models on FI.

Figure 10: Validation set results for EmoGiste with 7B models on FI.

Figure 11: Validation set results for EmoGistn with 7B models on Memotion.

Figure 12: Validation set results for EmoGiste with 7B models on Memotion.
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Figure 13: Validation set results for EmoGiste with 2B models on FI.

Figure 14: Validation set results for EmoGiste with 2B models on Memotion.
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