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Abstract

Large Language Models (LLMs) excel at lin-
ear reasoning tasks but remain underexplored
on non-linear structures such as those found in
natural debates, which are best expressed as ar-
gument graphs. We evaluate whether LLMs
can approximate structured reasoning from
Computational Argumentation Theory (CAT).
Specifically, we use Quantitative Argumenta-
tion Debate (QuAD) semantics, which assigns
acceptability scores to arguments based on
their attack and support relations. Given only
dialogue-formatted debates from two NoDE
datasets, models are prompted to rank argu-
ments without access to the underlying graph.
We test several LLMs under advanced instruc-
tion strategies, including Chain-of-Thought and
In-Context Learning. While models show mod-
erate alignment with QuAD rankings, perfor-
mance degrades with longer inputs or disrupted
discourse flow. Advanced prompting helps mit-
igate these effects by reducing biases related
to argument length and position. Our findings
highlight both the promise and limitations of
LLMs in modeling formal argumentation se-
mantics and motivate future work on graph-
aware reasoning.

1 Introduction

Evaluating the reasoning capabilities of Large Lan-
guage Models (LLMs) has largely focused on tasks
involving linear reasoning, such as arithmetic, log-
ical puzzles, and Chain-of-Thought (CoT) expla-
nations (Kojima et al., 2022). Even complex in-
ference methods—like beam search, best-of-N,
or Tree-of-Thoughts (Yao et al., 2023)—are ul-
timately decomposable into linear sequences of
intermediate steps. Similarly, research on conver-
sational systems predominantly addresses linear
interactions between users and LLMs.

In contrast, natural debates are not purely lin-
ear. Alongside serial (near-path) exchanges, they
frequently exhibit branching interactions, with mul-

tiple arguments converging on one claim (fan-in)
and single arguments influencing several others
(fan-out). We focus on these non-linear settings
and use debates that exhibit substantial branching
rather than simple chains. Computational Argu-
mentation Theory (CAT) formalizes these complex
interactions through frameworks like Quantitative
Argumentation Debate (QuAD) semantics (Baroni
et al., 2018). QuAD semantics assigns each argu-
ment a numerical acceptability degree that reflects
its strength within the debate.

The emerging paradigm of LLM-as-a-Judge (Li
et al., 2025; Gu et al., 2025) highlights the signif-
icant potential of LLMs for nuanced assessment
and moderation across various applications, such as
content evaluation, alignment, retrieval, and reason-
ing. Given the rapid advancement of multi-agent
AI systems engaging in sophisticated argumenta-
tive interactions, it is increasingly crucial to un-
derstand whether LLMs can effectively serve as
impartial judges capable of handling non-linear ar-
gumentation structures.

Thus, our main research question is to investigate
whether contemporary LLMs can effectively reason
over non-linear argumentative structures inherent
in natural debates.

To answer this question, we design a novel
evaluation setting: we transform debate graphs
into natural dialogues, creating latent argument
graphs—simple argument lists without explicit at-
tack or support relationships. This flattened di-
alogue format mimics how individuals interact
in real-world group discussions, where argument
structure is not overtly marked. We instruct the
LLM to rank arguments by their inferred accept-
ability degrees. The model-generated rankings are
then compared against ground-truth acceptability
degrees computed using QuAD semantics. Figure 1
summarizes our evaluation pipeline.

The main contributions of this paper are:
1. The first systematic evaluation of LLMs’ abil-
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Figure 1: System overview showing the LLM pipeline (top), which is compared with QuAD semantics (bottom).
Top: We transform the argument graph (unweighted) into a natural language dialogue, which is fed to an LLM with
various instruction strategies (zero-shot, ICL, CoT). Bottom: After uniform weight initialization, the graph is scored
using QuAD semantics, producing final argument strengths wf . These are used to derive a gold ranking, which is
compared to rankings predicted by the LLM via Spearman’s ρ and Kendall’s τ .

ities to reason over non-linear argument struc-
tures within realistic debate settings, bench-
marked against CAT semantics (QuAD).

2. A characterization of the limits of LLM rea-
soning on argument ranking through advanced
instruction techniques (In-Context Learning
and Chain-of-Thought).

3. An exploration of how debate complexity, dis-
course order, argument length, and model
size impact performance, uncovering strong
chronological and structural biases. While
advanced instruction methods partially mit-
igate these biases, even larger models con-
sistently struggle, highlighting the need for
future graph-aware language modeling.

Our findings highlight both the potential and
the limitations of LLMs as impartial moderators
in complex, multi-agent argumentative scenarios
and lay crucial groundwork toward more robust
reasoning capabilities.

2 Related Work

2.1 CAT Semantics

CAT models debates as structured graphs, where
arguments form nodes and directed edges represent
attack or support relationships between arguments.
CAT semantics define how to compute each argu-
ment’s acceptability degree, a numerical value that
reflects its strength within the debate structure.

A prominent class of CAT semantics, known as
bipolar gradual semantics, includes QuAD (Ba-
roni et al., 2018), DF-QuAD (Rago et al., 2016),
exponent-based semantics (Amgoud and Ben-
Naim, 2018), and the Quadratic Energy Model (Po-
tyka, 2018). These share two core features:

Bipolarity: Both attack and support relations in-
fluence an argument’s score.

Graduality: Arguments receive continuous ac-
ceptability degrees rather than binary labels,
allowing nuanced distinctions between them.

We use QuAD semantics to generate gold-
standard rankings for evaluation because it (a) is
widely used in the CAT literature, (b) intuitively
balances attack and support dynamics to capture the
nuanced interplay of arguments, (c) reliably con-
verges on acyclic graphs (the class we study), and
(d) is grounded in principles that have been shown
to align closely with human judgments of argumen-
tative strength (Vesic et al., 2022). Importantly, this
grounding makes QuAD a natural proxy for assess-
ing how well models capture human-like reasoning.
A detailed explanation of QuAD and its recursive
scoring method is provided in Appendix A.

2.2 CAT and LLMs

LLMs’ success on diverse reasoning tasks
makes them compelling candidates for automated
decision-making (Ouyang and Li, 2023). Yet, they
exhibit limitations such as hallucinations and log-
ical inconsistencies (Berglund et al., 2024; Fluri
et al., 2024). These deficiencies and a lack of ex-
plainability raise concerns about their trustworthi-
ness (Henin and Le Métayer, 2022), motivating re-
search into more structured reasoning frameworks.

CAT has gained traction for its structured, for-
mal approach to reasoning, and it offers a promis-
ing foundation for work on non-linear inference.
Castagna et al. (2024) propose MQArgEng, a
pipeline that uses a computational argumentation
engine to guide LLM outputs. Their results show
that this integration improves reasoning quality
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without model architecture constraints. Freedman
et al. (2025) introduce argumentative LLMs, which
construct argumentation frameworks from model-
generated reasoning traces and analyze them with
gradual semantics to enhance explainability.

These studies focus on using CAT to enhance
LLM outputs by building explicit argumentation
graphs. In contrast, we assess whether LLMs can
perform non-linear reasoning by implicitly model-
ing structured argumentation semantics—without
access to the underlying graph—when ranking ar-
guments in natural debates.

To our knowledge, this is the first systematic
evaluation of LLMs’ ability to capture gradual,
bipolar argumentation semantics from dialogue
alone.

3 Data

3.1 Dataset Overview and Characteristics
We compile our datasets from two sources within
the NoDE benchmark (Cabrio and Villata, 2014):
12AngryMen, derived from a well-known jury
deliberation play, and DebatePedia, which cov-
ers multiple smaller debates on diverse topics.
Using these complementary datasets—one large
and domain-specific, the other smaller and topic-
diverse—we comprehensively assess LLM perfor-
mance on debates of varying size, complexity, and
subject matter. All graphs are acyclic. Details of
the datasets are provided below; additional descrip-
tions and examples are included in Appendix B.

12AngryMen Dataset: This dataset, based on
the play Twelve Angry Men, includes three acts rep-
resented as argument graphs, each with arguments
as nodes and relations (attacks/supports) as edges.
The acts contain 39, 33, and 11 nodes, respectively,
totaling 80 edges, and are all used for testing.

DebatePedia Dataset: This dataset comprises
debates manually curated from encyclopedias of
pro and con arguments. Each debate forms a sepa-
rate argument graph with user-generated arguments
linked by attack or support edges. Chronological
ordering preserves dialogue structure. From the
total of 22 debates, we select three diverse exam-
ples (attack-heavy, support-heavy, and balanced)
for instruction exemplars. The remaining 19 de-
bates, averaging 13 nodes each (242 nodes, 223
edges), serve for evaluation.

Evaluation scale. Across our two datasets we
have 325 arguments linked by 303 relations.

For evaluation, models must reason over all un-
ordered pairs of arguments within each graph, i.e.,∑

g

(|Ag |
2

)
≈ 3,000 pairs, where |Ag| is the num-

ber of arguments in graph g. With 6 instruction
strategies and 3 repetitions, this expands to nearly
50,000 pairwise checks per model, underscoring
the substantive reasoning workload.

3.2 From Argument Graphs to Dialogues

To evaluate models in a realistic dialogue-based
setting, we convert argument graphs into dialogues.
Specifically, we preserve only the arguments’ texts,
discarding their relationships (attacks or supports).
Arguments are chronologically integrated into de-
bates, formatted simply as “Argument #: Argument
Text”. This conversion preserves the natural dis-
course flow but keeps argument structure latent,
requiring models to implicitly infer relationships.
Refer to Appendix B.3 for more details.

3.3 Argument Ranking Using QuAD

To evaluate whether LLMs can reason effectively
about argument strength in debates, we compare
their predicted rankings to those induced by QuAD
semantics (Baroni et al., 2018).

QuAD assigns each argument an acceptabil-
ity degree by considering both its initial weight
and the influence of arguments that attack or sup-
port it. Supporters increase an argument’s accept-
ability, while attackers decrease it, and the final
score reflects a balance between these competing
influences. Importantly, the strength of each at-
tacker or supporter depends recursively on how
well-supported they are—capturing the idea that a
weak rebuttal should count less than a strong one.

This process resembles a kind of recursive influ-
ence propagation: each argument’s strength is up-
dated based on the strengths of its neighbors, much
like a random walk spreading activation across the
argument graph. Over multiple iterations, the sys-
tem converges to stable values that reflect the global
argumentative structure.

While QuAD produces numerical acceptability
scores, we converted these to rankings by sorting
arguments in descending order of their final scores.
These rankings serve as a gold standard against
which LLM-generated rankings are evaluated. The
models never observe the underlying graph or edge
types—their task is to rank arguments in natural
debates in a way that approximates this structured,
graph-driven reasoning process.
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It is important to note that QuAD and its derived
semantics are defined only for acyclic graphs. We
recognize the need for further exploration of cyclic
graph structures and address this in Section 7.

Finally, since our datasets do not contain pre-
defined initial argument weights, we assign all ar-
guments a uniform weight of 0.5. This ensures a
neutral and consistent evaluation, allowing LLMs
to approach each argument as equally important at
the outset—effectively starting from a “blank slate”
without external bias.

Formal definitions and detailed examples of
QuAD semantics are available in Appendix A.

4 Approach

4.1 Models
We use four LLMs—both open and closed—GPT-
4o (OpenAI et al., 2024), Claude 3 Sonnet (An-
thropic, 2024), Command R+ (Cohere For AI,
2024), and Llama 3 70B Instruct (Dubey et al.,
2024)—abbreviated as gpt-4o, claude-3, cmd-r-
plus, and llama-3. Under identical instruction sets
(no fine-tuning) and a temperature of 0.7, we run
each model three times and report averaged results.

4.2 Instruction Strategies
Our experiments evaluate LLMs’ non-linear rea-
soning ability by measuring their performance in
replicating formal QuAD semantics from latent
graphs formatted as debate dialogues. To this end,
we explored state-of-the-art instruction strategies,
such as Chain-of-Thought (CoT) and In-Context
Learning (ICL). For examples, see Appendix C.

Zero-Shot “Vanilla”: In this method, the LLM is
instructed to rank arguments based on their logical
strength and their (latent) attack or support relations
with other arguments.

In-Context Learning (ICL): ICL uses exem-
plars to improve LLM performance (Brown et al.,
2020). We selected three argument graphs from De-
batePedia as ICL examples, covering attack-heavy,
balanced, and support-heavy structures. We tested
two variants: one-shot ICL (single exemplar) and
few-shot ICL (three exemplars).

Zero-Shot Chain-of-Thought (CoT): Inspired
by the zero-shot CoT framework (Kojima et al.,
2022), this approach encourages the LLM to simu-
late a step-by-step reasoning process about each ar-
gument’s logical strength and its relationships with
other arguments. The model then constructs an

adjacency list representing these relationships and
ranks the arguments based on their logical strength
and the attack or support relationships.

Chain-of-Thought (CoT): This approach in-
volves adding detailed analyses of attack and sup-
port relationships between arguments and explicitly
constructing adjacency lists for each ICL exemplar.
This process teaches models to adopt a step-by-step
reasoning process when analyzing arguments. We
test two variants: one-shot CoT (single exemplar)
and few-shot CoT (three exemplars).

4.3 Debate Structure Reconstruction
Beyond ranking, we evaluate whether models can
reconstruct the underlying argument graph from
dialogue alone. Under our CoT settings, mod-
els are instructed to (i) infer pairwise relations
and (ii) emit a signed, directed adjacency list as
keyed lists, e.g., ’Argument 2’: [(’Argument
6’,’attack’), (’Argument 9’,’support’)],
..., where each tuple encodes an edge (i← j, r)
with r ∈ {ATTACK, SUPPORT}.

5 Results

As mentioned, our experiments evaluate the non-
linear reasoning ability of LLMs by assessing their
capability to produce similar argument rankings as
the ones generated by QuAD semantics. Notably,
QuAD semantics has full access to the argument
graph structure, whereas the LLMs operate in a
more natural dialogue setting. We evaluate the cor-
relation between the LLM rankings and those de-
rived from QuAD using two metrics: (a) Kendall’s
τ , which measures directional agreement based on
pairwise orderings, and (b) Spearman’s ρ, which
captures the monotonic relationship and is more
sensitive to the magnitude of rank differences. Us-
ing both metrics allows us to assess the agreement
in order and the severity of misalignment. In addi-
tion to ranking, we evaluate whether models can
reconstruct the signed, directed interaction graph
from dialogue by comparing the predicted edge
set Ê against the gold edge set E. A prediction is
correct only if both endpoints and the relation type
match. We report precision, recall, and F1 at the
graph level, macro-averaged within each split. Our
experiments yield the following findings:

LLMs can moderately rank arguments in de-
bate dialogues. Tables 1 and 2 summarize the
results of our study, showcasing the average perfor-
mance of four state-of-the-art LLMs across the De-
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Dataset Technique ρ τ

DebatePedia

Vanilla 0.11 0.09
ICL One-Shot 0.26 0.22
ICL Few-Shot 0.29 0.25
CoT Zero-Shot 0.32 0.27
CoT One-Shot 0.31 0.29
CoT Few-Shot 0.46 0.42

Table 1: Average argument ranking performance of four
LLMs on DebatePedia, using different instruction strate-
gies. We report Spearman’s ρ and Kendall’s τ . Bold
marks the best-performing technique. All methods out-
perform the vanilla baseline, with CoT few-shot scoring
the highest on average.

batePedia and 12AngryMen datasets, respectively.
Detailed results per LLM are provided in Table 3.

We show that off-the-shelf LLMs, when used
with prompting best practices, generally have a de-
cent ability to rank arguments based on their latent
graphs. This is supported by the moderately posi-
tive τ and ρ values across the results. For instance,
in the DebatePedia dataset, the highest average ρ
achieved is 0.46 with the CoT few-shot technique,
and the corresponding τ is 0.42. The 12Angry-
Men Dataset results show a similar, albeit lower,
performance. Now, we address this difference.

LLMs’ ability to rank arguments is significantly
influenced by input size. Table 2 breaks down the
average performance of the tested LLMs across the
three acts of the 12AngryMen dataset. In Acts 1
and 2, which have four and three times more ar-
guments than Act 3, the LLMs have a significant
performance drop in correlation metrics compared
to Act 3. DebatePedia’s debates, on average, are
similar in size to Act 3 of 12AngryMen, making the
input size of their experiments much smaller than
Acts 1 and 2 of 12AngryMen. The pronounced per-
formance difference of the same instruction meth-
ods between the two datasets (e.g., a 24% decrease
in ρ and a 38% decrease in τ for CoT few-shot’s
average performance in 12AngryMen compared to
DebatePedia) seen in Tables 1 and 2 could be ex-
plained similarly. Further, comparing the results on
individual acts of 12AngryMen and the averages
for DebatePedia clearly shows that smaller input
sizes consistently lead to better performance.

Advanced instruction methods generally en-
hance LLM performance in understanding and
ranking arguments. This is evident from the im-
proved correlation metrics in Tables 1 and 2. On
average, few-shot CoT consistently outperforms
other techniques across different datasets and acts,

Act #Arg. Technique ρ τ

1 39

Vanilla 0.10 0.07
ICL One-Shot 0.19 0.14
ICL Few-Shot 0.22 0.16
CoT Zero-Shot 0.25 0.18
CoT One-Shot 0.26 0.20
CoT Few-Shot 0.33 0.25

2 33

Vanilla -0.02 -0.02
ICL One-Shot 0.15 0.10
ICL Few-Shot 0.13 0.10
CoT Zero-Shot 0.25 0.18
CoT One-Shot 0.26 0.19
CoT Few-Shot 0.28 0.19

3 11

Vanilla 0.25 0.19
ICL One-Shot 0.37 0.26
ICL Few-Shot 0.36 0.26
CoT Zero-Shot 0.43 0.35
CoT One-Shot 0.43 0.35
CoT Few-Shot 0.43 0.35

Average

Vanilla 0.11 0.08
ICL One-Shot 0.24 0.17
ICL Few-Shot 0.24 0.17
CoT Zero-Shot 0.31 0.24
CoT One-Shot 0.32 0.25
CoT Few-Shot 0.35 0.26

Table 2: Average argument ranking performance of
LLMs across the three acts and overall on 12AngryMen,
using different instruction strategies. We report Spear-
man’s ρ and Kendall’s τ , bolding the best-performing
technique per act or overall. As in Table 1, all methods
improve on the baseline; CoT few-shot is top overall.
Stronger results on Act 3, similar in size to DebatePedia,
suggest debate length affects performance.

indicating the effectiveness of combining the CoT
approach with few-shot ICL for ranking tasks in
natural language argument debates.

Models vary in performance but show similar
trends. While individual LLMs show varying per-
formance levels in ranking arguments, they exhibit
similar trends in response to different instruction
strategies and input sizes. To confirm our previous
observations from the average LLM performance,
we analyze the detailed results of our models for
the 12AngryMen dataset’s three acts in Table 4.

Despite architectural differences, all models ben-
efit from advanced methods such as CoT and ICL.
Notably, each model improves significantly when
shifting from the baseline Vanilla approach to CoT
few-shot instructions.

Another noteworthy trend is how input size af-
fects each model similarly. In the substantially
smaller Act 3, all models tend to achieve higher
correlation metrics. This pattern suggests that mod-
els struggle with larger input sizes, likely due to
the increased complexity and potential limitations
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Model Technique DebatePedia 12AngryMen

ρ τ ρ τ

gpt-4o

Vanilla 0.15 0.13 0.14 0.10
ICL One-Shot 0.28 0.24 0.24 0.17
ICL Few-Shot 0.30 0.26 0.22 0.17
CoT Zero-Shot 0.36 0.30 0.31 0.23
CoT One-Shot 0.33 0.31 0.33 0.25
CoT Few-Shot 0.54 0.50 0.33 0.27

claude-3

Vanilla 0.19 0.14 0.08 0.08
ICL One-Shot 0.23 0.20 0.26 0.17
ICL Few-Shot 0.26 0.20 0.20 0.15
CoT Zero-Shot 0.21 0.16 0.29 0.21
CoT One-Shot 0.29 0.29 0.43 0.32
CoT Few-Shot 0.43 0.39 0.36 0.27

cmd-r-plus

Vanilla 0.07 0.05 0.12 0.09
ICL One-Shot 0.37 0.31 0.30 0.23
ICL Few-Shot 0.32 0.28 0.26 0.19
CoT Zero-Shot 0.47 0.40 0.27 0.19
CoT One-Shot 0.30 0.28 0.27 0.22
CoT Few-Shot 0.43 0.37 0.34 0.25

llama-3

Vanilla 0.04 0.03 0.09 0.05
ICL One-Shot 0.16 0.12 0.15 0.10
ICL Few-Shot 0.29 0.25 0.25 0.17
CoT Zero-Shot 0.24 0.20 0.38 0.30
CoT One-Shot 0.32 0.29 0.23 0.19
CoT Few-Shot 0.45 0.40 0.35 0.25

Table 3: Argument ranking performance of LLMs on
12AngryMen and DebatePedia, using different instruc-
tion strategies. We report Spearman’s ρ and Kendall’s
τ ; bold entries indicate the best result per model.

in processing longer contexts. Despite these over-
arching trends, individual models exhibit unique
performance nuances. For example, Claude 3 Son-
net excels in Act 1 with ICL techniques but shows
inconsistent results in Act 2, even producing nega-
tive correlations under the same instruction meth-
ods. Interestingly, models with relatively decent
performance in Vanilla ranking (ρ > 0.2) exhibit
exceptional results under ICL (ρ ∈ [0.43, 0.56]).
This phenomenon might be related to these mod-
els surfacing memorized training data when using
ICL. Recent research by Golchin et al. (2024) sug-
gests that ICL can trigger LLMs to retrieve and
utilize memorized data from their training corpus,
enhancing performance. Consequently, future work
on benchmarking these models’ reasoning abili-
ties should probe them for data contamination and
memorization on the targeted test data.

These variations highlight that while the mod-
els follow similar trends, their performance can be
influenced by specific interactions between their
architectures, training methods, and the evaluation
dataset’s characteristics. Further, these results sug-
gest that for a complex task such as CAT, architec-

Act 1 Act 2 Act 3

Model ρ τ ρ τ ρ τ

Vanilla
gpt-4o -0.11 -0.07 0.19 0.11 0.35 0.27
claude-3 0.26 0.18 -0.16 -0.11 0.15 0.16
cmd-r-plus 0.12 0.08 -0.12 -0.08 0.36 0.27
llama-3 0.12 0.09 0.02 0.01 0.13 0.05

ICL One-Shot
gpt-4o -0.06 -0.02 0.21 0.14 0.56 0.38
claude-3 0.46 0.33 -0.01 -0.03 0.32 0.20
cmd-r-plus 0.24 0.16 0.21 0.16 0.46 0.38
llama-3 0.12 0.09 0.19 0.13 0.15 0.09

ICL Few-Shot
gpt-4o -0.06 -0.02 0.21 0.14 0.51 0.38
claude-3 0.43 0.30 -0.08 -0.05 0.25 0.20
cmd-r-plus 0.24 0.16 0.04 0.05 0.51 0.35
llama-3 0.26 0.19 0.34 0.24 0.15 0.09

CoT Zero-Shot
gpt-4o 0.11 0.09 0.30 0.18 0.51 0.42
claude-3 0.47 0.33 0.17 0.14 0.22 0.16
cmd-r-plus 0.20 0.13 0.23 0.14 0.39 0.31
llama-3 0.21 0.15 0.31 0.25 0.61 0.49

CoT One-Shot
gpt-4o 0.30 0.23 0.22 0.17 0.47 0.35
claude-3 0.33 0.22 0.40 0.28 0.55 0.45
cmd-r-plus 0.23 0.17 0.26 0.21 0.32 0.27
llama-3 0.19 0.16 0.14 0.11 0.36 0.31

CoT Few-Shot
gpt-4o 0.30 0.24 0.29 0.22 0.41 0.35
claude-3 0.30 0.23 0.29 0.19 0.49 0.38
cmd-r-plus 0.33 0.22 0.27 0.19 0.41 0.35
llama-3 0.37 0.29 0.27 0.14 0.41 0.31

Table 4: Argument ranking performance of various
LLMs on the three acts of 12AngryMen, using differ-
ent instruction strategies. We report Spearman’s ρ and
Kendall’s τ . Bold marks the best LLM per metric within
each act. Although performance varies across models
and acts, all instruction strategies improve results. No-
tably, every model does better on the smaller Act 3,
suggesting challenges in larger, more complex debates.

tures based on mixtures of experts might be better
and more stable than individual models. This ob-
servation is supported by comparing the per-LLM
breakdown in Tables 3 and 4 to the averages in
Tables 1 and 2. While no single model consis-
tently dominates across all acts and instruction tech-
niques, the average results provide a more stable
and consistently good performance.

Structure recovery mirrors ranking patterns.
Tables 5 and 6 report results for the intermediate
task of debate graph reconstruction. On 12An-
gryMen, we observe that macro F1 rises from
0.36 (CoT zero-shot) to 0.59 (CoT one-shot) and
0.56 (CoT few-shot), with Act III reaching 0.71.
On DebatePedia, CoT with exemplars also per-
forms strongly (0.54 one-shot; 0.71 few-shot). See
Appendix D for per-act and per-model results.
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Act #Args Technique P R F1

1 39
CoT Zero-Shot 0.41 0.43 0.41
CoT One-Shot 0.55 0.56 0.56
CoT Few-Shot 0.41 0.53 0.45

2 33
CoT Zero-Shot 0.32 0.40 0.34
CoT One-Shot 0.47 0.56 0.51
CoT Few-Shot 0.52 0.58 0.54

3 11
CoT Zero-Shot 0.26 0.48 0.33
CoT One-Shot 0.67 0.77 0.71
CoT Few-Shot 0.68 0.73 0.70

CoT Zero-Shot 0.33 0.44 0.36
Average CoT One-Shot 0.56 0.63 0.59

CoT Few-Shot 0.54 0.61 0.56

Table 5: Adjacency-list recovery averages on 12Angry-
Men. Best F1 per act and overall are bolded. CoT
instructions consistently improve graph recovery. Mod-
els perform better on the short Act 3.

Avg. # Args Technique P R F1

CoT Zero-Shot 0.24 0.48 0.31
13 CoT One-Shot 0.54 0.56 0.54

CoT Few-Shot 0.71 0.71 0.71

Table 6: Adjacency-list recovery averages on Debate-
Pedia. Best F1 overall is bolded. CoT instructions
consistently improve graph recovery.

Three clear patterns emerge:
(i) CoT exemplars markedly improve edge recov-

ery. Moving from zero-shot to one/few-shot
CoT improves F1 by about ∼0.15–0.40 across
datasets.

(ii) Shorter debates are easier. Smaller graphs
(e.g., 12AngryMen Act III, typical Debate-
Pedia topics) yield higher F1, mirroring the
ranking task’s sensitivity to input length.

(iii) Better recovery aligns with better ranking.
The setups that most improve edge prediction
(CoT with exemplars) are also those with the
highest rank correlations. This suggests that
capturing interaction structure helps models
approach QuAD’s ordering.

6 Discussion

To better understand LLMs’ limits in modeling ar-
gumentation semantics, we further analyze their
performance along four key aspects: discourse
chronology’s impact, argument length’s influence,
positional bias in LLM rankings, and model size.
Lastly, we test whether specialization changes be-
havior by comparing our general-purpose models
to a dedicated reasoner (DeepSeek R1).

Dataset Technique ρ τ

mean s.d. mean s.d.

12AngryMen

Vanilla 0.11 0.08 0.07 0.07
ICL One-Shot 0.13 0.08 0.09 0.05
ICL Few-Shot 0.16 0.09 0.11 0.06
CoT Zero-Shot 0.33 0.10 0.26 0.08
CoT One-Shot 0.05 0.14 0.06 0.10
CoT Few-Shot 0.17 0.11 0.14 0.09

DebatePedia

Vanilla -0.14 0.15 -0.11 0.12
ICL One-Shot -0.01 0.16 -0.02 0.12
ICL Few-Shot 0.01 0.19 0.01 0.14
CoT Zero-Shot 0.06 0.19 0.04 0.15
CoT One-Shot 0.29 0.15 0.25 0.12
CoT Few-Shot 0.34 0.13 0.30 0.11

Table 7: Average argument ranking performance of
Llama-3-70b-instruct on 12AngryMen and DebatePe-
dia, under different instruction strategies and five ran-
dom topological sorts. We report means and standard
deviations of Spearman’s ρ and Kendall’s τ . Compared
to the original (chronological) setup in Table 3, perfor-
mance drops overall, indicating reliance on dialogue’s
chronological flow rather than its argument graph struc-
ture.

6.1 Influence of Discourse Chronology

To evaluate the models’ reliance on argument or-
der, we employed topological sorting to randomize
the sequence of arguments while preserving their
attack and support relationships. Out of all pos-
sible topological sorts of the debate’s graph, we
randomly selected five different sorts for each de-
bate. This shuffles the argument order within a
dialogue without altering the graph structure, en-
suring the models must infer argument strengths
based on their relationships, not their positions. We
then applied the same evaluation metrics as in our
core experiments to assess the impact of this ran-
domization on the models’ ranking performance.
Due to its consistent performance across the pre-
vious experiments that is similar to the average
behavior, our model of choice for this experiment
was Llama3 70B Instruct.

Topological sorting lowers performance. Our
results in Table 7 show that topological sorting of
arguments generally reduces LLM performance in
capturing QuAD semantics. This indicates that
LLMs rely more on the natural, chronological flow
of dialogue than on the underlying argument graph
structure. When arguments are presented in the
natural order of the dialogue, LLMs effectively use
contextual and conversational cues to infer attack
and support relationships. However, rearranging
the arguments through topological sorting disrupts
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Argument Length Argument Position

Technique ρ τ ρ τ

LQ1 LQ2 LQ3 LQ4 LQ1 LQ2 LQ3 LQ4 PQ1 PQ2 PQ3 PQ4 PQ1 PQ2 PQ3 PQ4

Vanilla 0.42 0.26 0.11 0.24 0.38 0.27 0.08 0.21 0.18 0.31 -0.04 0.19 0.18 0.27 -0.01 0.20
ICL One-Shot 0.50 0.35 0.25 0.29 0.46 0.33 0.23 0.27 0.09 0.49 0.12 0.34 0.08 0.46 0.14 0.34
ICL Few-Shot 0.46 0.37 0.25 0.41 0.43 0.35 0.25 0.38 0.13 0.42 0.25 0.38 0.10 0.41 0.24 0.40
CoT Zero-Shot 0.31 0.27 0.30 0.16 0.31 0.27 0.27 0.14 0.17 0.41 0.19 0.22 0.16 0.41 0.18 0.24
CoT One-Shot 0.68 0.52 0.31 0.54 0.66 0.51 0.29 0.53 0.51 0.63 0.56 0.39 0.43 0.64 0.55 0.41
CoT Few-Shot 0.68 0.64 0.69 0.63 0.67 0.65 0.67 0.61 0.41 0.72 0.67 0.51 0.29 0.71 0.67 0.53

Table 8: Average argument ranking performance of LLMs on DebatePedia, split into quartiles by argument length
and position (L/PQ1–L/PQ4). We report Spearman’s ρ and Kendall’s τ under various instruction strategies. The
Vanilla approach exhibits length and positional biases, while ICL mitigates length bias but not positional bias. CoT
addresses both, maintaining consistently strong performance across quartiles.

this flow, making it harder for the models to recog-
nize these connections.

6.2 Influence of Argument Length and
Position on Performance

We first compute QuAD rankings for each Debate-
Pedia debate and have the LLMs rank all arguments.
Then, we run two separate analyses: (1) splitting
arguments into quartiles based on individual argu-
ment length (measured by token count), and (2)
splitting them by their position in the debate, based
on their chronological appearance. This preserves
the original QuAD computation but reveals any
biases tied to argument size or placement.

Vanilla instructing suffers from argument
length bias. Table 8 presents average LLM perfor-
mance on DebatePedia, categorized by argument
length quartiles (LQ1–LQ4, shortest to longest).
Using the Vanilla instruction technique, ρ and
τ are highest for the shortest arguments in LQ1
(ρ = 0.42, τ = 0.38), decrease in LQ2, reach-
ing the lowest in LQ3 (ρ = 0.11, τ = 0.08), and
slightly improve in LQ4 (ρ = 0.24, τ = 0.21).

These results suggest a length bias in Vanilla in-
structing, where LLMs perform best on shorter ar-
guments and struggle with longer ones. The slight
recovery in LQ4 may indicate that longer argu-
ments offer enough context for better judgment,
mitigating some of the drop from LQ3. This bias
may arise from models relying on superficial fea-
tures like length, finding shorter arguments easier
to process, while medium ones may not provide
sufficient context, leading to reduced performance.

In-Context Learning mitigates length bias. More
advanced instruction techniques such as ICL and
CoT effectively mitigate the length bias seen in
Vanilla instructing. As shown in Table 8, CoT few-

shot instructions maintain high performance across
all argument lengths, with ρ ranging from 0.63 to
0.69 and τ from 0.61 to 0.67.

This consistency highlights how reasoning steps
and examples help LLMs focus on logical content
rather than length, enabling them to handle argu-
ments of varying lengths. Advanced instruction
strategies also help the models infer attack and
support relationships, aligning more closely with
formal argumentation semantics.

Positional bias detected. Table 8 also presents
the LLMs’ average performance by argument posi-
tion quartiles (PQ1–PQ4, where PQ1 contains the
earliest arguments in the discourse and PQ4 the lat-
est). With Vanilla instructions, performance varies
across quartiles, revealing a positional bias. ρ peaks
in PQ2 (ρ = 0.31), is lower in PQ1 (ρ = 0.18),
turns negative in PQ3 (ρ = −0.04), and is mod-
erate in PQ4 (ρ = 0.19). τ follows a similar
lead. This pattern, although less pronounced, is
evident in the regular ICL instructions too. This
suggests LLMs perform better on mid and later ar-
guments (PQ2, PQ4) but struggle with earlier and
mid-sequence arguments.

A possible reason for this bias may be that later
arguments benefit from more context, making it eas-
ier for LLMs to infer relationships. Consequently,
PQ2 and PQ4 outperform the earlier quartiles.

ICL CoT instruction techniques, e.g., CoT one-
shot and few-shot, reduce this bias. For CoT few-
shot, ρ ranges from 0.41 to 0.72, with the highest
scores in PQ2 and PQ3. τ also improves, ranging
from 0.29 to 0.71. These techniques help LLMs
better utilize context in reasoning, making perfor-
mance more consistent across all quartiles.
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Figure 2: Argument ranking performance comparison of Llama 3 8B, Llama 3 70B, and Llama 3.1 405B across
different instruction strategies. Larger models consistently outperform smaller ones, with significant gains in the
CoT few-shot setting.

6.3 Influence of Model Size on Performance

In addition to Llama 3 70B, we evaluated
Llama 3 8B and Llama 3.1 405B to gauge size ef-
fects (Figure 2). Larger models consistently outper-
form smaller ones, with Llama 3.1 405B achieving
the highest correlations in CoT few-shot. Mean-
while, Llama 3 8B struggled on longer debates and
often broke formatting constraints. These findings
suggest reasoning ability and instruction fidelity
scale with model size.

6.4 Reasoner vs. General-Purpose LLMs

We evaluate DeepSeek R1 (DeepSeek-AI et al.,
2025), a dedicated reasoner (685B), under identi-
cal setups as the general-purpose models. On 12An-
gryMen, R1 is on par with the strongest general-
purpose models across settings. On DebatePedia,
it underperforms all general-purpose models. De-
spite its size, it frequently violates the required out-
put format; one and few-shot CoT reduces format
errors but leaves a sizable performance gap (see
Appendix E for per-setting plots vs. the 4-model

average). These results suggest that specialization
for step-by-step reasoning alone does not confer
robustness to non-linear interactions.

7 Conclusion

We investigated whether LLMs can reason over
non-linear argumentative structures by ranking ar-
guments in natural debates without access to ex-
plicit attack or support relationships. Using CAT
semantics—specifically QuAD—as a structured
reference, we evaluated LLM performance across
multiple instruction strategies.

Our findings show that LLMs can partially ap-
proximate structured argumentation reasoning, but
their performance is highly sensitive to debate
length, argument order, and model size. To our
knowledge, this study offers the first systematic
analysis of LLMs’ ability to recover gradual bipo-
lar argumentation semantics from dialogue alone,
highlighting both their current limitations and po-
tential for future graph-aware reasoning.
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Limitations

This study has certain constraints. First, QuAD
semantics guarantee convergence only on acyclic
graphs, so we used only acyclic graphs. Future
work will include cyclic graphs where QuAD se-
mantics (or other CAT algorithms) converge.

Second, in all our experiments, we considered
all arguments to be equally important initially by
assigning them a uniform weight of 0.5 when com-
puting QuAD acceptability degrees. This design
ensures a neutral, unbiased evaluation and isolates
the model’s ability to infer structure from the dia-
logue alone. However, in practice, arguments may
vary in initial strength based on external knowl-
edge or rhetorical cues. Future work could explore
using LLMs themselves to estimate these initial
weights based on their parametric memory, prior
knowledge, or discourse context.

Third, all the corpora we have worked with in
this study are in English, and LLMs’ ability to learn
gradual bipolar argumentation semantics in other
languages might differ.

Fourth, generalizing claims about LLMs requires
the testing of a wide array of models. Given the
vast number of LLMs and budget limits, we could
only select a fraction of the available options. How-
ever, we ensured generalizability by selecting both
open-sourced and closed-sourced models that rank
highest among different benchmarks.

Lastly, we only used QuAD semantics. While
this algorithm is widely used, other bipolar CAT
semantics could also serve as valuable benchmarks
for LLMs. Future work will explore these addi-
tional semantics for a more comprehensive evalua-
tion of LLMs’ reasoning capabilities.

Ethics Statement

This work uses only publicly available datasets
and pretrained language models, without additional
training or fine-tuning. No human subjects or per-
sonal information are involved. We do not antici-
pate any ethical concerns arising from this study.
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A CAT and QuAD Semantics

A.1 Overview of CAT

Imagine a courtroom debate or a lively online dis-
cussion thread: arguments are put forward, counter-
arguments attack them, and some arguments even
bolster others. Rather than a single chain of reason-
ing, we get a web of supporting and attacking ar-
guments, much like a dialogue where evidence and
rebuttals interweave. CAT is the field of AI that for-
malizes such scenarios, enabling us to model and
analyze these complex argument networks (Dung,
1995; Baroni et al., 2015).

In CAT, an argumentation framework is repre-
sented as a directed graph where each node is an
argument (a claim or proposition) and edges repre-
sent relations between arguments. These relations
can be of two types: attacks, where one argument
challenges or rebuts another, and supports, where
one argument provides backing or evidence for an-
other.

In our debate analogy, an attorney’s claim might
be attacked by the opponent’s counter-argument,
while a witness’s testimony might support the at-
torney’s claim. CAT thus captures reasoning in a
non-linear structure: arguments do not merely
follow one another, but branch into pro and con
threads that interact in a graph-like manner.

CAT provides formal tools to determine which
arguments ultimately stand (and to what degree)
given this relational structure. These tools are
known as argumentation semantics, which assign
each argument an acceptability status based on
the full network of attacks and supports.

While classical semantics might select a sub-
set of “accepted” arguments (as in Dung’s the-
ory, (Dung, 1995)), gradual semantics instead
assign each argument a real-valued acceptability
degree, often in [0, 1]. This allows finer-grained
distinctions: an argument might be weakly sup-
ported or strongly undermined rather than simply
accepted or rejected.

Several such semantics exist. In this work, we
focus on the QuAD semantics (Baroni et al., 2018),
which belong to the class of bipolar gradual seman-
tics—those that consider both attack and support
relations and yield a continuous score for each argu-
ment. This approach is especially useful for model-
ing the nuanced interplay of conflicting arguments
in natural debates.

21254

https://arxiv.org/abs/2408.11546
https://arxiv.org/abs/2408.11546
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594
https://doi.org/10.1007/s00146-021-01251-8
https://doi.org/10.1007/s00146-021-01251-8
https://doi.org/10.1007/s00146-021-01251-8
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2410.21276
https://doi.org/10.18653/v1/2023.findings-emnlp.205
https://doi.org/10.18653/v1/2023.findings-emnlp.205
https://doi.org/10.18653/v1/2023.findings-emnlp.205
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h


A.2 Formal Definition of QuAD Semantics
We adopt the QuAD semantics (Baroni et al., 2018),
which compute argument strengths in a quantita-
tive bipolar argumentation framework (QBAF).
Assume an acyclic graph structure.

Let F = ⟨A,R−, R+, θ⟩ where:

• A is a finite set of arguments;

• R− ⊆ A×A is the attack relation;

• R+ ⊆ A×A is the support relation;

• θ : A→ [0, 1] assigns an initial base weight
to each argument.

For any a ∈ A, define:

Att(a) = {b | (b, a) ∈ R−} (attackers of a)

Sup(a) = {c | (c, a) ∈ R+} (supporters of a)

The final acceptability degree of a, denoted
σ(a), is defined recursively as:

σ(a) =





va(a) if Sup(a) = ∅,Att(a) ̸= ∅
vs(a) if Sup(a) ̸= ∅,Att(a) = ∅
θ(a) if Sup(a) = ∅,Att(a) = ∅
va(a)+vs(a)

2
otherwise

(1)

Where:

va(a) = θ(a) ·
∏

b∈Att(a)

(1− σ(b))

vs(a) = 1− (1− θ(a)) ·
∏

c∈Sup(a)
(1− σ(c))

This definition reflects how strong attackers re-
duce σ(a), while strong supporters increase it. The
update rule is evaluated recursively in topological
order (as the graph is acyclic), and converges to a
unique fixed point for all a ∈ A.

The resulting σ(a) ∈ [0, 1] captures the over-
all persuasiveness or acceptability of argument a
in the context of the full argumentation structure.
Arguments with strong support chains and weak
attackers receive high scores; arguments undercut
by credible attacks receive lower ones.

A.3 Worked Example: SobrietyTest Debate
To illustrate how QuAD semantics operate in prac-
tice, we walk through an example taken from the
SobrietyTest debate in the DebatePedia dataset. Fig-
ure 3 shows the full pipeline used by our system to
compute QuAD-based argument rankings.

The process begins by applying a uniform weight
initialization of θ(a) = 0.5 to all arguments in
the obtained debate argument graph shown in Fig-
ure 4. We then apply the QuAD update rule (Equa-
tion 1) to compute each argument’s final acceptabil-
ity degree σ(a), propagating influence recursively
through the graph. These scores are sorted in de-
scending order to produce the gold-standard QuAD
ranking used in our evaluation.

The argumentation graph contains both sup-
port (green edges) and attack (red edges) relations.
QuAD semantics capture the intuition that an argu-
ment is strengthened by well-supported allies and
weakened by strong adversaries.

For example:

• Argument 3 is supported by Argument 4. Be-
cause both start with the same base weight
(0.5), this support lifts Argument 3’s score by
50%, raising it to about 0.75.

• Argument 5 is attacked by Argument 6. With
the attacker also at 0.5, Argument 5 loses half
its initial strength, dropping from 0.5 to 0.25.

• Argument 1 faces a strong attack from Ar-
gument 3, weak support from Arguments 5
and 7, and moderate support from Argu-
ment 2. The net effect nearly cancels the
strong attack, so Argument 1’s score decreases
only slightly—from 0.5 to 0.4922 (a 1.56%
reduction).

B Dataset Details

We use the NoDE benchmark (Cabrio and Villata,
2014), a collection of structured natural language
argumentation datasets, to evaluate LLMs’ ability
to reason over debates with varying complexity. All
datasets contain manually annotated, acyclic bipo-
lar argumentation graphs constructed from pairs
of arguments labeled as either support or attack.
We use two datasets from NoDE: DebatePedia and
Twelve Angry Men. The third dataset, derived from
Wikipedia revision histories, is excluded because it
captures edit justifications rather than full debate-
style interactions.

B.1 NoDE Benchmark Preview
Each NoDE dataset contains two annotation layers:

(1) Argument pairs labeled with semantic relations.

(2) Bipolar argumentation graphs built from those
pairs.
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QuAD

Arg 3
Arg 2
Arg 4
Arg 6
Arg 8
Arg 1
Arg 5
Arg 7

(I) Argument Graph with Uniform Weight Initialization (wi = 0.5)

Rank by wf

(II) Argument Graph with Final Acceptability Degrees (wf) (III) Final Argument Rankings

Figure 3: QuAD computation pipeline for the SobrietyTest debate. (I) Starting from uniform weight initialization =
θ(a) = 0.5 (wi in graph) on the obtained argument graph (Figure 4), (II) we apply QuAD semantics to compute
final acceptability degrees σ(a) (wf in graph, pink labels). (III) The resulting ranking of arguments based on their
acceptability degrees forms the gold standard used in our evaluation.

1

23

4

5

6

7

8

Support
Attack

Figure 4: Bipolar argumentation graph for the Sobri-
etyTest debate. Nodes represent arguments; red edges
indicate attacks and green edges indicate supports.

This layered structure supports both the recog-
nition of argumentative relations and the compu-
tation of argument strength using CAT semantics.
All graphs used in our study are acyclic and anno-
tated with high inter-annotator agreement (Cohen’s
κ > 0.7). A summary of the datasets we use fol-
lows.

B.2 12AngryMen and DebatePedia Datasets

12AngryMen. This dataset is built from the dia-
logue of the play Twelve Angry Men, which follows
jury deliberations in a homicide trial. Arguments
are extracted from the script and linked when one
character responds to, supports, or challenges an-
other. Each of the play’s three acts is treated as a
separate graph.

DebatePedia. This dataset includes 22 small de-
bates from DebatePedia and ProCon, platforms
focused on user-contributed pro and con arguments.
Each debate is transformed into a graph by linking

Property Value

# Graphs 3
% With Fan-In 100%

# Nodes 83
# Act I 39
# Act II 33
# Act III 11

Avg. In-Degree 0.96 ± 1.39
Avg. Out-Degree 0.96 ± 0.16

# Edges 80
# Support Edges 25
# Attack Edges 55

Agreement (Cohen’s κ) 0.74

Table 9: Summary of the 12AngryMen dataset. All
three acts contain convergent structures (fan-in), where
multiple arguments attack or support the same claim.

user-submitted arguments based on entailment and
contradiction annotations. The original chronolog-
ical ordering is preserved to maintain a dialogue-
like flow.

Graph structure. As summarized in Ta-
bles 9–10, both datasets consistently exhibit
convergent structure (fan-in): every graph contains
at least one argument with in-degree ≥ 2 (max
in-degree ranges 3–11), with mean in-degree near
1 but substantial dispersion (std. ≈1.4–2.1). By
contrast, fan-out is not present (max out-degree =
1 in all graphs). Thus, the non-linearity in these
debates arises from multiple premises jointly
targeting the same claim—going beyond near-path
chains and requiring aggregation of several (often
conflicting) influences on a single node.

21256



Property Value

# Graphs 22
% With Fan-In 100%

# Nodes 282
Avg. In-Degree 0.92 ± 2.14
Avg. Out-Degree 0.92 ± 0.25

# Edges 260
# Support Edges 140
# Attack Edges 120

Agreement (Cohen’s κ) 0.70

Table 10: Summary of the DebatePedia dataset. All
graphs contain convergent structures (fan-in), where
multiple arguments attack or support the same claim.

B.3 Graph-to-Dialogue Conversion Example

To evaluate LLMs in a realistic language setting,
we convert structured argumentation graphs into
dialogue-style inputs. This transformation pre-
serves argument texts and order but omits attack
and support edges. The resulting format mirrors
the natural flow of conversation while keeping the
graph structure latent.

Figure 5 shows the XML source of the Sobri-
etyTest debate in the DebatePedia dataset. Each
pair element links two arguments using text (t)
and hypothesis (h) IDs, with the entailment at-
tribute indicating whether the relation is support
(YES) or attack (NO). The topic attribute identifies
the debate topic, and the id field gives each pair
a unique identifier. Argument IDs are scoped per
graph.

Using the annotated pairs, we construct a bipo-
lar argumentation graph such as the one shown
in Figure 4, with edges labeled according to their
entailment types (support/attack).

To create the LLM input, we discard all struc-
tural information and sort the arguments chrono-
logically by their appearance. Each argument is
presented in the format:

Argument #: Argument Text

This flattening procedure preserves the narrative
while masking the graph structure. The LLM sees
only the surface form and must reason implicitly
about the support/attack dynamics. Figure 6 shows
the final dialogue-style representation used in our
evaluation.

Model Technique P R F1

gpt-4o
CoT Zero-Shot 0.36 0.75 0.47
CoT One-Shot 0.74 0.74 0.74
CoT Few-Shot 0.73 0.73 0.73

claude-3
CoT Zero-Shot 0.27 0.53 0.35
CoT One-Shot 0.69 0.77 0.72
CoT Few-Shot 0.73 0.72 0.73

cmd-r-plus
CoT Zero-Shot 0.06 0.22 0.09
CoT One-Shot 0.09 0.08 0.09
CoT Few-Shot 0.72 0.71 0.72

llama-3
CoT Zero-Shot 0.27 0.42 0.33
CoT One-Shot 0.62 0.64 0.62
CoT Few-Shot 0.66 0.66 0.66

Table 11: Adjacency-list recovery on DebatePedia. Best
F1 per model is bolded.

C Instruction Examples

We provide the main prompt templates used in our
experiments here. Each corresponds to one of the
instruction strategies used to evaluate LLMs’ abil-
ity to reason over latent argument graphs. In all
prompts, the placeholder [Arguments] refers to
the dialogue-style input format illustrated in Ap-
pendix B.3 (see Figure 6).

C.1 Zero-Shot “Vanilla” Prompt

Figure 7 shows the basic instruction prompt with-
out any exemplars or reasoning steps.

C.2 One/Few-Shot ICL Prompt

The ICL prompt shown in Figure 8 includes one
example; the few-shot variant uses three exemplars
covering different graph types.

C.3 Zero-Shot CoT Prompt

Figure 9 presents the zero-shot CoT format, which
prompts the model to reason step-by-step through
the debate.

C.4 One/Few-Shot CoT Prompt

As shown in Figure 10, the one-shot CoT prompt
includes reasoning steps and edge inference. The
few-shot variant extends this to three full exem-
plars.

D Debate Structure Reconstruction
Detailed Results

Tables 11 and 12 show the detailed breakdown of
adjacency-list recovery results for the 12AngryMen
and DebatePedia datasets.
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Figure 5: Full XML representation of DebatePedia’s SobrietyTest debate. Each <pair> contains a claim (h) and its
supporting or opposing argument (t) with a labeled entailment relation.
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# Argument Text

Argument 1: Random sobriety tests for drivers are effective at deterring drunk driving.

Argument 2: Random breath tests help deter drunk driving. A 1995 review by the European Transport
Safety Council concluded, “There is wide agreement in the international scientific
literature that increasing driver’s perception of the risk of being detected for excess
alcohol is a very important element in any package of measures to reduce alcohol
related crashes”.

Argument 3: Random breath testing doesn’t necessarily lower drunk driving. Many countries have
had random testing for some time and have seen no real fall in drink driving figures.

Argument 4: Little evidence random alcohol tests deter drunk driving. There is a dearth of research
regarding the deterrent effect of checkpoints. The only formally documented research
regarding deterrence is a survey of Maryland’s “Checkpoint Strikeforce” program. The
survey found no deterrent effect: “To date, there is no evidence to indicate that this
campaign, which involves a number of sobriety checkpoints and media activities to
promote these efforts, has had any impact on public perceptions, driver behaviors,
or alcohol-related motor vehicle crashes and injuries. This conclusion is drawn after
examining statistics for alcohol-related crashes, police citations for impaired driving,
and public perceptions of alcohol-impaired driving risk”.

Argument 5: Random alcohol breath tests reduce accidents, save lives. The Centers for Disease
Control, in a 2002 Traffic Injury Prevention report, found that in general, the number of
alcohol-related crashes was reduced by 20% in states that implement sobriety check-
points compared to those that do not.

Argument 6: Repeat drunk drivers unlikely to respond to random breath testing deterrence. “One
statistic the MAD bunch doesn’t like to mention is the fact that half  of the people killed
by drunk drivers have at least double the legal blood alcohol limit. They do not like it
because it implies that, on a sliding scale, drivers who are barely over the legal limit
are probably not that bad. It suggests that problems associated with drunk driving are
overwhelmingly caused by a small cadre of hard-core problem drinkers who are sloshed
behind the wheel. Unfortunately, these are also the people who are the least responsive
to legal incentives, so MAD - and the law - targets ordinary people who have a glass or
two of sherry instead”.

Argument 7: Random alcohol tests are more effective than alternative measures. The federal Justice
Department of Canada moved to implement Random Breath Testing (RBT), concluding:
“a system of random checks is more effective than a combination of other measures such
as a lower threshold for blood alcohol level and more frequent RIDE checkpoints”.

Argument 8: The majority of people caught drink driving have not been from random breath tests.
They have been from tip-offs, police chases and police pulling over suspects, not random
breath testing.

Figure 6: Chronologically ordered argument texts for the SobrietyTest debate, derived from the XML representation
in 5. These correspond to the numbered nodes in the graph shown in Figure 4 and form the dialogue-style input
presented to the LLM.
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Act 1 Act 2 Act 3

Model P R F1 P R F1 P R F1

CoT Zero-Shot
gpt-4o 0.67 0.42 0.52 0.66 0.66 0.66 0.47 0.90 0.62
claude-3 0.38 0.55 0.45 0.05 0.16 0.07 0.14 0.20 0.17
cmd-r-plus 0.25 0.34 0.29 0.09 0.22 0.12 0.20 0.50 0.29
llama-3 0.32 0.42 0.36 0.46 0.56 0.51 0.21 0.30 0.25

CoT One-Shot
gpt-4o 0.58 0.58 0.58 0.56 0.56 0.56 0.70 0.70 0.70
claude-3 0.50 0.53 0.51 0.42 0.56 0.48 0.71 1.00 0.83
cmd-r-plus – – – – – – – – –
llama-3 0.58 0.58 0.58 0.42 0.56 0.48 0.60 0.60 0.60

CoT Few-Shot
gpt-4o 0.39 0.39 0.39 0.63 0.63 0.63 0.90 0.90 0.90
claude-3 0.44 0.58 0.50 0.52 0.50 0.51 0.50 0.50 0.50
cmd-r-plus 0.24 0.58 0.34 0.37 0.63 0.47 0.50 0.70 0.58
llama-3 0.55 0.55 0.55 0.56 0.56 0.56 0.80 0.80 0.80

Table 12: Adjacency-list recovery on the three acts of 12AngryMen. Only the best F1 per act/setting is bolded.
Blanks for cmd-r-plus in CoT one-shot are due to no valid adjacency list.

Prompt

Given the following arguments in a
narrative, rank them based on their
logical strength and the connections
of attack and support between them.
Please provide the arguments from
strong to weak in the format of Argu-
ment N per line without any additional
text:
[Arguments]

Figure 7: Zero-shot “Vanilla” instruction.

E DeepSeek R1 vs. General-Purpose
Models (Plots)

Figure 11 compares DeepSeek R1 to the average of
our four general-purpose models across instruction
setups on 12AngryMen and DebatePedia, reporting
Spearman ρ (top) and Kendall τ (bottom).

Prompt

Q: Given the following arguments in
a narrative, rank them based on their
logical strength and the connections
of attack and support between them.
Please provide the arguments from
strong to weak in the format of Argu-
ment N per line without any additional
text.
Input:
[Example Arguments]
Output:
[Expected Model Output]
Input:
[Arguments]
Output:

Figure 8: One-shot ICL instruction.
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Prompts

Prompt 1: Given the following arguments in a
narrative, think out loud about each
argument’s logical strength and how
it directly supports or attacks argu-
ments appearing before it:
[Arguments]

Prompt 2: Now, construct a graph of sup-
port/attack edges between the argu-
ments, representing the graph as an
adjacency list in the following for-
mat:
graph = { ’Argument X’: [(’Argu-
ment Y’, ’support’), (’Argument Z’,
’attack’)]}
Where Argument X supports Argu-
ment Y and attacks Argument Z.

Prompt 3: Now, Rank the arguments based on
their logical strength and their at-
tack/support relations shown in the
graph. Please provide the arguments
from strong to weak in the format
of Argument N per line without any
additional text.

Figure 9: Zero-shot CoT instructions.

Prompt

Given the following arguments in a
narrative, for each argument, find how
it directly supports or attacks argu-
ments appearing before it. Next, con-
struct a graph of attack/support edges
between the arguments, representing
the graph as an adjacency list. Fi-
nally, rank the arguments based on the
graph. Please provide the arguments
from strong to weak in the format of
Argument N per line without any ad-
ditional text.
Input:
[Example Arguments]
Direct attacks and supports from each
Argument:
[Example Attack and Support Rela-
tion Analysis]
Graph:
[Example Adjacency List]
Output:
[Expected Model Output]
Input:
[Arguments]
Direct attacks and supports from each
Argument:

Figure 10: One-shot CoT instruction.
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(b) Comparison on DebatePedia dataset

Figure 11: Argument ranking performance of DeepSeek R1 vs. the average of four general-purpose models across
instruction settings; bars show Spearman’s ρ and Kendall’s τ . (a) 12AngryMen: R1 is comparable to the average
of general-purpose models and benefits from one and few-shot CoT. (b) DebatePedia: R1 underperforms all
general-purpose models; CoT exemplars improve format adherence and recall but do not close the gap.
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