A Category-Theoretic Approach to Neural-Symbolic Task Planning with
Bidirectional Search

Shuhui Qu
Stanford University
shuhuig@stanford.edu

Abstract

We introduce a Neural-Symbolic Task Plan-
ning framework integrating Large Language
Model (LLM) decomposition with category-
theoretic verification for resource-aware, tem-
porally consistent planning. Our approach rep-
resents states as objects and valid operations
as morphisms in a categorical framework, en-
suring constraint satisfaction through mathe-
matical pullbacks. We employ bidirectional
search that simultaneously expands from ini-
tial and goal states, guided by a learned plan-
ning distance function that efficiently prunes
infeasible paths. Empirical evaluations across
three planning domains demonstrate that our
method improves completion rates by up to
6.6% and action accuracy by 9.1%, while elim-
inating resource violations compared to the ex-
isting baselines. These results highlight the syn-
ergy between LLM-based operator generation
and category-theoretic verification for reliable
planning in domains requiring both resource-
awareness and temporal consistency.

1 Introduction

Effective task planning remains a critical challenge
in artificial intelligence, particularly in domains
where resource constraints, temporal consistency,
and trustworthiness are paramount (Ghallab et al.,
2004; Zhang et al., 2023; Jiang et al., 2024). Large
Language Models (LLMs) (Achiam et al., 2023;
Grattafiori et al., 2024; Touvron et al., 2023) of-
fer powerful generative capabilities for natural lan-
guage planning, but frequently overlook domain
constraints (Wang et al., 2024; Valmeekam et al.,
2024), yielding plans that violate resource limita-
tions or temporal dependencies (Valmeekam et al.,
2023). In contrast, classical symbolic planners
(Pallagani et al., 2022; Illanes et al., 2020; Ghallab
et al., 2004) ensure formal correctness but suffer
from limited flexibility and require extensive do-
main engineering.

Jie Wang
Stanford University
jiewang@stanford.edu

Kincho H. Law
Stanford University
law@stanford.edu

Recent research has attempted to bridge this
conceptual gap through methods such as Chain-
of-Thought (Wei et al., 2022), Monte Carlo Tree
Search (MCTS)-based planning (Zhao et al., 2023),
and reinforcement learning methods (Chen et al.,
2025; Dalal et al., 2024). However, these ap-
proaches encode constraints as heuristic signals
or sparse rewards (Havrilla et al., 2024; Huang
et al., 2022) without providing structural guaran-
tees. Other reasoning-oriented approaches such as
Tree-of-Thoughts (ToT) (Yao et al., 2023a), Re-
WOO (Xu et al., 2023), and ToS (Katz et al., 2024)
improve reasoning depth and search efficiency, but
still lack mechanisms for ensuring compositional
validity of generated plans. As benchmark evalua-
tions of LLM planning expand (Stein et al., 2023;
Wau et al., 2025), the need for principled approaches
that unify neural flexibility with formal constraint
enforcement becomes urgent.

We address these challenges by introducing
Neural-Symbolic Task Planning (Figure 1). The
framework comprises three key innovations:

1. LLM-Driven Operator Decomposition: A
formalized technique for transforming natu-
ral language tasks into structured categori-
cal specifications through iterative refinement,
creating a bridge between unstructured lan-
guage and mathematical formalism.

2. Category-Theoretic Verification: A novel
framework that leverages category theory to
represent planning domains, modeling states
as objects and operations as morphisms in
a categorical framework. By employing
mathematical pullbacks, we provide composi-
tional validity guarantees that ensure resource,
temporal, and logical constraint satisfaction
throughout the planning process.

3. Bidirectional Search: A theoretically-
grounded algorithm that simultaneously ex-

21201

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 21201-21225
November 4-9, 2025 ©2025 Association for Computational Linguistics

1) LLM-based Task
Decomposition

Retrieve

Vector DB

Al

Embedding

Resource
Constraints
Operations

2) Category-theoretical
Validation

Morphism

1. Resource

2. Constraints

3. Operations

Pullback Merge W‘_

— N

3) Bidirectional Search

Figure 1: Neural-Symbolic Task Planning framework with three key stages: (1) LLM decomposition of natural
language tasks into structured specifications, (2) category-theoretic verification to ensure constraint satisfaction, (3)
bidirectional search to efficiently connect initial and goal states.

plores from initial and goal states guided by a
categorical distance function, reducing com-
putational complexity from O(b%) to O(b%/?)
while maintaining plan optimality.

Our contribution centers on the integration of
category-theoretic verification with neural operator
generation and search. This enables our framework
to act as a constraint-safety layer that can be ap-
plied to LLM-driven planners, including CoT(Wei
et al., 2022), ReAct(Yao et al., 2023b), ToT(Yao
et al., 2023a), ensuring that generated plans remain
resource-aware, temporally consistent, and logi-
cally valid.

We evaluate our framework across three diverse
planning domains: cooking recipes (RecipeNLG)
(Bien et al., 2020), procedural texts (ProcessBench)
(Zheng et al., 2024), and standardized procedures
(Proc2PDDL) (Zhang et al., 2024b). Our method
consistently achieves 15-25% higher completion
rates than other baselines, while substantially re-
ducing resource/time violations by up to 77%.
These results demonstrate that combining LLM-
based operator generation with category-theoretic
verification creates a powerful synergy for reliable,
flexible planning in constraint-intensive domains.

2 Related Work

Classical Planning. Symbolic planners (Ghal-
lab et al., 2004; Jiang et al., 2019; Holler et al.,
2020) guarantee correctness but require extensive
domain engineering and struggle with partially
specified domains (Smirnov et al., 2024; Zhang
et al., 2023). Hybrid approaches such as Fast-
Downward (Helmert, 2006) and LAMA (Richter
and Westphal, 2010) add heuristics, but they lack

mechanisms for handling quantitative resource and
temporal constraints.

LLM-Based Planning. Recent approaches lever-
age LL.Ms (Achiam et al., 2023; Touvron et al.,
2023) to generate plans directly from text (Dagan
et al., 2023; Song et al., 2023; Zeng et al., 2023),
avoiding domain engineering. However, these mod-
els often act as black boxes that violate logical, tem-
poral, or resource constraints (Valmeekam et al.,
2022; Gestrin et al., 2024). To improve robustness,
several works have introduced search-augmented
techniques: Monte Carlo Tree Search (MCTS)
(Zhao et al., 2023; Zhang et al., 2024a), ReAct
(Yao et al., 2023b), Reflexion (Shinn et al., 2023),
LLMFP(Hao et al., 2024), integrate dynamic pro-
gramming(Dagan et al., 2023), or feedback-driven
strategies (Shah et al., 2023; Suri et al., 2024).
These methods demonstrate the potential of com-
bining search with neural heuristics and LLM
judge(Gu et al., 2024) but still lacking structural
correctness guarantees(Kambhampati et al., 2024).

Reasoning-Oriented LLM Frameworks Paral-
lel to direct plan generation, reasoning-oriented
frameworks such as Tree-of-Thoughts(Yao et al.,
2023a), ReWOO (Xu et al., 2023), and ToS (Katz
et al., 2024) enhance reasoning depth and search
efficiency by structuring LLLM outputs into tree-
or workflow-like processes. While effective for
improving exploration, these methods also do not
guarantee principled categorical verification when
integrating multiple constraints across domains.

Neural-Symbolic Methods. Neural-symbolic
approaches (DeLong et al., 2024; Mao et al., 2019)
aim to combine neural flexibility with symbolic pre-

21202

cision in domains such as visual reasoning (Hud-
son and Manning, 2019) and program synthesis
(Ellis et al., 2021). Category theory provides pow-
erful mathematical frameworks for compositional
reasoning (Rydeheard and Burstall, 1988; Pierce,
1991; Jacob, 1990; Walters and Walters, 1991; Baez
and Pollard, 2017), though prior applications have
largely focused on symbolic systems without deep
integration of neural operator generation.

Our framework uniquely combines the genera-
tive capabilities of LLMs with category-theoretic
verification to structurally enforce resource, tem-
poral, and logical constraints. By embedding
pullback-based validation into a bidirectional
search framework, we bridge the gap between the
flexibility of LLM planners and the formal guaran-
tees of symbolic reasoning.

3 Problem Statement

We formalize task planning as a category-theoretic
framework where states are objects and operations
are morphisms. Each state w € W = (r,s,1,t)
encapsulates resources r, symbolic progress s, log-
ical constraints [, and temporal allocations ¢. Mor-
phisms f : w; — wo represent valid state transi-
tions that preserve resource bounds, state validity,
constraint satisfaction, and temporal consistency.

Definition 3.1 (Planning Problem). Given an initial
state wyg = (ro, So, lo, to) and goal specification
w* = (r*, s*,1*,t*), find a sequence of morphisms
in planning category 7 :

fn—l n
’wof—1>w1f—2>-"—>wn_1f—>wn

such that each intermediate state w; remains valid
under categorical constraints, and w,, satisfies the
criteria in w*.

A more formal problem statement can be found
in Appendix A.

4 Theoretical Analysis

In this section, we analyze the formal properties
of the category-theoretic verification framework.
We establish three key guarantees: local reacha-
bility, global completeness, and probabilistic com-
pleteness. Together, these theorems ensure that
our approach preserves the rigor of symbolic plan-
ning while leveraging the generative flexibility of
LLMs. Crucially, they highlight our main contribu-
tion: by embedding category-theoretic constructs
(in particular, pullback-based verification) into an

LLM-driven planner, we can provide structural
guarantees that are missing from existing heuristic
or black-box approaches.

4.1 State Space Properties

Let a planning distance functionbe D : W x W —
R that estimates the minimum cost to transform one
state into another. It enables theoretical guarantees
through three properties:

1. Component Integration: D incorporates all
four state components (resources, symbolic
state, logical constraints, temporal intervals)

2. Categorical Consistency: It respects the cat-
egory structure, with D (w1, wy) < oo only
when morphisms can connect the states

3. Continuous Measure: It provides a differ-
entiable measure of "plan difficulty" between
states, guiding search toward promising paths

4.2 Theoretical Guarantees

Our first theorem establishes local reachability in
the planning space:

Theorem 4.1 (e-Reachability). For any two states
wy,we € W with D(wy,ws) < €, there exists a
sequence of valid morphisms f1, ..., fi. such that
fro...ofi(wy) = wy, where k < [1/€].

This theorem guarantees local connectivity of
the categorical state space: nearby states can al-
ways be connected via a bounded number of mor-
phisms. This ensures that our planner can effi-
ciently explore neighborhoods of valid states with-
out “falling out” of the constraint-respecting space.
Proof can be found in Appendix B.

Building on local connectivity, we establish
global completeness:

Theorem 4.2 (Completeness). If a valid plan exists
between initial state wg and goal state w*, the
bidirectional search algorithm will find it.

Completeness is the cornerstone of symbolic
planning. By proving completeness despite the
stochasticity of LLM-generated operators, we show
that our neural-symbolic framework provides for-
mal coverage guarantees—the planner will not
overlook feasible solutions simply because of neu-
ral variability.

Theorem 4.3 (Probabilistic Completeness). Un-
der bounded resources and finite constraints, the
probability of finding a valid plan in n steps is:

P(find plan in n steps) > 1 —e ™ (1)

21203

User input (Natural Language)]

i

Initial Decomposition by LLM

Generates initial structured
specification

— Constraint Identification&Refinement

Identifies missing or ambiguous
constraints

Resource Formalization

Formalizes resources and constraints
explicitly

Categorical Encoding

Structured specifications encoded into
categorical format

Output for Verification&Search]

Structured inputs ready for constraint-
aware planning

Figure 2: Iterative LLM-based planning formulation
process with feedback loops that enable progressive
refinement from natural language to categorical repre-
sentations.

where A > 0 depends on the reliability of LLM-
generated morphisms.

This result ensures robustness under uncertainty:
even though LL.M-generated morphisms may be
noisy or inconsistent, our framework converges
exponentially toward valid plans as the number
of steps n increases. This property provides a
strong theoretical foundation for the reliability un-
der stochastic language-based operators.

The theoretical foundation is central to our con-
tribution: category-theoretic verification not only
ensures structural correctness of plans but also en-
ables principled integration of neural generative
models into symbolic reasoning.

5 Methodology

We now turn to our Neural-Symbolic Task Planning
framework, which combines LL.M-based operator
generation, pullback-based verification, and bidi-
rectional search to generate valid plans (Figure 1).

5.1 LLM-Based Task Decomposition

We transform high-level user queries into formal
specifications through a systematic four-stage pro-
cess using a pretrained Large Language Model
(e.g., GPT-4, Llama) (Figure 2):

................

Forward Search

....................

Backward Search

Figure 3: Bidirectional search reduces the effective
search depth by simultaneously expanding from both the
initial state wy and goal state w*. When a pullback ex-
ists between states wzF and w* (at meeting point Wy, 1),
a valid plan can be constructed with fewer expansions.

* Initial Decomposition: Extract candidate re-
sources, operators, and constraints from natu-
ral language.

* Constraint Refinement: Identify ambigui-
ties, clarify task specifications, and resolve im-
plicit dependencies through targeted queries.

* Resource Formalization: Transform re-
source into typed, quantified specifications.

» Categorical Encoding: Encode specifica-
tions as categorical objects, morphisms, and
constraints.

This iterative process uses feedback loops to pro-
gressively refine representations until they reach
the precision required for category-theoretic plan-
ning, significantly reducing the manual engineering
typically needed for symbolic approaches. To en-
sure reproducibility across domains, we provide in
Appendix D a prompt template and guidelines that
generalizes across domains.

5.2 Bidirectional Search

Task planning can be formulated using a variety
of search and optimization strategies (e.g., A*,
MCTS). We focus on bidirectional search, one of
the most efficient formulations, as it reduces search
depth from O(b) to O(b/?) while retaining com-
pleteness guarantees, as illustrated in Figure 3. Our
algorithm draws inspiration from Retro* and DESP
(Xie et al., 2022; Yu et al., 2024) but is generalized
to operate with category-theoretic validation. For a
valid morphism sequence P = { f1, fa, f3, ...}, the
total cost of the sequence is Y ; ¢(f), where ¢(f)
is the cost of applying morphism f.

21204

5.2.1 Planning Distance

We now define our planning distance function D
that estimates the minimum cost to transform one
state into another as:

D(w1,we) =asds(s1,82) + ap||r1 — o]

2)
+ aqdy(l1, o) + apdy(t1, t2)

where «,, as, a, oy are weighting factors, and
ds,dy,d; are appropriate metrics for symbolic
states, temporal components, and logical con-
straints, respectively. More details can be found
in Appendix C'. This function serves as a domain-
general heuristic that guides both forward search
(from initial state) and backward search (from goal
state), enabling efficient identification of promising
meeting points. Importantly, the distance formula-
tion is not specific to DESP or Retro* but can be
embedded into a wide range of search frameworks
(including A* and MCTS), making our approach
adaptable across different planning backbones.

5.2.2 Search Graphs

We follow the same configuration as DESP and
maintain two search graphs:

1. GF' (forward) initiates from wg and expands
in a "bottom-up" manner by applying forward
morphisms f 1w — w'.

2. GB (backward) starts from w* and expands
"top-down" by applying backward morphisms
that effectively invert feasible transitions.

The search uses an AND-OR graph structure
(Xie et al., 2022) with objects in category w €
W as OR-nodes and valid morphisms as AND-
nodes(all children must be solved).

Our implementation supports two search strate-
gies using a target condition function vy : W — W:

* Front-to-End (F2E): Target opposing end
states: y(w) = w* forw € G¥ and y(w) =
wo forw € GB

* Front-to-Front (F2F): Target closest
states in opposing graph: y(w) =
argmin,cgs D(w,w') for w € GF,
v(w) = argmin,ycgr D(w', w) forw € G

'"The planning distance D(wy,wz) serves as a heuristic:
it guides expansions but does not affect correctness, which
is guaranteed by pullback verification. D can be learned
from train—test splits (minimizing distance for valid transitions,
maximizing for invalid ones) or replaced with simple metrics
(e.g., cosine or L2). Thus, training D improves efficiency but
remains optional.

5.2.3 Search Procedure

The search procedure (Figure 4) selects and ex-
pands frontier states from both graphs:

Following Retro*, We let V,,, be the minimum
cost to achieve state w from wp; V;(w|G) be the
estimated cost of achieving w* using state w given
search graph G; rn(w|G) be the minimum cost to
reach state w in search graph G; D,, be the distance
D(~y(w), w) between a state and its target; sn(w|G)
be the step number represented as D,, — V,, for
related frontier nodes; D;(w|G) be the multiset of
D,, — V,, values along the minimum cost route
through state w.

Frontier State Selection. Let /" and F7 de-
note the frontier sets of the unsolved states in the
forward and backward graphs, respectively.

For backward selection in the backward graph,
we select a frontier state that minimizes the
expected total cost of planning from the ini-
tial state wg to the goal state w* through that

state: Wseleet, B — argmin, crs [W(w|g3) +

min(Ds (w]g?))|
The forward selection in the forward graph is
identical to Retro*:

Wselect, ' <~ arg min V;‘/(w|gF)
weFF

State Expansion Policies. For backward ex-
pansion, we follow AND-OR-based algorithms in
calling a single-step morphism, applying the top n
predicted morphisms to the selected frontier node
and adding the resulting morphisms and their states
as nodes to the graph.

For state w in G¥' (forward direction), we per-
form the forward expansion procedure:

* For state w, we generate successor states w’
via morphisms f : w — w’ and initialize
sn(w'|GF) Vi = D/, y(u'))

For state w in G (backward direction):

« For state w, we generate predecessor states w’
via morphisms f : w’ — w and initialize the
values as:

— rn(w'|GB) « Vi
- sn(w’\gB) A D(V(w/)v w,) - Vw’
Value Propagation. After value initialization,

for G, we update values using the propagation
from the Retro* algorithm.

21205

a) Bidirectional Search

b) Expansion Procedure

| Obtain top n Predict other input
i categories
Select Promising Expand the selected Select Promising Expand the selected morphism g
Frontier Node from—— node and Update —— Frontier Node from —— node and Update Backward Expansion LLM
top search graph bottom search graph Select w from g ~. Otherwise
o o <. — » um
= — Sk~ N W
N ~ \ Forward Expansiol
« . N\ < - N e 4 N - !;leart :panSIr "— uM
) . elect w from g
o ¢ S N
V!*' .‘/ ! AN ¥ If unary operator
AN

e

F2P

G

poot b
VAN

Wo Wo

.
PANAN

Validation, add state‘; Apply Morphism
to graph ind P

\4 Search
&

f 1
NN

Figure 4: (a) Bidirectional Search algorithm. Evaluation of top nodes is based on both cost V,, and distance D. (b)

Overview of the one-step expansion procedures.

For GB, we update the graphs through uppropa-
gation and downpropagation. Similar to AND-OR
algorithms, we first propagate updates to relevant
values up the graph, and then down propagate to
related nodes.

Uppropagation (for morphism nodes f and
state nodes w):

sn(f1G7) + Y sn(w|G”)

wech(f)
on(w|gP) {[Dw — Vi .ifw e FB
sn(arg N f ¢ oy () rn(f)\gB>
Downpropagation:
Di(f1G") = sn(pr(£)IG7)

- sn(arg min

frech(pr(f

+ sn(f|G7)
Dy(w|GB) « Dt<argf

| (167)165)

min rn(f|G%)|G7)
€pr(w)

where the ch and pr functions denote the chil-
dren and parent nodes; sn tracks the differences
for nodes, enabling efficient propagation of cost es-
timates throughout the search graph. These update
rules ensure that cost information flows correctly
between states (objects in our category) and the
morphisms connecting them.

5.2.4 Forward expansion policy with
single-step morphism
LLM-based Morphism Generation. In this
work, we use LLMs to generate valid morphisms
through two key functions:
¢ W xW — f=LLM(w,wy)
G W x W x f— W =LLM(wy, wa, f)

The function ¢ generates candidate morphisms
between states, while ¢,, determines the resulting
state after applying a morphism. These functions
are implemented as structured prompts to the LLM
that request specific outputs conforming to our cat-
egorical framework.

Merging via Pullbacks. Periodically, we attempt
to connect the search graphs by finding states
wf € GF and wP € GP with D(w, wB) < e
that can be connected through category-theoretic
pullback checks, where € is a small value for thresh-
old. When we find candidate states, we verify their
compatibility using pullback checks and compose
their respective plan fragments to obtain a complete
sequence from wq to w*.

5.3 Pullback Checks for Plan Validity

Pullbacks ensure plan compositions respect all con-
straints by computing potential pullback states and
verifying their validity. When a valid pullback ex-
ists, we compose partial plans while guaranteeing
constraint satisfaction. The verification process for
states w; and wy with morphisms to a common
state w,. works as follows:

I. Compute potential pullback state w, =
(Tp, Sp, Iy, tp) where:

* rp, satisfies resource constraints for both
states
* I, = 11 Aly (logical AND of constraints)

* t, = t1 Nty (intersection of temporal
intervals)

* sp is a valid symbolic state with transi-
tions to both s; and s

21206

2. Verify that w), is a valid state (satisfies all ca-
pacity constraints)

3. Confirm that morphisms pq : w, — w1 and
D2 wp — wa exist

5.4 Algorithm Summary

Algorithm 1 in Appendix E outlines our bidirec-
tional search procedure. The algorithm initializes
search graphs from initial and goal states, then iter-
atively selects and expands states from both fron-
tiers. After each expansion, it attempts to connect
the search graphs via pullback checks. When a
valid connection is found, it composes the partial
plans to form a complete solution.

We establish the computational efficiency of our
bidirectional search approach:

Theorem 5.1 (Time Complexity). Given maximum
path length L, branching factor b, and n states, the

bi-directional search algorithm has time complexity
O(b*/?).

This represents a quadratic improvement in
the exponent compared to unidirectional search
(O(b")), making our approach more efficient for
practical applications.

6 Experiments

We evaluate our approach on three datasets with di-
verse planning characteristics: PLANBENCH (goal-
oriented planning), RECIPENLG (resource and
temporal constraints), and PROC2PDDL (formal
planning with precondition/effect validation).

6.1 Datasets and Planning Scenarios

PlanBench. PlanBench’? (Valmeekam et al.,
2023) consists of 600 Blocksworld problems in
PDDL format. Tasks involve transforming block
configurations into goal states under logical con-
straints and cost minimization. We use a 50-50
train—test split.

RecipeNLG. RecipeNLG (Biex et al., 2020) con-
tains cooking recipes with ingredient lists and step-
by-step directions. We augment recipes with ex-
plicit resource limits (e.g., “< 1/2 cup sugar” for
health-conscious modifications) and temporal in-
tervals (e.g., “bake 20—25 minutes”) using GPT-4,
testing quantitative resource and timing. We use an
80-20 train—test split.

Zhttps://github.com/karthikv792/LLMs-Planning/

Proc2PDDL. Proc2PDDL? (Zhang et al., 2024b)
provides 95 procedural texts with expert-annotated
PDDL domain files across 27 domains. We evalu-
ate precondition/effect prediction and executable
plan generation using a 50-50 split per domain.

6.2 Baselines and Comparative Methods

We compare against direct prompting, reasoning-
augmented prompting, and search-augmented plan-
ners, all using GPT-40 unless otherwise noted:

GPT-40 (Direct Prompting). Prompted with
raw task descriptions and request step-by-step
plans, without additional reasoning instructions.

CoT-GPT4o0 (Chain-of-Thought). Prompted
with chain-of-thought. Explicit reasoning over re-
sources, temporal requirements, and dependencies
before producing a plan.

Thoughts-of-Search (Katz et al., 2024) Struc-
tures LLM exploration as a guided search tree for
improved reasoning depth.

ReAct(Yao et al., 2023b) Interleaves reasoning
traces with environment interactions to refine plan-
ning decisions.

LLM+P(Liu et al., 2023) Augments LLMs with
symbolic planners for constraint-aware reasoning.

LLM-MCTS(Zhao et al., 2023) Monte Carlo
Tree Search with 50 rollouts per problem, guided
by LLM confidence scores.

Our approach combines LLM-based operator
generation with category-theoretic verification and
bidirectional search (details in Appendix C).

6.3 Evaluation Metrics

For PlenBench, we report: (1) Completion rate:
Percentage of problems solved correctly; (2) Cost
optimality: Percentage of solutions with minimal
cost; For RecipeNLG: (3) BLEU Score; (4) Con-
straint violations: Percentage of solutions vio-
lating resource or (5) temporal constraints; For
Proc2PDDL (6) Action-wise accuracy: Percent-
age of correctly predicted preconditions/effects;
and (7) Problem-file solve rate: percentage of
files executable in a PDDL solver.

6.4 Results

Table 1 summarizes performance across all datasets.
Our approach consistently outperforms all base-
lines, achieving state-of-the-art results across Plan-
Bench, RecipeNLG, and Proc2PDDL.

3https://github.com/zharry29/proc2pddl

21207

Table 1: Performance comparison across all datasets. Best results in bold, second best underlined.

Method PlanBench Rec_ipeNLG _ . Proc2PDDL
Comp% CostOpt% | BLEU Res Viol% Temp Viol% | Action Acc% PF Solve%

GPT-40 343 33.0 0.903 27.7 324 159 33.7
CoT-GPT4o 47.0 41.5 0.902 21.5 243 9.3 21.1
ToS 41.5 36.3 0.898 26.6 30.5 10.4 24.7
ReAct 63.0 56.8 0.915 19.4 229 34.6 43.7
LLM+P 90 833 0.888 34 5.7 72.0 79.2
LLM-MCTS 69.0 63.1 0.881 18.8 19.7 214 453
Ours 96.6 93.5 0.901 0 14 81.1 87.4

PlanBench Our method achieves the highest
completion rate (96.6%) and cost optimality
(93.5%), improving by 6.6% and 10.9% over the
strongest LLM+P baseline; +27.6% and +30.4%
over the LLM-MCTS. This demonstrates that
category-theoretic verification effectively enforces
logical dependencies (e.g., supporting block struc-
tures), preventing invalid moves that other LLM-
based planners frequently make.

RecipeNLG All methods achieve comparable
BLEU scores (0.881-0.915), suggesting similar
textual quality. However, our method achieves near-
perfect constraint satisfaction with 0% resource
violations and only 1.4% temporal violations, far
surpassing both LLM-MCTS (18.8%, 19.7%) and
LLM+P (3.4%, 5.7%). This improvement is most
pronounced in recipes with complex resource track-
ing requirements, such as recipes using partial in-
gredients across multiple steps. For example, when
handling recipes requiring resource splitting (e.g.,
using half of an ingredient in one step given the
global resource constraint), our pullback-based ver-
ification preserved consistency that baselines failed
to capture.

Proc2PDDL This dataset is the most challeng-
ing, requiring formal reasoning over preconditions
and effects. Our method achieves the highest action
accuracy (81.1%) and solver success rate (87.4%),
outperforming LLM+P by +9.1% and +8.2% re-
spectively. The improvement is particularly sig-
nificant for multi-step procedures with long-range
dependencies, where pullback verification success-
fully preserves logical consistency throughout the
planning process, which will be shown in our abla-
tion study.

6.5 Ablation Studies

Reasoning vs. non-reasoning Table 2 shows
the influence of LLM backbone type and scale.
Reasoning vs. non-reasoning. Reasoning-

Table 2: Performance comparison across difference
LLM backbones.

PlanBench
Base LLM Comp% Cost Opt%
GPT-40 96.6 93.5
o4-mini 98.8 93.7
Claude-3.5 94.3 91.0
LLaMA-3-70B 924 85.1
LLaMA-3-13B 91.0 83.3
LLaMA-3-8B 72.7 59.4
DeepSee-R1-Distill-Qwen-14B 94.9 88.2
Qwen3-14B 93.6 87.1

augmented models (04-mini, Claude-3.5, Qwen3-
14B, DeepSeek-R1) achieve higher raw per-
formance than non-reasoning models (GPT-4o,
LLaMA). Our categorical verification, however,
boosts both categories: for reasoning models, it
enforces stricter constraint validity (e.g., o4-mini
improves to 98.8% completion, 93.7% cost opti-
mality); for non-reasoning models, it compensates
for weaker reasoning depth, lifting LLaMA-3-13B
to 91.0/83.3, rivaling much larger models.

Scaling effect Larger backbones generally yield
better results (LLaMA-3-70B at 92.4% vs.
LLaMA-3-8B at 72.7%), but our framework nar-
rows the scale gap: Qwen3-14B (93.6%) and
DeepSeek-R1 (94.9%) approach or surpass the per-
formance of GPT-40 and LLaMA-3-70B despite
being smaller. This shows that verification am-
plifies the planning ability of mid-scale reasoning
models, making them competitive with much larger
non-reasoning backbones.

Distance functions Table 3 highlights the role
of the planning distance D. Bidirectional search
with a learned D achieves the best performance
across all datasets, reducing constraint violations
on RecipeNLG and boosting action accuracy on
Proc2PDDL. However, even a raw metric D (co-
sine or L9) performs well, showing that training D
improves efficiency but is not essential for correct-

21208

Table 3: Impact of difference distance function. all using LLaMA-3-13B unless otherwise noted.

Method PlanBench . RecipeNLG . _ Proc2PDDL
Comp% Cost Opt% | Res Viol% Temp Viol% | Action Acc% PF Solve%
MCTS + raw D 40.7 34.7 1.9 18.1 10.4 20.1
MCTS + learned D 61.2 57.3 15.6 16.3 16.2 31.7
Bidirectional + raw D 78.3 75.0 14.5 7.3 51.4 64.6
Bidirectional + learned D 91.0 83.3 4.2 3.8 57.9 71.6

Table 4: Impact of verification on PlanBench.

Variant | Comp (%) Cost Opt (%)
With verification 96.6 93.5
Without verification 59.3 47.4
Absolute Difference | 37.3 46.1

Table 5: Search strategy comparison on PlanBench for
different Plan Length. (P.L.)

Search Strategy \ Simple (<5 P.L.) Complex (>5P.L.)
Bidirectional 98.1% 84.5%
LLM-MCTS 88.3% 42.8%
GPT-4 65.2% 18.7%

ness verification guarantees validity regardless of
distance quality.

Impact of verification. Table 4 shows that re-
moving categorical verification reduces completion
rates by 37.3% and cost optimality by 46.1% on
PlanBench. The verification component ensures
physical constraints in block stacking are main-
tained, preventing invalid moves such as removing
blocks that support other blocks. Without verifica-
tion, the planner generates invalid plans.

Search strategy comparison. Table 5 demon-
strates the advantage of bidirectional search over
alternatives, particularly as problem complexity in-
creases. For complex problems with plan lengths
exceeding 5 steps, bidirectional search achieves
84.5% completion, substantially outperforming
LLM-MCTS (42.8%) and LLM-only approaches
(18.7%). This performance gap widens expo-
nentially with plan length. At 8-step plans, the
completion rate difference between bidirectional
search and LLM-MCTS increases to 38.9 percent-
age points. The deterioration in performance for
non-bidirectional approaches occurs primarily at
decision points requiring long-horizon planning.
This confirms our theoretical complexity reduction
from O(b") to O(b"/?) translates to practical per-
formance gains on complex planning tasks.

These results demonstrate that both category-
theoretic verification and bidirectional search con-
tribute significantly to performance. Verification
ensures plan validity while bidirectional search en-
ables efficient exploration.

7 Conclusion

We introduced a Neural-Symbolic Task Planning
framework integrating LLM-based decomposition
with category-theoretic verification for resource-
aware planning. By modeling states as categori-
cal objects and operations as morphisms, our ap-
proach ensures constraint satisfaction through pull-
backs while using bidirectional search for compu-
tational efficiency. Experiments across three do-
mains demonstrate significant improvements over
existing methods for completion rate and violation
reduction. Our results establish category-theoretic
verification as a promising approach for neural-
symbolic planning in resource-constrained tasks.

7.1 Limitations

Our approach faces challenges with complex tem-
poral dependencies, computational overhead for
complex tasks with large state spaces despite the
O(b"/?) complexity reduction, and degraded per-
formance when domain knowledge is missing from
the LLM’s pre-training. Nevertheless, our exper-
iments confirm that neural-symbolic integration
substantially improves constraint satisfaction while
maintaining natural language flexibility.

Acknowledgments

This research is partially supported by Stanford’s
Center for Sustainable Development and Global
Competitiveness (SDGC) and the Yonghua Founda-
tion. The authors would like to thank Dr. Spencer
Breiner and Dr. Ram Sriram of the US National
Institute of Standards and Technology and Dr.
Eswaran Subrahmanian of Carnegie Mellon Uni-
versity for their helpful comments and suggestions.

21209

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

John C Baez and Blake S Pollard. 2017. A composi-
tional framework for reaction networks. Reviews in
Mathematical Physics, 29(09):1750028.

Michat Bieni, Michat Gilski, Martyna Maciejewska, Wo-
jeiech Taisner, Dawid Wisniewski, and Agnieszka
Lawrynowicz. 2020. Recipenlg: A cooking recipes
dataset for semi-structured text generation. In Pro-
ceedings of the 13th International Conference on
Natural Language Generation, pages 22-28.

Kevin Chen, Marco Cusumano-Towner, Brody Hu-
val, Aleksei Petrenko, Jackson Hamburger, Vladlen
Koltun, and Philipp Krihenbiihl. 2025. Reinforce-
ment learning for long-horizon interactive llm agents.
arXiv preprint arXiv:2502.01600.

Gautier Dagan, Frank Keller, and Alex Lascarides.
2023. Dynamic planning with a llm. arXiv preprint
arXiv:2308.06391.

Murtaza Dalal, Tarun Chiruvolu, Devendra Chaplot,
and Ruslan Salakhutdinov. 2024. Plan-seq-learn:
Language model guided 1l for solving long horizon
robotics tasks. arXiv preprint arXiv:2405.01534.

Lauren Nicole DelL.ong, Ramon Fernandez Mir, and
Jacques D Fleuriot. 2024. Neurosymbolic ai for rea-
soning over knowledge graphs: A survey. IEEE
Transactions on Neural Networks and Learning Sys-
tems.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias
Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc Cary,
Armando Solar-Lezama, and Joshua B Tenenbaum.
2021. Dreamcoder: Bootstrapping inductive pro-
gram synthesis with wake-sleep library learning. In
Proceedings of the 42nd acm sigplan international
conference on programming language design and
implementation, pages 835-850.

Elliot Gestrin, Marco Kuhlmann, and Jendrik Seipp.
2024. NI2plan: Robust llm-driven planning
from minimal text descriptions. arXiv preprint
arXiv:2405.04215.

Malik Ghallab, Dana S. Nau, and Paolo Traverso. 2004.
Automated Planning: Theory and Practice. Elsevier.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. 2024. A survey on
llm-as-a-judge. arXiv preprint arXiv:2411.15594.

Yilun Hao, Yang Zhang, and Chuchu Fan. 2024. Plan-
ning anything with rigor: General-purpose zero-shot
planning with llm-based formalized programming.
arXiv preprint arXiv:2410.12112.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy,
Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar,
and Roberta Raileanu. 2024. Teaching large lan-
guage models to reason with reinforcement learning.
arXiv preprint arXiv:2403.04642.

Malte Helmert. 2006. The fast downward planning

system. Journal of Artificial Intelligence Research,
26:191-246.

Daniel Holler, Gregor Behnke, Pascal Bercher, Susanne
Biundo, Humbert Fiorino, Damien Pellier, and Ron
Alford. 2020. Hddl: An extension to pddl for express-
ing hierarchical planning problems. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 9883-9891.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-

bodied agents. In International conference on ma-
chine learning, pages 9118-9147. PMLR.

Drew Hudson and Christopher D Manning. 2019. Learn-
ing by abstraction: The neural state machine. Ad-
vances in neural information processing systems, 32.

Ledn Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A
Mcllraith. 2020. Symbolic plans as high-level in-
structions for reinforcement learning. In Proceedings
of the international conference on automated plan-
ning and scheduling, volume 30, pages 540-550.

Jeremy Jacob. 1990. Categorising non-interference. In
[1990] Proceedings. The Computer Security Founda-
tions Workshop I11, pages 44-50. IEEE.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024.
Self-planning code generation with large language
models. ACM Transactions on Software Engineering
and Methodology, 33(7):1-30.

Yu-qian Jiang, Shi-qi Zhang, Piyush Khandelwal, and
Peter Stone. 2019. Task planning in robotics: an
empirical comparison of pddl-and asp-based systems.
Frontiers of Information Technology & Electronic
Engineering, 20:363-373.

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Paul Saldyt, and Anil B Murthy. 2024.
Position: Llms can’t plan, but can help planning in
IIm-modulo frameworks. In Forty-first International
Conference on Machine Learning.

Michael Katz, Harsha Kokel, Kavitha Srinivas, and
Shirin Sohrabi Araghi. 2024. Thought of search:
Planning with language models through the lens of
efficiency. Advances in Neural Information Process-
ing Systems, 37:138491-138568.

21210

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023. Llm+ p: Empowering large language mod-
els with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B
Tenenbaum, and Jiajun Wu. 2019. The neuro-
symbolic concept learner: Interpreting scenes, words,
and sentences from natural supervision. arXiv
preprint arXiv:1904.12584.

Vishal Pallagani, Bharath Muppasani, Keerthiram Mu-
rugesan, Francesca Rossi, Lior Horesh, Biplav Sri-
vastava, Francesco Fabiano, and Andrea Loreggia.
2022. Plansformer: Generating symbolic plans using
transformers. arXiv preprint arXiv:2212.08681.

Benjamin C Pierce. 1991. Basic category theory for
computer scientists. MIT press.

Silvia Richter and Matthias Westphal. 2010. The lama
planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Re-
search, 39:127-1717.

David E Rydeheard and Rod M Burstall. 1988. Compu-
tational category theory, volume 152. Prentice Hall
Englewood Cliffs.

Dhruv Shah, Michael Robert Equi, Blazej Osinski, Fei
Xia, Brian Ichter, and Sergey Levine. 2023. Navi-
gation with large language models: Semantic guess-
work as a heuristic for planning. In Conference on
Robot Learning, pages 2683-2699. PMLR.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36:8634-8652.

Pavel Smirnov, Frank Joublin, Antonello Ceravola, and
Michael Gienger. 2024. Generating consistent pddl
domains with large language models. arXiv preprint
arXiv:2404.07751.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 2998-3009.

Katharina Stein, Daniel FiSer, Jorg Hoffmann, and
Alexander Koller. 2023. Autoplanbench: Automati-
cally generating benchmarks for llm planners from
pddl. arXiv preprint arXiv:2311.09830.

Gaurav Suri, Lily R Slater, Ali Ziaee, and Morgan
Nguyen. 2024. Do large language models show de-
cision heuristics similar to humans? a case study
using gpt-3.5. Journal of Experimental Psychology:
General, 153(4):1066.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023. On the
planning abilities of large language models-a criti-
cal investigation. Advances in Neural Information
Processing Systems, 36:75993-76005.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for 1lms on plan-
ning and reasoning about change). In NeurIPS 2022
Foundation Models for Decision Making Workshop.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kamb-
hampati. 2024. Llms still can’t plan; can Irms? a
preliminary evaluation of openai’s ol on planbench.
arXiv preprint arXiv:2409.13373.

Robert Frank Carslaw Walters and Richard F Walters.
1991. Categories and computer science. Cambridge
University Press.

Kevin Wang, Junbo Li, Neel P Bhatt, Yihan Xi, Qiang
Liu, Ufuk Topcu, and Zhangyang Wang. 2024. On
the planning abilities of openai’s ol models: Feasi-
bility, optimality, and generalizability. arXiv preprint
arXiv:2409.19924.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Zirui Wu, Xiao Liu, Jiayi Li, Lingpeng Kong, and Yan-
song Feng. 2025. Haste makes waste: Evaluating
planning abilities of 1lms for efficient and feasible
multitasking with time constraints between actions.
arXiv preprint arXiv:2503.02238.

Shufang Xie, Rui Yan, Peng Han, Yingce Xia, Lijun Wu,
Chenjuan Guo, Bin Yang, and Tao Qin. 2022. Retro-
graph: Retrosynthetic planning with graph search. In
Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages
2120-2129.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models. arXiv preprint
arXiv:2305.18323.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023a. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809-11822.

21211

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Kevin Yu, Jihye Roh, Ziang Li, Wenhao Gao, Runzhong
Wang, and Connor Coley. 2024. Double-ended syn-
thesis planning with goal-constrained bidirectional
search. Advances in Neural Information Processing
Systems, 37:112919-112949.

Zhen Zeng, William Watson, Nicole Cho, Saba Rahimi,
Shayleen Reynolds, Tucker Balch, and Manuela
Veloso. 2023. Flowmind: automatic workflow gener-
ation with llms. In Proceedings of the Fourth ACM
International Conference on Al in Finance, pages

73-81.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm
self-training via process reward guided tree search.
Advances in Neural Information Processing Systems,
37:64735-64772.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023.
Planning with large language models for code gener-
ation. arXiv preprint arXiv:2303.05510.

Tianyi Zhang, Li Zhang, Zhaoyi Hou, Ziyu Wang,
Yuling Gu, Peter Clark, Chris Callison-Burch, and
Niket Tandon. 2024b. Proc2pddl: Open-domain
planning representations from texts. arXiv preprint
arXiv:2403.00092.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023. Large
language models as commonsense knowledge for
large-scale task planning. Advances in Neural Infor-
mation Processing Systems, 36:31967-31987.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

21212

A Formal Problem Statement

Here, we show the formal problem statement.

A.1 Category-Theoretic Planning Framework

We formalize planning as a category-theoretic problem where states are objects and operations are
morphisms. Each state captures resource usage, active constraints, symbolic progress, and temporal
allocations. The morphisms represent valid transitions/operations that preserve these properties through
constraint verification.

Definition A.1 (Planning Domain). A planning domain consists of:

* A set of resource types I, where each type ¢ € I has an associated ordered monoid (R;, +i, <;,0;)
and capacity bound %, max

* A set of symbolic states S with a directed graph Gg = (S, Fg) of valid transitions
* A set of logical constraints £ expressed as predicates over resources, states, and temporal properties
* A temporal framework 7 for representing time intervals and precedence relations

Definition A.2 (Planning Category). Let 7 be a category whose objects are hybrid task states w =
(r,s,l,t) where:

* r € R = [],c; R; represents resource configuration, with each component 7 [i] < 7; ;4 Tespecting
capacity bounds

* s € Sis adiscrete symbolic state from the state transition graph G g

+ [€ L =0,1% is a boolean vector encoding k logical constraints, where [[j] = 1 indicates constraint
j is satisfied

et e T CRT xRY x P(I) represents temporal intervals [ts¢qrt, teng] and scheduling constraints
over a set of interval relations 1

Definition A.3 (Morphism). A morphism f : w; — we in T transforms state wy = (rq, s1,11,1) to
state wy = (rg, S2, l2, t2) while preserving categorical constraints. The transformation is characterized by
component functions (f,, fs, fi, ft) that may depend on all aspects of the input state, ensuring:

* Resource validity: 7o = f,(r1, 51,11, t1) where r3[i] < 7 1,4, for all resource types i. Resource
transformations respect the properties of the underlying ordered monoids.

* State transitions: so = f,(r1, s1,01,t1) such that (s1, s2) € Eg is an edge in the state transition
graph, and all preconditions for the transition are satisfied.

* Constraint satisfaction: [y = fj(r1, s1,01,t1) where:

— Invariant constraints remain satisfied: if /;[;] is an invariant and {1 [j] = 1 then l3[j] = 1
— Postcondition constraints may be established: /> may have additional satisfied constraints

— Precondition constraints are checked before applying the morphism

* Temporal consistency: to = f;(r1,s1,l1,t1) preserves precedence relations and ensures non-
overlapping intervals for mutually exclusive operations.

Each morphism has an associated probability p(f) € [0, 1] reflecting its empirical success rate. Morphism
composition g o f is valid if and only if all component functions compose and preserve the above
constraints.

21213

As shown in the methodolgy, in our neural-symbolic framework, morphism are generated by an LLM
conditioned on the current state. The detail will be explained in the next section.
The power of our framework comes from compositional verification using categorical pullbacks:

Definition A.4 (Pullback). Given morphisms f : A — C and g : B — C in category 7T, a pullback
consists of:

* An object P (the pullback object)

e Morphisms p; : P — Aandpy : P — B

such that f o p; = g o p2 (i.e., both paths from P to C' yield the same result), forming a commutative
square. Furthermore, for any other object) with morphisms ¢; : Q — A and ¢5 : Q — B satisfying
f oq1 = g o g9, there exists a unique morphism u :) — P such that p; ou = ¢; and p2 o u = ¢ (i.e.,
the morphism « preserves all path relationships).

Lemma A.5 (Pullback Structure). Given morphisms f : A — C and g : B — C in category T, if a
pullback exists, it is an object P with morphisms p1 : P — A and py : P — B such that:

* P=(rp,sp,lp,tp) where:

rp satisfies p1,(rp) = 14 and pa,(rp) =B
sp is a symbolic state with valid transitions to both s 4 and sp

lﬁ?” preserves all invariant constraints from both li{“’ and llg.w

tp is a valid refinement of botht 4 and tp
* The diagram commutes: f o p1 = g o pa

 For any object () with morphisms q1 : Q — A and g5 : Q — B satisfying f o q1 = g o qo, there
exists a unique morphism u : Q — P such that p1 o u = q1 and p2 o u = @2

Theorem A.6 (Plan Compatibility Characterization). Given morphisms f : A — Candg: B — Cin
category T :

1. If a pullback of f and g exists, then the plans represented by [and g are compatible, meaning:

* Resource usage from both plans can be combined without exceeding capacity limits
* All invariant logical constraints from both plans can be simultaneously satisfied

e Time intervals from both plans can be merged without violating precedence constraints

2. Conversely, if no pullback exists, then the plans are incompatible with respect to at least one of these
constraint types.

Constructively, given states w4 and wp with morphisms to common state w¢, the pullback state
wp = (rp,sp,lp,tp) can be computed as:

* Resources: For each resource type 4, rp|i] is a minimum valid configuration that maps to both 7 4[]
and rp[i] through the respective morphisms

* Logical state: [p[j| = la[j] A {p[j] for invariant constraints (logical AND)

» Temporal windows: tp = t4 N {p (interval intersection) when non-empty

* Symbolic state: A valid state sp with transitions to both s 4 and sp in the state graph Gg
Definition A.7 (Planning Problem). Given:

* Initial state wo = (ro, So, lo, to) With available resources and constraints

* Goal specification w* = (r*, s*,1*,t*) defining desired properties
21214

Find a sequence of morphisms in 7 for a planning category:

f1 f2 fn—1 fn
Wwg — W1 —> ++* —> Wp—1 — Wy

such that each intermediate state w; remains valid under the categorical constraints, and w,, satisfies or
exceeds the criteria in w*.

While LLMs can generate candidate morphisms, they may produce invalid or inconsistent operations.
Our framework addresses this by integrating LLM-based generation with category-theoretic verification.
For single operations (unary morphisms), we directly verify constraint satisfaction. For combining plan
fragments (binary morphisms), we use pullbacks to ensure compositional validity.

B Proof

B.1 Plan Composition

Proof. Let f : A — C and g : B — C be morphisms in our planning category 7, where states are
represented as w = (, s, [, t). Let the pullback object be P with projections p; : P — Aandps : P — B
such that f o p; = g o po. We prove each guarantee in turn:

1. Resource Compatibility: By definition, the resource component of our states is represented as a
vector r € R C R" subject to capacity constraints. For valid morphisms f and g, we have:

fr(ra) =rcand g,(rp)

Let the resource component at the pullback be rp. By the universal property of pullbacks, rp must map
to both 4 and rp through py, and po, respectively:

p1r(rp) =74 and po.(rp) =B

For these mappings to exist, 7p must satisfy the resource constraints of both plans. Since resource
transformations in our category are monotonic (resources can only be consumed, not created), r p must
contain at least the maximum resource requirements of both plans. Formally:

rpli] > max(rali], rg[i]) for each resource dimension
Given that f and g are valid morphisms respecting capacity constraints, we know:
rAli] < rmaz[i] and rp[i] < rmazli]

Therefore:
rplt] < rmaglt] for all @

Thus, the combined resource usage at P remains within capacity constraints.

2. Logical Consistency: Let the logical constraint vectors be [4, I, and [p for states A, B, and P
respectively. Valid morphisms in our category must preserve satisfied constraints monotonically, meaning:

If 14[j] = 1, then lc[j] = 1
If ig[j] = 1, then l¢[j] = 1

For the pullback object P, the logical constraints must be consistent with both A and B. Since constraint
satisfaction is preserved by morphisms, [p must satisfy:

If ip[j] = 1, then l4[j] = 1 and Ip[j] =1
Conversely, if a constraint is satisfied in both A and B, it must be satisfied in P:
Ifl4[j] = 1and Ig[j] = 1, then Ip[j] =1

This construction ensures that [p preserves all constraints satisfied in both A and B, while not introducing
any new constraints that would create inconsistencies when mapped to either A or B.

21215

3. Temporal Coherence: For the temporal component, let t4 = [ta.start,ty.end], tp =
[tp.start,tp.end], and tp = [tp.start,tp.end] represent the time intervals for states A, B, and P
respectively. Valid morphisms in our category must preserve temporal ordering and non-overlapping
constraints. For the pullback to exist, the time intervals must be compatible, meaning there exists a valid
time interval ¢p that can be mapped to both ¢ 4 and ¢ while preserving ordering constraints. The most
general such interval is the intersection:

tp.start = max(ta.start,tp.start)

tp.end = min(t4.end, tp.end)

For this interval to be valid, we must have ¢ p.start < tp.end, which is guaranteed when ¢ 4 and ¢ g have a
non-empty intersection. When no such intersection exists, the pullback does not exist, correctly indicating
that the plans cannot be composed with respect to their temporal constraints. For the precedence relations
in P(Z), the pullback preserves all shared precedence constraints between ¢ 4 and ¢ 5. Any precedence
relation satisfied in both partial plans will be preserved in the pullback. Thus, when a pullback exists,
the time intervals from both plans can be merged without temporal conflicts. Therefore, the existence
of a pullback P for morphisms f : A — C and g : B — (' guarantees resource compatibility, logical
consistency, and temporal coherence of the composed plan. O

B.2 Reachability

Proof of Theorem 4.1 (e-Reachability). Let wy = (r1,s1,01,t1) and we = (ro, s2,l2, t2) be states in
W with D(wy,w2) < €, where € is sufficiently small. We show the existence of a sequence of valid
morphisms f1, f2, ..., fi such that fi o -+ o fi(w;) = we where k < [1/€].

We construct a sequence of intermediate states {w; = wg, W1,...,Wr = wy} and corresponding
morphisms f; : w;_1 — w; such that each transition is valid according to our category definition.

Construction: Let p : [0, 1] — W be a continuous path such that p(0) = w; and p(1) = wa, where w;
to wq are our state space. Such a path exists since the state components:

* Resources r and temporal components ¢ are continuous

* Symbolic states ¢(s) are continuous and connected by valid transition function.
* Logical constraints [that can be updated monotonically

We partition [0, 1] into [1/€] equal intervals and define intermediate states:

@Dizp(ﬂ;w) fori =0,1,...,[1/€]

Validity of Transitions: For each pair of consecutive states w;_1 and w;, we have:

D(wy,w2) € ,

/e T =

We now verify that there exists a valid morphism f; : w;—1 — w; for each pair:

D(w;—1,w;) <

1. Resource Component: For resources, let 7;_1 and 7; be the resource vectors of w;_1 and w;.

|71 — 7] < H?JZ]ZH < % is sufficiently small, given a sufficiently small e. We can thus define

a valid resource transformation f;,(7;_1) = 7; that respects capacity bounds.

2. Symbolic State: For symbolic states, §;_1 and §;, the distance ||¢s(5;—1) — ¢s(5;)|| < % Given

a sufficiently small ¢, either 5;_; = §; or there exists a direct valid transition between them.

21216

3. Logical Constraints: For logical constraints [; 1 and [;, we have ||¢;(I;_1) — ¢y(I)]| < F{% Given

the monotonicity requirement (constraints can only be added, not removed), we ensure that each
intermediate state only adds constraints that are satisfied in ws. In other word, for sufficiently small
€, at most one constraint changes per step.

4. Temporal Component: For temporal components ;1 and #;, we have ||¢:(f;—1) — ¢:(%:)|] < F{%
Since temporal changes must preserve precedence relations and scheduling constraints, we define
the transformation to gradually adjust time intervals while maintaining these properties.

Composition of Morphisms: We define each morphism f; : w;_1 — w; as the tuple:

fi = (fiT’)f’iS)fihfit)

Each component function is constructed to ensure the validity conditions of our category. By the category
axioms, each f; is a valid morphism in 7.

Plan Length: The total number of morphisms in our constructed sequence is k& = [1/€], and the
composition fi o --- o f; transforms w; into ws as required.

Therefore, for any two states wy, ws € W with D(wq,w2) < €, there exists a sequence of at most
[1/€] valid morphisms connecting them. O

B.3 Completeness

Proof of Theorem 4.2 (Completeness). We need to prove that if a valid plan exists between initial state
wo and goal state w*, then our bidirectional search algorithm will find it.

Step 1: Plan Existence and State Space Coverage. Let P* = {f1, fo,..., f,} be a valid plan from
wo to w*, where each f; is a morphism in our category 7. This plan induces a sequence of states
wp, Wi, W3, . .., w, = w* where w; = fij(w;—1).

Given our distance metric D, we can choose € > 0 such that any state in our search space is within
e-distance of at least one state in the optimal plan P*. This is possible because:

1. The resource space R is bounded by capacity constraints

2. The symbolic state space S is finite

3. The logical constraint space L is finite (with 2* possible configurations)
4. The temporal space 7" has bounded time windows

Therefore, we can construct a finite covering of the state space with e-balls centered on states in the
optimal plan.

Step 2: Bidirectional Search Properties. Our bidirectional search algorithm maintains two search
graphs:

1. G* expanding forward from wq
2. GP expanding backward from w*

We use a planning distance function D to guide expansions, where val” (w) = V (w) + min,, D(w,)
and val® (w) = V(w) + min, D(v, w).
At each iteration, the algorithm:

1. Selects the most promising state to expand from each frontier
2. Expands valid operators from these states

3. Attempts to merge partial plans via pullback checks
21217

Step 3: Forward Reachability. We first show that all states in the optimal plan P* are eventually
reached by the forward search.

For each state w; in the optimal plan,Let V*(w;) be the true optimal cost to reach w; from wy and
V (w;) be our algorithm’s current estimate of this cost.

We claim that for each wj, there exists a time when a state w’ with D(w’, w;) < € enters the forward
frontier FF'.

Proof by induction:

1. Base case: wy is in F initially
2. Inductive step: Assume w;_; with D(w]_;,w;—1) < €isin FF
3. By Theorem 4.1, there exists a sequence of valid operators from w;_, to a state w}, with D(w;, w;) < €

4. Since our algorithm expands all valid operators from frontier states, w, will eventually enter F F

Therefore, the forward search eventually reaches a state near each state in the optimal plan.

Step 4: Backward Reachability. Similarly, for the backward search, all states in the optimal plan are
eventually reached by the backward search. For each state w; in the optimal plan, there exists a time when
a state w” with D(w”,w;) < e enters the backward frontier 5,

Step 5: Meeting of Frontiers. Given Steps 3 and 4, there will eventually be states w] € FI" and
wy € FB such that:

1. D(w},w;) <€
2. D(w},wj) <e
3. |i — j| < 1 (the states are adjacent in the optimal plan)

Step 6: Pullback Existence. Given that our states w; and wj are near adjacent states in the optimal
plan, and that the optimal plan respects all constraints, a pullback exists that allows the composition of the
forward and backward plans.

The existence of this pullback ensures that our algorithm can merge the partial plans to form a complete
plan from wq to w*.

Step 7: Termination. Since our state space is finite under resource bounds and our algorithm systemati-
cally explores the space guided by the planning distance D, it will eventually discover the merger point
where the pullback exists.

Therefore, if a valid plan exists, our bidirectional search algorithm will find it. O

B.4 Probabilistic Completeness Theorem

Proof of Theorem 4.3 (Probabilistic Completeness). We need to prove that under bounded resources and
finite constraints, the probability of finding a valid plan within n steps is at least 1 — e~*" for some
constant A > (.

This proof addresses the stochastic nature of LLM-generated operators, which introduces uncertainty
into the planning process. While our category-theoretic verification ensures that operators are valid when
applied, the generation of candidate operators by the LLM involves randomness.

Probabilistic Model: Let us define the following:
e P* is a valid plan from initial state wg to goal state w*, known to exist by assumption.

* Pmin 18 the minimum probability that the LLLM generates a valid operator at any given step of the
plan.

» At each step, the LLM may generate multiple candidate operators, but our focus is on whether at
least one valid operator toward the solution is among them.

In practice, our algorithm adaptively refine the operator to further boost py;ip.
21218

Single-Step Success Probability: At each step of the planning process, the LLM generates candidate
operators. Let’s define:

* [I;: the event that the LLM generates at least one operator at step ¢ that advances the plan toward the
goal.

* p; = P(FE;): the probability of event F; occurring.

Given our bounded resource assumptions and the categorical structure of our planning domain, the
number of possible states is finite. Furthermore, since the LLM’s operator generation is based on learned
statistical patterns, there exists a minimum probability pyi, > 0 such that:

Pi 2 pmin foralld 3)

This lower bound pp,i, represents the LLM’s worst-case performance in generating useful operators for
our planning domain.

Multi-Step Analysis: Finding a valid plan requires successfully generating valid operators for multiple
consecutive steps. We model this as a sequence of Bernoulli trials, where each trial corresponds to an
attempt to advance the plan by one step.

Let X, be the random variable representing the number of successful steps completed after n attempts.
We’re interested in P(X,, > L), where L is the length of the optimal plan.

Markov Chain Representation: We can model the planning process as a Markov chain where:
* States correspond to the progress made (number of steps completed toward the goal).

* Transitions occur with probability at least py,i, for advancement and at most (1 — pp,i,) for staying
in the same state.

This is a birth process with a minimum birth probability of pi,. The probability of reaching state L
(completing the plan) within n steps can be analyzed using standard results from Markov chain theory.

Deriving the Bound: For a birth process with minimum birth probability pni,, the probability of not
reaching state L within n steps is bounded by:

P(X, < L)< (1 - pk)tm/* (4)

This bound reflects that every sequence of L consecutive steps has a probability of at least pﬁﬂn of
completing the entire plan.
For large n, we can approximate this as:

P(Xn < L) S e—prlr’]il‘~_n/LJ S e—)ﬂ’b (5)

where A = pL. /L is a positive constant.
Therefore, the probability of finding a valid plan within n steps is:

P(X,>L)=1-P(X,<L)>1—e ™ (6)

Connection to LLM Confidence: The parameter A\ in our bound is directly related to the LLM’s

operator generation capability:
L

_ Priin
A= I (7

A more capable LLM with higher confidence in generating valid operators would have a larger pmin,
resulting in a larger A and faster convergence.

21219

Practical Implications: This bound guarantees exponential convergence: the probability of failure
decreases exponentially with the number of steps n. For practical applications, we can calculate how
many steps are needed to achieve a desired success probability.

For example, to achieve a success probability of at least 1 — § for some small § > 0, we need:

l—e™M>1-94 (8)
which gives us:
In(1/6) L-In(1/6)
B A péin
Therefore, under bounded resources and finite constraints, the probability of finding a valid plan

in n steps is at least 1 — e~ ", providing a formal guarantee of probabilistic completeness for our
neural-symbolic planning approach. O

n

©)

B.5 Time complexity

Proof of Theorem 5.1 (Time Complexity). We analyze the worst-case time complexity of our bidirectional
search algorithm for finding a plan of length L with branching factor b in a state space with n states.

Search Space Analysis: In classical forward-only search, the algorithm potentially explores all states
reachable within L steps from the initial state wy. With branching factor b, this yields a search space of
size: .
) bL+1 -1
S =N = " _ oK 10
| forward’ Zz; bh_1 () ()

Our bidirectional approach simultaneously expands from the initial state wq and the goal state w*. Let’s
analyze the size of both search frontiers:

1. Forward Search Frontier: Starting from wy, after i expansions, we explore O(b") states.

2. Backward Search Frontier: Starting from w*, after j expansions, we explore O(b’) states.

Meeting Point Analysis: For a plan of length L, the forward and backward frontiers will meet when
t + 7 > L. The optimal allocation that minimizes the total number of explored states occurs when
i~ j~L/2.

At this balanced meeting point, the number of states explored by each frontier is:

‘Sforward’ = O(bL/Q) and ’Sbackward| = O(bL/2) (11)
Therefore, the total number of states explored is:

|Stotal| — ’Sforward| + |Sbackward‘

12
= O(b"?) + O(b"/?) = O(v"/?) (2

Verification Overhead: At each iteration, our algorithm:

1. Selects the most promising state from each frontier using the planning distance function D, which
takes O(log | F'|) time with a priority queue, where | F| is the frontier size.

2. Expands the selected state by applying all possible operators, which takes O(b) time.

3. Attempts to find meeting points between the frontiers, which requires checking O(|Fr| - |Fg|)
potential state pairs in the worst case, where | Fz| and | F'z| are the sizes of the forward and backward
frontiers.

4. Performs pullback verification for promising meeting candidates, which takes O(d) time per candi-
date, where d is the dimensionality of our state representation.

21220

In the worst case, the frontier sizes grow to O(bL/ 2), making the meeting point search potentially
expensive. However, our planning distance function D provides an effective heuristic to limit the number
of candidate pairs to consider.

Let k be the number of most promising pairs we consider at each iteration, where k is a constant that
depends on the problem domain. The verification overhead per iteration becomes O(k - d) = O(1) for
fixed k and d.

Total Complexity: Over the course of the search, we explore O(bL/ 2) states, with each state requiring
O(b) time for expansion and O(1) time for verification. Thus, the total time complexity is:

T =0@0b"?.b-1)=00B"*) = 0(b!/?) (13)

where the last simplification assumes b > 1.

Comparison with Unidirectional Search: The standard unidirectional forward search has time com-
plexity O(b%). Our bidirectional approach achieves O(bL/ 2), which represents a quadratic improvement
in the exponent:
i — pL/2 (14)
pL/2
This exponential reduction makes problems with large L tractable in practice. For example, with b = 3
and L = 20, unidirectional search explores up to 32° ~ 3.5 x 10 states, while our bidirectional approach
explores only up to 31 ~ 59, 000 states—a reduction by a factor of approximately 60, 000.
Therefore, the bidirectional search algorithm has time complexity O(b%/?). O

C Implementation Details

Our implementation uses Llama3.1-13B as the backbone LLM model. The model is finetuned on a server
with AMD EPYC CPU and a single NVIDIA A100 (80GB) GPU.

Dataset Preparation For finetuning the morphism generator ¢ ¢, we construct training examples through
negative sampling of valid planning pathways. For each state node w; in the pathway rooted at w*, we
create positive examples using the ground truth morphisms, and negative examples using invalid or
suboptimal morphisms. We assign preference scores based on V;(w;|G) values obtained through the
bidirectional search methodology described in Section 4.2.

For the planning distance function D, we collect training pairs from both forward and backward
search spaces. From each valid pathway to w*, we extract state pairs and their corresponding labels
Vi (w;|Gr) — sn(w;|GRr), generating a dataset that captures both top-down and bottom-up planning
distances.

For the value estimator V,, given wy, which we model as MLP, we extract ground truth minimum cost
values from completed search trees, using them as supervision signals.

Distance Function Components The symbolic state distance d; is implemented as MLP(hs, — hs,),
where hg, is the embedding of symbolic state s; generated by the LLM. For logical constraints, we use

the Jaccard distance d;(l1,1l2) = 1 — I;igg}

time differences: di(t1,t2) = > icacive [t1(2) — t2(7)]. Based on ablation studies, we set component
weights to a; = 0.85, a = 0.05, aqy = 0.05, o = 0.05.

. Temporal distance d; is computed as the summation of active

Model Training We train all MLP components using the Adam optimizer with initial learning rate
0.001 and decay factor 0.3. We employ early stopping with patience 3 to prevent overfitting. Through
hyperparameter tuning, we selected dropout ratio 0.2 (from [0.1-0.5]), 3 hidden layers (from [2-4]), and
hidden dimensions of 1024 for d, and 256 for V;,. The morphism generator ¢ is finetuned using Direct
Preference Optimization (DPO) with the TRL library, training for learning rate le-5 with batch size 8,
gradient accumulation step of 2, decay 0.1. The result is by default.

21221

D Decomposition Prompt

LLM-Driven Structured Task Decomposition

User Query: Train a language model on Dataset X within 12 hours, ensuring memory usage stays under 16GB.

System Prompt: Parse the given task specification into a formal structured representation with the following schema
(return as JSON):

1. Resources: {r;} — The set of resources with their types, capacities, and initial states (e.g., computational resources,
data assets, model artifacts)

2. Operators: {O;} — The set of valid operations where:

* Unary operators: O; : S; — Si41 (e.g., preprocess, validate)
* Binary operators: O; : S; x Ry — Sit1 (e.g., train_on, evaluate_with)

3. Constraints: {C;} — The set of domain and resource constraints, where:

* Temporal constraints: {tmin, tmae } for each operation
* Resource bounds: {7min, "'maz } for each resource consumption
* Precedence constraints: {(O;, Ox)|0; < O}

This initial decomposition is then progressively refined through subsequent steps.

Constraint Refinement Step

System Prompt: Identify and clarify any ambiguous or missing constraints in the initial specification:
* Initialization prerequisites
* Resource contention:

* Constraint type:

Resource Formalization Step

System Prompt: Formalize each resource with explicit typing, quantification and format:

* Specific units and measures for each resource
* Minimum/maximum values for each constraint

* Formal temporal expressions

The final categorical encoding step transforms these specifications into mathematical objects, mor-
phisms, and constraints suitable for our category-theoretic framework. This iterative process significantly
reduces manual engineering effort typically required for symbolic planning approaches, while ensuring
the resulting formalization maintains the precision needed for categorical verification.

Meta-Prompt for Domain Adaptation. To adapt the decomposition framework to a new domain,
replace the domain-specific primitives in the Resources, Operators, and Constraints fields with
entities relevant to that setting. For example, in cooking, resources become ingredients and appliances,
operators are actions such as chop or bake, and constraints encode nutritional or temporal limits; in
robotics, resources map to robots and sensors, operators include move or pick, and constraints enforce
energy, safety, or timing bounds. The schema and output format remain unchanged—the only modification
is substituting examples and constraints that capture the new domain’s requirements.

D.1 Worked Example: Task Decomposition

We illustrate a full decomposition example with the task:
“Bake cookies with limited sugar for diabetes consideration while still tasting good.”

21222

Step 1: Initial Decomposition (via LLM). Extract candidate resources, operators, and constraints.

Resources: flour (2 cups), sugar (0.5 cups), erythritol (1/3 cups), oven, mixing bowl.
Operators:

* O;: mix(ingredients) — dough

¢ O,: bake(dough, oven) — cookies

Constraints:

* Resource: sugar < 0.1 cups

* Temporal: bake duration € [15, 20] minutes

* Precedence: mix < bake
Step 2: Constraint Refinement. The system identifies implicit assumptions:

* Oven must be preheated before bake.
* Sugar substitution with erythritol is allowed but capped at 1/3 cup.
* Mixing requires all dry ingredients to be available simultaneously.

Step 3: Resource Formalization. Resources are typed and quantified explicitly:
{ "flour": {"type": "ingredient", "quantity": "2c"}, "sugar": {"type": "ingredient", "quantity": "0.5c",
"max": "0.1c"}, "erythritol": {"type": "ingredient", "quantity": "1/3c", "max": "1/3c"}, "oven": {"type":

"appliance", "state": "preheated"}, "bowl": {"type": "container", "capacity": "5c"} }

21223

E Algorithm

Algorithm 1 Bidirectional Search with Planning Distance

Require: Initial state wg, Goal state w*, Planning distance D, Budget B
G" + {wo}, G” + {w*}
V(wg) < 0, V(w*) <0
FE « {wo}, FB « {w*}
steps < 0
while steps < B and (|F¥| > 0 and |FZ| > 0) do
Wselect, F = argmin,, . rr Vi (w|GF) > Forward selection
for each valid morphism f : wsejeet, p — w' do
Add v’ to G and FF if not already present
V(w') <= min{V ('), V(wseieet,r) + ¢(f)}
sn(w'|GF) « Vi = D(w',y(w'))
end for
Remove wgeject, p from FE°
Wseleet, B arg min,, e 75 [V (w|GP) + min(Dy(w|GB))] > Backward selection
for each valid morphism f : W' — wsejeer, 3 do
Add v’ to GB and FPB if not already present
V(w/) — min{V(w’), V(wselect,B) + C(f)}
rn(w'|GB) « Vi
Sn(w/|g3) A {Dw’ - Vw’} = {D(’Y(w/)’w,) - Vw’}
end for
Remove wgeject, g from F B
Update sn and D; values via Uppropagation and Downpropagation for G2
Attempt pullback checks between states in G and g8
for each wr € G and wp € GP with D(wp, wg) < e do
if there exist morphisms fr : wrp — we and fp : wp — we then
Attempt to construct pullback wp with projections p; : wp — wr, p2 : Wp — Wp
if valid pullback wp exists then
plan < Compose path from wq to wp with path from wp to w*
return plan
end if
end if
end for
Prune dominated states from Gf" and G%
steps < steps + 1
end while
return no valid plan found

21224

F AI Assistant Usage

This research utilized Al assistants including Claude and GPT-4 for several aspects of the paper and
dataset preparation. We employed these tools mainly for:

» Dataset enhancement:GPT-4 was used to augment the RecipeNLG dataset with explicit resource
constraints (e.g., "2 cups flour maximum") and temporal intervals (e.g., "bake for 20 minutes")
to create a more challenging testing environment for constraint satisfaction. This augmentation
process was carefully designed and supervised by the authors to ensure consistency and validity of
the constraints.

* Implementation support: Al assistants provided code debugging assistance for the implementation of
our validation check and bidirectional search algorithm.

* Manuscript preparation: We used Al assistants for literature review to identify relevant papers,
proofreading, language refinement, and formatting assistance.

* Proof check: We used Al assistant to refine and check the draft proofs.

¢ Benchmark: We use Al assistant GPT-4 as one of our benchmark on the dataset

21225

