SOPL: A Sequential Optimal Learning Approach to
Automated Prompt Engineering in Large Language Models

Shuyang Wang', Somayeh Moazeni?, Diego Klabjan!
'Northwestern University, >Stevens Institute of Technology

Correspondence: shuyangwang2025@u.northwestern.edu

Abstract

Designing effective prompts is essential to guid-
ing large language models (LLMs) toward de-
sired responses. Automated prompt engineer-
ing aims to reduce reliance on manual efforts
by streamlining the design, refinement, and op-
timization of natural language prompts. This
paper proposes an optimal learning framework
for automated prompt engineering for black-
box models, designed to sequentially identify
effective prompt features under limited evalu-
ation budgets. We introduce a feature-based
method to express prompt templates, which sig-
nificantly broadens the search space. Bayesian
regression is employed to utilize correlations
among similar prompts, accelerating the learn-
ing process. To efficiently explore the large
space of prompt features, we adopt the forward-
looking Knowledge-Gradient (KG) policy for
sequential optimal learning efficiently by solv-
ing mixed-integer second-order cone optimiza-
tion problems, making it scalable and capable
of accommodating prompts characterized only
through constraints. Our method significantly
outperforms a set of benchmark strategies as-
sessed on instruction induction tasks within lim-
ited iterations of prompt evaluations, showing
the potential of optimal learning for efficient
prompt learning.

1 Introduction

Recent efforts in automated prompt engineering
have primarily focused on iterative evaluation and
refinement to converge to ideal prompts (Guo et al.,
2024; Zhou et al., 2023; Pryzant et al., 2023; Prasad
et al., 2023; Shin et al., 2020). These methods of-
ten assume the availability of numerous iterations.
However, in many real-world scenarios, opportuni-
ties to evaluate prompts are limited, as each prompt
evaluation can be costly or time-consuming. For
example, a company may use LLMs to generate
blog posts promoting a new product. The narrative
of each post may vary depending on the target audi-

ence such as lawyers, computer engineers, or edu-
cators, and the choice of underlying advertisements
included. The LLM prompt should be carefully de-
signed to incorporate these key aspects. The post
is then evaluated based on user click-through rates.
Each evaluation is expensive as it requires users
to visit the website and interact with the content.
In such cases, the number of prompts that can be
tested is very limited.

Moreover, many existing approaches search over
a set of precrafted candidate prompts for ideal
prompts (Shi et al., 2024; Zhou et al., 2023; Luo
et al., 2023). These methods require identifying
and enumerating a set of prompts, which restricts
the scalability as the candidate set expands. They
also fail to utilize the correlation among similar
prompts to expedite learning.

To unlock the potential of LLMs in diverse sce-
narios, it is crucial to develop an automated prompt-
ing framework for black-box LLMs that is capable
of capturing dependencies among prompts and effi-
ciently identifying high-performing prompts within
few evaluations. This paper presents a principled
forward-looking iterative process for automated
prompt engineering through the optimal design of
a sequence of prompts.

We propose an interpretable feature-based ap-
proach to prompt representation. Various categori-
cal or numerical features can be considered to char-
acterize detailed aspects of a prompt, such as the
selection and ordering of demonstrative examples.
A recent survey (Dong et al., 2024) summarizes ex-
isting methods for organizing and selecting demon-
strative examples, and Xu et al. (2024) propose a
method for ordering in-context samples based on
label distributions. Previous works identify factors
within a prompt that influence the LLM outputs
but often treat these aspects in isolation. We allow
for capturing various interactions among prompt at-
tributes and can accommodate potential constraints
on the features. This feature-based prompt rep-

21172

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 21172-21185
November 4-9, 2025 ©2025 Association for Computational Linguistics

mailto:email@domain

resentation enables the inclusion and exploration
of a vast and diverse set of prompts, which does
not require manual prompt provision. In addition,
in contrast to prompt descriptions based on em-
bedding vectors, our representation is inherently
interpretable.

We adopt a Bayesian approach to refine beliefs
about the influence of prompt features on the LLM
response. It supports the integration of prior knowl-
edge and user opinions and enables the capture of
feature correlations. To operationalize this, we de-
fine a probabilistic model to link prompt features
to a response quality of interest. In this paper, we
demonstrate our approach using LLM response ac-
curacy as the primary evaluation metric.

We formalize the iterative process of automated
prompt engineering for black-box LLMs under a
limited number of prompt evaluations as a sequen-
tial decision-making problem. Given limited oppor-
tunities for prompt evaluation, this problem falls
into the category of finite-horizon discrete-time
Markov decision processes; see (Puterman, 2014).
An optimal learning policy sequentially selects a
feasible prompt representation for evaluation, aim-
ing to maximize the expected outcome of the final
prompt. Due to the potentially large prompt fea-
ture space, the curse of dimensionality (Powell,
2022) hinders the exact computation of the optimal
prompt selection. We adopt an approximate policy
for the optimal learning problems, known as the ex-
pected improvement policy in (Chick, 2006; Chick
et al., 2010) or Knowledge-Gradient (KG) policy
in (Frazier et al., 2009; Powell and Ryzhov, 2012).
This is a forward-looking policy that maximizes the
expected improvement in the value of information
in each learning phase. The KG policy often excels
in practical scenarios with limited evaluation bud-
gets, outperforming common static data acquisition
strategies and dynamic test-and-learn policies.

The large space of prompt candidates, defined
by constrained features, makes it impractical to
enumerate all feasible alternatives for determining
KG decisions. To address this challenge, we lever-
age recent advancements in scalable optimal learn-
ing and KG computation. In contrast to earlier re-
sults to compute KG decisions (Frazier et al., 2009)
based on enumeration of all feasible alternatives, re-
cent computational methods (Moazeni et al., 2020;
Han et al., 2016; Defourny et al., 2015) build on
optimal quantization of the response probability
followed by mixed-integer conic optimization re-
formulations to leverage efficient optimization solu-

tion methods. For optimal learning problems with
larger feature spaces, an iterative process involving
solving mixed-integer linear optimization problems
is employed to achieve even greater computational
efficiency and scalability.

Our approach requires users to predefine a set
of features and corresponding choices to construct
the prompt search space. However, these manual
efforts can be substantially reduced by leveraging
LLMs to generate a set of choices for each feature.
Given the capability of the KG policy, our method
can efficiently explore the resulting feature spaces.

We assess the performance of sequential prompt
learning with adaptive prompt selection policies
on a variety of instances of instruction induction
tasks (Honovich et al., 2023), designed for LLMs
to deduce implicit tasks or instructions. We use
the accuracy of responses from GPT-3.5 on the
validation data as the primary performance metric.

We evaluate the performance of the KG policy in
comparison with the adaptive myopic policy, the in-
creasingly popular Thompson sampling policy, and
other automated prompt engineering methods such
as EvoPrompt (Guo et al., 2024) using an evolution-
ary algorithm to refine prompts and TRIPLE (Shi
et al., 2024) using a multi-armed bandit approach to
select prompts. Our results show that the KG policy
consistently identifies high-quality prompts within
30 or fewer evaluations, outperforming benchmark
methods. Furthermore, KG is particularly effec-
tive for challenging tasks with high uncertainty
and sensitivity to prompt variations, demonstrating
its potential for scalable, cost-efficient automated
prompt engineering. Our code is available ! and
data details are provided in the Appendix.

Our contributions can be summarized as follows.

* We introduce a sequential optimal learning
framework for automated prompt engineering
to guide through the process of designing a
sequence of prompts that effectively elicit ac-
curate responses from an LLM. The approach
is compatible with black-box LLMs and is
particularly effective for applications where
prompt evaluation is resource-intensive.

* We propose a feature-based approach to rep-
resent language prompts, which greatly ex-
pands the prompt search space. A link func-
tion maps the features to LLM response ac-
curacy through Bayesian model parameters

"https://github.com/shuyangwang2025/SOPL

21173

https://github.com/shuyangwang2025/SOPL

to leverage correlations among prompts with
shared characteristics. Our method enables si-
multaneous optimization of multiple features
to generate improved prompts.

* We leverage the KG policy within our se-
quential prompt learning to efficiently iden-
tify high-performing prompts in large prompt
spaces. The KG policy outperforms various
benchmarks, especially for challenging tasks
with high uncertainty in LLM response.

The paper is organized as follows. Section 2
reviews the related literature. Section 3 formalizes
the generic iterative process for automated prompt
learning. Section 4 discusses the forward-looking
KG policy for prompt selection. Illustrative ex-
amples and computational results are provided in
Section 5. We conclude the paper in Section 6.

2 Related Work

Generation-then-selection methods Zhou et al.
(2023) present a two-phase pipeline that generates
a set of candidate instructions, which are evalu-
ated and filtered based on their performance on the
downstream tasks until the best one from the can-
didate set is found. Luo et al. (2023) systematize
the process of iteratively updating and selecting
from a set of candidate prompts by using an opti-
mal control paradigm. However, these approaches
are limited to search spaces represented by pre-
computed prompt candidates, while our framework
encompasses different prompts generated dynam-
ically and various exploration policies. Shi et al.
(2024) also adopt a two-phase approach, model-
ing prompt selection as a multi-armed bandit prob-
lem and applying the continuously reject algorithm.
Their method requires increasing evaluations as the
candidate set grows, whereas our KG policy scales
efficiently with larger spaces of prompts.

Edit-based methods Several approaches refine
prompts by iteratively editing base prompts. GrIPS
(Prasad et al., 2023) applies local text edits, while
(Guo et al., 2024) and (Fernando et al., 2024)
use evolutionary algorithms with mutations and
crossover operations performed by an LLM. Jin
et al. (2024) propose an iterative prompt refinement
scheme specially crafted for relevance ranking in
information retrieval. These methods rely on local
search by modifying existing prompts. Our method,
however, performs forward-looking exploration us-
ing Bayesian optimal learning.

Prompt learning methods Recent studies (Chen
et al.,, 2024; Lin et al., 2024) apply Bayesian
Optimization to explore the embedding space of
prompts, requiring white-box access to LLMs,
while we directly search in the space of discrete
prompts and eliminate the need for white-box
LLMs. RLPrompt (Deng et al., 2022) formulates
prompt construction as a reinforcement learning
problem, which requires extensive evaluations dur-
ing training. In contrast, our framework learns
efficiently under limited evaluation budgets. Re-
cent surveys provide comprehensive taxonomies of
existing methods for automated prompt optimiza-
tion (Li et al., 2025; Ramnath et al., 2025). Our
work complements the literature by introducing a
sequential optimal learning framework that lever-
ages the value of information for efficient prompt
engineering.

3 Sequential Optimal Prompt Learning

We introduce a sequential optimal prompt learning
framework, called SOPL, for automated prompt en-
gineering that is compatible with black-box LLMs
and generates human-readable prompts, while ad-
dressing the challenge of limited number of itera-
tions for prompt evaluation. Our framework, de-
picted in Figure 1, follows the iterative process
outlined in Algorithm 1.

We illustrate our method with examples from
the instruction induction dataset (Honovich et al.,
2023), however, the framework is general and ap-
plicable to a wide variety of tasks. As an example
task, the objective is to identify the most effective
instruction for guiding an LLM to infer the com-
mon theme among a given list of items. Prompt
effectiveness is measured by the accuracy on a la-
beled dataset, which contains input paired with
their ground truth common themes. For example,
given the input “lawyers, basketball, walled yards,”
the corresponding label “involves courts” captures
their common concept. A simple instruction such
as “Find the common theme among the input words”
may serve as an initial guess. However, exhaus-
tively guessing and testing all possible variations
quickly becomes intractable without a systematic
way to represent prompts and leverage information
from prior attempts.

3.1 Feature-Based Prompt Representation

We adopt a feature-based approach to represent tex-
tual prompts, using a feature vector to capture their

21174

Phase 1: Prompt Selection

Phase 2: Prompt Evaluation

N

Prompt representation

Prompt features

(A

Embedding vectors Select a prompt
representation
Prompt candidates by policy =
/

************************** i

| (optional) |
: Demonstration |
: data {

Generate Black box
Prompt LLM

Update
Knowledge
State

(3 P
1 (optional) ‘ Response
i Evaluation data |

3 H ~ -/

Evaluate by a
task-specific
~ metric

Figure 1: SOPL: Sequential optimal prompt learning for automated prompt engineering.

Algorithm 1 Sequential optimal prompt learning
Require Maximum iteration N, prompt represen-
tation selection policy 7: & — X, score func-
tion Eval: X — (0,1), Bayesian update func-
tion Update: S x R — & that implements (3)-
(6).
1: Initialize knowledge state .S.
2: Initialize best prompt so far x*.
3: Initialize best score so far u* < —1.
4: forstepn =1,..., N do
5: Select a prompt representation x <— 7(S).
6: Generate a prompt and evaluate the score
Uy < Eval(z).
7. Clip the score for numerical stability u, <
max (min(u,, 0.999),0.001).
8: Update the knowledge state S <+
Update(S, logit(u,)).
9: if u, > u* then

10: Record best score so far u* <+ u,.
11: Record best prompt so far z* < z.
12: end if

13: end for

14: return z*.

content and structural characteristics. Given a spe-
cific feature configuration, for instruction induction
tasks, we create a meta prompt incorporating the se-
lected feature values, and use an LLM to generate
variations of candidate instructions.

Prompt features can be manually engineered by
the user or derived from established prompt tem-
plates in the literature. For instruction induction
tasks, we focus on five prompt features that have
been shown to impact LLM responses, with a set
of predefined choices for each, as summarized in
Table 1. To generate a candidate instruction, we

e)) . N

[ROLE1] gave a [ROLEZ2] an instruction and inputs. The
[ROLEZ2] read the instruction and wrote an output for
every one of the inputs. Here are the input-output pairs:

Input: [INPUT 1]
Output: [OUTPUT 1]

Input: [INPUT 5]
Output: [OUTPUT 5]

Generate a [DESCRIPTION] instruction. The instruction
was

Figure 2: Meta prompt template 1.

first select a feature vector, for example,

Template 1
example 1, example 2
“Professor & student”

“simple”
No paraphrasing

fi=

We then convert the categorical feature vector f
into a binary vector x using one-hot encoding and
refer to x as the prompt representation. Next, we
construct a meta prompt by inserting the selected
words in the corresponding fields of the chosen
meta prompt template, as shown in Figure 3. The
meta prompt guides an LLM to create a textual
instruction that reflects the features encoded in z.
Different combinations of the features yield differ-
ent meta prompts, and ultimately, different candi-
date instructions. The goal is to find an optimal
feature configuration, consisting of the template
and word selections, that produces an instruction
with the highest accuracy on the labeled dataset.
Previous studies have examined each feature in
isolation, whereas we integrate these features in the
prompt representation to leverage the synergies that
emerge from their combination. In addition, our
method also accommodates potential constraints
on the features, such as mutually exclusive features,
conditional features, and multiple-choice decisions,

21175

Feature Choices

Meta prompt template
(Zhou et al., 2023)

Four meta prompt templates; one example is shown in
Figure 2, and the others are shown in Appendix A.

Demonstrative examples
(Lu et al., 2022; Zhao et al., 2021)

Examples of input-output pairs sampled from the
demonstration dataset.

Roles
(Wu et al., 2023; Kong et al., 2024)

(Scientist, research assistant), (Professor, PhD student),
(Mom, kid), (Programmer, Al system), (Manager, employee),

(1, friend), (Director, actor), (Coach, athlete), (Chef, sous chef).

Paraphrasing Binary: if paraphrasing is enabled, we prompt the LLM to
(Deng et al., 2023; Zhou et al., 2023) generate a variant of the instruction; see details in Appendix A.
Description (empty), clear, detailed, simple, complex, precise, ambiguous,

(Lietal., 2023)

technical, expository, conceptual, authoritative, friendly,

formal, informal, encouraging, stern, rude, assertive,

humorous.

Table 1: Prompt features used for instruction induction tasks.

Meta Prompt Template 1

Professor gave a student an instruction and
inputs. The student read the instruction and
wrote an output for every one of the inputs.
Here are the input-output pairs:

Describe what
the inputs have
—{ LLM J—» in common,
— starting with
‘involve.'

Input: "rock climbing"”, "elevators",
"helicopters"
Output: "involve vertical movement."

Input: "guitars", "sewing", "tennis rackets",
"theoretical particle physics"
Output: "involve strings."

Generate a simple instruction. The instruction
was ___

Figure 3: The meta prompt created from the selected
feature vector and the generated candidate instruction.

which can be formalized as linear inequality or
equality constraints on the vector x. The set of fea-
sible feature combinations, represented by vectors
x that satisfy the constraints, forms a diverse and
potentially large search space, denoted by X.

Our framework encompasses existing ap-
proaches as special cases. For example, the meth-
ods (Zhou et al., 2023; Shi et al., 2024; Luo et al.,
2023) that select from a set of pregenerated prompt
candidates can be viewed as using the candidate set
as X, where each z represents one candidate.

3.2 Prompt Evaluation

We measure the effectiveness of the prompt gen-
erated from x by a numeric score u,, which is
computed by a task-specific score function Eval.
In our example where labeled data are available, the
score function Eval computes the accuracy, i.e., the
percentage of LLM responses that exactly match
the ground truth labels as the score .

For common metrics such as accuracy, F1-score,
and point-wise mutual information (Bouma, 2009),
the score lies in the interval between O and 1. We
assume that

logit(uz) = O x + ¢, (1)

where © ~ N (ue, Xo/p) is the D-dimensional
model parameter and € ~ N (0, 1/p) with variance
1/p is the measurement noise. The mean ug and
the precision p are the unknown parameters to es-
timate. For general score functions with ranges
beyond 0 to 1, alternative link functions can be
used to replace the logit function in (1).

3.3 Knowledge State Update

Bayesian learning addresses uncertainty in the ef-
fectiveness of prompt features by modeling multi-
ple levels of randomness and correlation through
prior distributions for model parameters. It can
also incorporate existing knowledge and user input
into these prior probability distributions. We adopt
the Bayesian framework with a multivariate normal
prior for the coefficients pg and a Gamma prior for
the precision p, i.e.,

pelp ~ N (0,%/p), p ~ Gamma(a,b). (2)

The belief S = (6,%,a,b), referred to as the
knowledge state, encodes prior observations of
prompt performance and informs future decisions.
Vector © denotes the model parameter, and 6 de-
notes the mean of the distribution that describes
the model parameter distribution. The multivari-
ate distribution (2) captures dependencies among

21176

unknown parameters, implying that learning about
one prompt provides insights into the effectiveness
of others, thereby accelerating learning.

We iteratively update the knowledge state based
on observed responses. At the n-th iteration, with
knowledge state S,, = (0, X, an,b,) and se-
lected prompt representation x,,, we observe score
un = Uy, and update the knowledge state us-
ing Bayesian updating equations for the Normal-
Gamma model as follows.

logit (uy,) — 0, =,

Opi1 =0, + nTn
- 1+ 2] (S0 + D6) n)
3
YT, S
En = En - = 4
1 142! (S + 26)2n “
1
Ap+1 = Qp + 5 (5)
1 i n) v n 2
bst = by + (logit(uy) — 6, Tn) ©)

214z, (Zn +Xe) xn)

Matrix Y g is the scaled covariance matrix of the
model parameter O as in (1). Equations (3)-(6) col-
lectively define the function Update(S, logit(z))
in line 8 of Algorithm 1.

3.4 Prompt Representation Selection Policy

For each iteration, a prompt representation x,, is
selected according to a policy 7, aiming to maxi-
mize the test score on the downstream task after N
iterations of evaluation.

Our framework allows for different prompt rep-
resentation selection policies to explore the feasible
prompt space X and update the knowledge state,
including heuristic policies such as adaptive my-
opic (Greedy) and Thompson sampling (TS). The
Greedy policy selects the best x based on the cur-
rent knowledge state by

7TGreedy(gﬂ) ‘= argmax Q,I(E. (7
zeX

The TS policy samples from the posteriors of
the parameters by p ~ Gamma(ay,by), 0 ~
N (0,,,%,/p), and then selects x by

WTS(Sn) := argmax 0z)
zeX

Both policies are adaptive, but they are not forward-
looking as they do not explicitly take into ac-
count the effect of selected prompts on subsequent
prompt selections and overall learning process.

With a limited budget of N, sequential opti-
mal prompt learning can be formulated as a finite-
horizon Markov decision process, where the action
space X consists of prompt representations and the
state space S consists of knowledge states. Next,
we discuss an approximate solution for the optimal
prompt representation selection policy.

4 KG Prompt Selection Policy

We consider a forward-looking optimal learning
policy designed to maximize the expected improve-
ment in an approximated value of information dur-
ing each iteration. This approach, known as the
Knowledge-Gradient (KG) policy, offers an ap-
proximate solution to the MDP for prompt selec-
tion. For additional discussion and analysis, refer
to (Gupta and Miescke, 1996; Chick et al., 2010;
Frazier et al., 2008; Powell and Ryzhov, 2012). The
value of information is measured by the expected
single-period improvement, i.e., the difference be-
tween the values of the knowledge states S,11 and
Sy, if the prompt representation x,4+1 = z is se-
lected. For KG, we assume that x is binary. Hence,
at iteration n, the following KG quantity is maxi-
mized:

vy = E[VN(Snt1)[Sn, 2] = VN (Sn), (9)

where V (.9) is the value of the optimal policy at it-
eration IV for any knowledge state S, i.e., Vi (S) =
maxzex E[n;|S], where n,, := logit(u,) is based
on (1). Recall that 5,11 is the transition from state
Sy, induced by the updating procedure in (3)-(6).
The quantity v is the marginal value of one more
prompt representation x being queried. Its value is
always nonnegative.

The decision of the KG policy selects the prompt
representation that maximizes the KG quantity
in (9)%:

WKG(SR) = argmax v, (10)

TEX
According to Proposition 5 in (Moazeni et al.,
2020), for any z € X, the KG quantity correspond-
ing to model (1) is given by

vy = E[Iyng(pz + g () Taa,,) |Sn] — Iyngpz
(11)

*For discussion of the related concepts of asymptotic opti-
mality and statistical consistency of the KG policy, the reader
is referred to (Frazier et al., 2008; Frazier and Powell, 2011)
when & is specified in enumerative form, and to (Han et al.,
2016) when & is represented in constraint-based form.

21177

where Ty, follows a Student’s ¢-distribution with
2a,, degrees of freedom, and

py=0"y (12)
bn -
n — En
@ () \/an(l 2T (S + De)z) T
(13)

The expectation in (11) is with respect to the one-
dimensional random variable T3, .

The first term in the KG quantity in (11) can be
approximated by

J
. n g (@)t 14
j;wj I;lea/‘%((py + qy (1’) J) ()

where t1,...,t; € R is the sequence of points
that minimizes the quadratic quantization error
of the Voronoi quantizer for Tb,,. If g =
—o0, and t541 = oo, the weights are defined
as w; = Fr,, (L J?“) — Frp,, (L’l;tj) for
Jj=1,---,J. Here, Fr,, is the cumulative dis-
tribution function of 75, ,. Therefore, the selected
prompt representation based on the KG policy at
state .S, is computed by solving the following
mixed-integer optimization problem:

J

max E wjﬂ;{yj +7 (15)
(@,7)eX+ r<M;zyl,....yl eXx =

J
st ||Py/%a]y <) witja TSy (16)
j=1
71y — M1, —x) <z < Mzx. (17)

Here, 1,,, denotes an m-dimensional vector of ones,
where m is the dimensionality of the prompt rep-

. T
Matrix P, := %(—fﬁf +

resentation features. B

¥, + Xo), where A and h form the equality con-
straints of the feasible set X = {z|Az = h, Bx <
g, x binary}. We assume that (B, g) define all of
the facets of conv(x) and thus (A, h) is the affine
hull of conv(z). We assume that conv(x) is not
full-dimensional (otherwise we introduce an artifi-
cial feature T with constraint £ = 1). In this case,
X, consisting of elements (z,7) € R™, repre-
sents the homogenized version of the set X'. In the
last constraint, M denotes a large constant. For
derivation details and a computationally efficient
iterative algorithm only involving solving mixed-
integer programming problems to solve this prob-
lem, see Propositions 6 and 7 in (Moazeni et al.,
2020).

The computational complexity of solving the
mixed-integer optimization problems in our formu-
lation (15)—(17) scales primarily with the number
of features m, rather than with the number of alter-
natives, as in typical multi-armed bandit methods
such as Ranking and Selection. A convex approxi-
mation based on semidefinite programming (SDP)
relaxation can be created for this problem class, as
investigated in (Defourny et al., 2015; Han et al.,
2016). Furthermore, numerical results and runtime
analyses in (Moazeni et al., 2020) demonstrate the
scalability of solving the mixed-integer program-
ming subproblem as the number of features m in-
creases.

S Computational Experiments

We demonstrate the performance of the proposed
SOPL framework on the instruction induction tasks
(Honovich et al., 2023) with GPT 3.5 and allow
N = 30 iterations of prompt evaluation. The
dataset consists of 24 tasks, covering various as-
pects of text comprehension. For each task, we
partition the dataset into a demonstration set for
creating prompts, a validation set for evaluating
intermediate prompts, and a held-out test set for
evaluating the final prompt. We focus on the 13
challenging tasks with validation scores below 80%
and large variance using the default meta prompt
template in (Honovich et al., 2023).

5.1 Benchmark Methods

We compare our method with two benchmarks Evo-
Prompt (Guo et al., 2024) and TRIPLE (Shi et al.,
2024). Both methods provide solutions compati-
ble with black-box access to LLMs and generate
human-readable prompts, and are the two best per-
forming algorithms with these two properties as
reported by prior works. EvoPrompt uses the dif-
ferential evolution algorithm to iteratively refine a
population of candidate instructions. TRIPLE em-
ploys the continuously reject algorithm to identify
an effective instruction from a candidate pool under
a fixed budget. In addition, we use Greedy and TS
presented in (7) and (8) as the baseline policies.

5.2 Results

Table 2 summarizes the average test performance
and Figure 4 presents the test score for each task.
The results indicate that SOPL-KG achieves the
highest average test score of 0.6281, outperform-
ing SOPL-TS, the second best one, by 5.60%. In
comparison to the best prior algorithm, EvoPrompt,

21178

Metric SOPL-KG EvoPrompt TRIPLE SOPL-TS SOPL-Greedy
Test score 0.6281 0.5900 0.5609 0.5948 0.5750
Standard deviation 0.0668 0.0881 0.0966 0.0880 0.0959
Improvement of SOPL-KG 0.00% 6.47% 11.99% 5.60% 9.23%
Improvement per task 0.00% 17.92% 17.19% 9.13% 14.35%
Ranking 1.85 2.92 3.77 2.69 3.69

Table 2: Average test performance across 13 tasks for different methods.

Average Test Score

Average Test Score

thymes word_in_context synonyms sentence_similarity
Tasks

Figure 4: Test performance on 13 tasks for different methods. The height of each bar represents the average test
score and the error bar represents the standard deviation across 20 replications with different random seeds.

SOPL-KG achieves a 6.47% improvement in av-
erage test score and an average improvement of
17.92% per task. For each task, we rank the five
methods by their test scores. SOPL-KG attains the
best average ranking of 1.85, followed by SOPL-
TS, and outperforms all baselines.

5.3 Sensitivity to the Number of Iterations

We evaluate the performance under reduced eval-
uation budgets of N = 20 and N = 10. For the
SOPL methods, we also experiment with an early
stopping mechanism that terminates the process
early if the best validation score does not improve
for 7 consecutive steps or when N = 30 is reached.
Figure 5 depicts the average test score for different
values of N. For the SOPL methods, we include
two additional experiments of early stopping using
7 = 5 and 7 = 10, where N represents the average
number of realized iterations before termination.

As the number of iterations increases, algorithms
generally discover higher-performing prompts,
with SOPL-KG showing the largest improvement
within the first few iterations. Additionally, SOPL-
KG consistently outperforms other methods for dif-
ferent values of N. The finding confirms that, em-
powered by the forward-looking KG policy, SOPL
is capable of identifying high-quality prompts
within only a few prompt evaluations.

—e— SOPLKG
—8— SOPLTS

7| —e— sopL-Greedy
—8— EvoPrompt
—e— TRIPLE

0.58 4

Average Test Score

Figure 5: Average test score versus number of iterations.

5.4 Sensitivity to the Prompt Selection Policy

We further demonstrate that the advantage of the
KG policy over other prompt selection policies
depends on the sensitivity of LLM responses to
prompt variations. In Figure 6, we observe positive
correlations between the variation in prompt scores,
measured by the coefficient of variation across 100
randomly selected feature vectors, and the relative
improvement in test score of SOPL-KG over the TS
and Greedy policies, with correlation coefficients
p1 = 0.89 and py = 0.78, respectively.

These results suggest that KG is particularly ad-
vantageous for challenging tasks where LLM re-

21179

er TS
°

ovement of KG ov

Relative Imp
g
%

2 04 1: larger_animal

tof KG
¢
o
¢

11: word_in_context

Relative Impr
°
S
©%:

Coefficient of Variation

Figure 6: Improvement of SOPL-KG over SOPL-TS
(upper plot) and SOPL-Greedy (lower plot) versus the
coefficient of variation.

sponses are highly sensitive to prompt formulation,
achieving over 10% improvement in test accuracy.
For easier tasks such as informal_to_formal,
where the score function is relatively flat with re-
spect to prompt features, simple exploitation poli-
cies such as Greedy often suffice.

6 Conclusion and Future Work

This paper introduces SOPL, a sequential optimal
prompt learning framework for efficient automated
prompt engineering when exhaustive evaluation is
costly or impossible. We develop a feature-based
approach to model an expansive prompt space. The
KG policy with correlated beliefs facilitates effi-
cient and scalable prompt learning. Our method
achieves superior performance on instruction induc-
tion tasks within 30 prompt evaluations, showing
the potential of optimal learning methods for effi-
cient prompt learning. Future work may explore
continuous prompt representations by embedding
vectors using the SOPL framework.

Limitations

SOPL offers an automated approach for prompt
generation and refinement, utilizing a feature-based
representation to form the prompt space. One lim-
itation, however, is that SOPL requires users to
specify a set of features in advance to construct
the search space. While this step requires some
manual efforts, these features are often intuitive
to define given the task or can be derived from
existing material or experience on similar tasks.

Acknowledgments

This research was supported in part through the
computational resources and staff contributions
provided for the Quest high performance comput-
ing facility at Northwestern University which is
jointly supported by the Office of the Provost, the
Office for Research, and Northwestern University
Information Technology.

References

Gerlof Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. Proceedings of
the Conference of German Society for Computational
Linguistics and Language Technology, 30:31-40.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng
Huang, and Tianyi Zhou. 2024. Instructzero: Ef-
ficient instruction optimization for black-box large
language models. In International Conference on
Machine Learning.

Stephen E Chick. 2006. Bayesian ideas and discrete
event simulation: why, what and how. In Proceedings
of the 2006 Winter Simulation Conference, pages 96—
106.

Stephen E Chick, Jiirgen Branke, and Christian Schmidt.
2010. Sequential sampling to myopically maximize
the expected value of information. INFORMS Jour-
nal on Computing, 22(1):71-80.

Boris Defourny, Ilya O Ryzhov, and Warren B Powell.
2015. Optimal information blending with measure-
ments in the L? sphere. Mathematics of Operations
Research, 40(4):1060-1088.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi-
han Wang, Han Guo, Tianmin Shu, Meng Song, Eric
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing
discrete text prompts with reinforcement learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3369-3391.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan-
quan Gu. 2023. Rephrase and respond: Let large
language models ask better questions for themselves.
arXiv preprint arXiv:2311.04205.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui.
2024. A survey on in-context learning. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 1107-1128.

Chrisantha Fernando, Dylan Sunil Banarse, Henryk
Michalewski, Simon Osindero, and Tim Rock-
taschel. 2024. Promptbreeder: Self-referential self-
improvement via prompt evolution. In International
Conference on Machine Learning.

21180

Peter Frazier, Warren Powell, and Savas Dayanik. 2009.
The knowledge-gradient policy for correlated nor-
mal beliefs. INFORMS Journal on Computing,
21(4):599-613.

Peter I Frazier and Warren B Powell. 2011. Consistency
of sequential Bayesian sampling policies. SIAM Jour-
nal on Control and Optimization, 49(2):712-731.

Peter I Frazier, Warren B Powell, and Savas Dayanik.
2008. A knowledge-gradient policy for sequential
information collection. SIAM Journal on Control
and Optimization, 47(5):2410-2439.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu
Yang. 2024. Connecting large language models with
evolutionary algorithms yields powerful prompt op-
timizers. In International Conference on Learning
Representations.

Shanti S Gupta and Klaus J Miescke. 1996. Bayesian
look ahead one-stage sampling allocations for selec-
tion of the best population. Journal of Statistical
Planning and Inference, 54(2):229-244.

Bin Han, Ilya O Ryzhov, and Boris Defourny. 2016. Op-
timal learning in linear regression with combinatorial

feature selection. INFORMS Journal on Computing,
28(4):721-735.

Or Honovich, Uri Shaham, Samuel R. Bowman, and
Omer Levy. 2023. Instruction induction: From few
examples to natural language task descriptions. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1935-1952.

Can Jin, Hongwu Peng, Shiyu Zhao, Zhenting Wang,
Wujiang Xu, Ligong Han, Jiahui Zhao, Kai Zhong,
Sanguthevar Rajasekaran, and Dimitris N Metaxas.
2024. Apeer: Automatic prompt engineering en-
hances large language model reranking. arXiv
preprint arXiv:2406.14449.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong
Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and Xiao-
hang Dong. 2024. Better zero-shot reasoning with
role-play prompting. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 4099-4113.

Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu,
Wenxin Hou, Jianxun Lian, Fang Luo, Qiang Yang,
and Xing Xie. 2023. Large language models un-
derstand and can be enhanced by emotional stimuli.
arXiv preprint arXiv:2307.11760.

Wenwu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin.
2025. A survey of automatic prompt engineer-
ing: An optimization perspective. arXiv preprint
arXiv:2502.11560.

Xiaogiang Lin, Zhaoxuan Wu, Zhongxiang Dai,
Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet,
and Bryan Kian Hsiang Low. 2024. Use your IN-
STINCT: INSTruction optimization for LLMs using
neural bandits coupled with transformers. In Interna-
tional Conference on Machine Learning.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086-8098.

Yifan Luo, Yiming Tang, Chengfeng Shen, Zhennan
Zhou, and Bin Dong. 2023. Prompt engineering
through the lens of optimal control. arXiv preprint
arXiv:2310.14201.

Somayeh Moazeni, Boris Defourny, and Monika J
Wilczak. 2020. Sequential learning in designing mar-
keting campaigns for market entry. Management
Science, 66(9):4226-4245.

Warren B Powell. 2022. Reinforcement learning and
stochastic optimization: A unified framework for se-
quential decisions. John Wiley & Sons.

Warren B Powell and Ilya O Ryzhov. 2012. Optimal
learning, volume 841. John Wiley & Sons.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2023. GrIPS: Gradient-free, edit-based in-
struction search for prompting large language models.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957-7968.

Martin L Puterman. 2014. Markov decision processes:
discrete stochastic dynamic programming. John Wi-
ley & Sons.

Kiran Ramnath, Kang Zhou, Sheng Guan, Soumya Sm-
ruti Mishra, Xuan Qi, Zhengyuan Shen, Shuai Wang,
Sangmin Woo, Sullam Jeoung, Yawei Wang, and
1 others. 2025. A systematic survey of automatic
prompt optimization techniques. arXiv preprint
arXiv:2502.16923.

Chengshuai Shi, Kun Yang, Jing Yang, and Cong
Shen. 2024. Best arm identification for prompt
learning under a limited budget. arXiv preprint
arXiv:2402.09723.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

21181

Ning Wu, Ming Gong, Linjun Shou, Shining Liang,
and Daxin Jiang. 2023. Large language models are
diverse role-players for summarization evaluation.
In International Conference on Natural Language
Processing and Chinese Computing, pages 695-707.

Zhichao Xu, Daniel Cohen, Bei Wang, and Vivek Sriku-
mar. 2024. In-context example ordering guided by
label distributions. In Findings of the Association
for Computational Linguistics: NAACL 2024, pages
2623-2640.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-
ternational Conference on Machine Learning, pages
12697-12706.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In International Conference on
Learning Representations.

21182

A Implementation Details

We use OpenAl GPT-3.5 as the LLM for both
generating and evaluating instructions. We allow
N = 30 opportunities to evaluate on the entire
validation dataset since there is no further learning
after this. We set the population size to be 10 for
EvoPrompt as in (Guo et al., 2024), and set the size
of the candidate pool to be 30 for TRIPLE as in
(Shi et al., 2024). We ensure that the same number
of API calls to the LLM is used for evaluating on
the validation data across all methods.

We record the prompt with the highest valida-
tion score during the process. When the maximum
number of prompt evaluation is reached, the prompt
with the highest validation score is used as the final
prompt. The test score is obtained by evaluating the
final prompt on the held-out test set, which consists
of 100 examples unless fewer are available in the
dataset (Honovich et al., 2023).

We repeat the experiment for 20 replications
with different random seeds. The test set is kept the
same for all replications. For each replication, we
randomly select 10 examples from the rest of the
dataset as the demonstration set, and then randomly
select 100 examples, or all remaining examples if
fewer are available, as the validation set.

Details of prompt features The set of features
that defines the prompt search space has been sum-
marized in Table 1. In addition, the other three meta
prompt templates are shown in Figure 8. When the
paraphrasing option is enabled, we first generate
an instruction using the meta prompt constructed
from the rest of the selected features. We then
insert the generated instruction, along with the cho-
sen descriptive word and roles, into the paraphrase
template shown in Figure 7. This produces a para-
phrased instruction as the candidate to evaluate.

Prompt evaluation To evaluate each selected
prompt representation x, we follow the procedure
in Algorithm 2. We construct an evaluation prompt
by inserting the generated instruction and an input
from the dataset into the evaluation template shown
in Figure 9. The response from GPT 3.5 is then
compared to the ground truth label using a task-
specific metric such as exact match. By averaging
the metric values across all examples in the dataset,
we obtain the score u, for the selected x.

Paraphrase the instruction
[INSTRUCTION] in a [DESCRIPTION]
manner. Specify that the instruction is
given by [ROLE1] to [ROLE2].

Figure 7: Paraphrasing template.

[ROLE1] gave a [ROLEZ2] an instruction and inputs. The
[ROLEZ2] read the instruction and wrote an output for
every one of the inputs. Here are the input-output pairs:

Input: [INPUT 1]
Output: [OUTPUT 1]

Input: [INPUT 5]
Output: [OUTPUT 5]

The instruction was ___

(a) Meta prompt template 2.

Input: [INPUT 1] \
Output: [QUTPUT 1]

Input: [INPUT 5]
Output: [QUTPUT 5]

[ROLE1] gave a [ROLEZ] a list of inputs and asked them
to perform a task. The [ROLE2] performed the task and
returned an output for each input.

What was the instruction? Generate a [DESCRIPTION]
instruction.

J

(b) Meta prompt template 3.

~

Input: [INPUT 1]
Output: [QUTPUT 1]

Input: [INPUT 5]
Output: [QUTPUT 5]

[ROLE1] gave a [ROLEZ] a list of inputs and asked them
to perform a task. The [ROLE2] performed the task and
returned an output for each input.

What was the instruction? Respond only with the
instruction.

(c) Meta prompt template 4.

Figure 8: Meta prompt templates.

B Additional Experiment Results

Sensitivity to reduced budgets Table 3 presents
details of the test performance with reduced eval-
uation budgets of N = 20 and N = 10, and Ta-
ble 4 summarizes the results for adopting early
stopping in SOPL, which halts the process if the
best validation score does not improve for 7 = 10
or 7 = b consecutive steps. SOPL-KG outperforms
all other methods within fewer iterations. More-
over, within only 17 realized iterations on average,
SOPL-KG achieves a competitive score of 0.6060,
indicating that early stopping may further reduce
evaluation cost without significantly compromising
performance.

21183

N =20 N =10
Method Mean STD Mean STD
EvoPrompt 05776 0.0956 0.5625 0.0920
TRIPLE 05561 0.0996 0.5333 0.1087
SOPL-KG 0.6174 0.0771 0.5800 0.0935
SOPL-TS 0.5926 0.0845 0.5696 0.0893
SOPL-Greedy 0.5757 0.0941 0.5490 0.1012

Table 3: Average test score after fewer iterations.

Algorithm 2 Score function Eval(x)
Require LLM, validation data {(p;,q:)});,

meta prompt construction function
MetaPrompt, evaluation prompt construc-
tion function EvalPrompt, metric function
Metric.

I: Create meta prompt M, < MetaPrompt(z).

2: Generate instruction I, < LLM(M,).
3: fori=1,...,V do
Get evaluation
EvalPrompt(Z,, p;).
5: Receive LLM response R; < LLM(FE;).

prompt E; —

Evaluate LLM response U; —
Metric(R;, q;).
7: end for

8: Compute the average score u, <— % ZZV:1 U;.

9: return u,.

Instruction: [INSTRUCTION]

Input: [INPUT]
Output:

Figure 9: Evaluation template.

Sensitivity to feature inclusion To assess the ef-
fectiveness of incorporating the set of features used
in the meta prompt templates, we conduct exper-
iments using the default meta prompt from (Hon-
ovich et al., 2023), which includes only the feature
for demonstrative examples. We apply SOPL-KG
to search for the best configuration of demonstra-
tive examples from 20 predefined choices. We
allow N = 30 evaluations and repeat the experi-
ments for 20 replications. The results in Table 5
demonstrate that performance degrades when fea-
tures that enhance the meta prompt are excluded.
While optimizing over a single feature dimension

Polic T=10 T=25

Y Score Steps Score Steps
KG 0.6060 16.88 0.5711 8.45
TS 0.5813 16.10 0.5488 8.20
Greedy 0.5653 16.60 0.5389 8.37

Table 4: Average number of realized iterations and aver-
age test score for different policies with early stopping.

is easier than optimizing multiple features simulta-
neously, it yields suboptimal prompts. This finding
suggests that incorporating multiple features into

the meta prompt templates effectively expands the
search space and leads to higher-quality prompts.

21184

KG (1 feature) KG (all features)

Task Mean STD Mean STD

antonyms 0.7625 0.0200 0.7975 0.0370
cause_and_effect 0.5780 0.2773 0.8260 0.1509
common_concept 0.1434 0.0600 0.1706 0.0350
informal_to_formal 0.5683 0.0929 0.5718 0.0576
larger_animal 0.9055 0.0561 0.9210 0.0130
negation 0.8245 0.0262 0.8255 0.0297
orthography_starts_with 0.6405 0.1575 0.6870 0.0395
rhymes 0.4065 0.1615 0.6610 0.1504
second_word_letter 0.9565 0.0065 0.9745 0.0201
sentence_similarity 0.0215 0.0531 0.0590 0.0959
synonyms 0.1490 0.0122 0.3020 0.0441
taxonomy_animal 0.8480 0.1005 0.8610 0.0677
word_in_context 0.1965 0.2039 0.5085 0.1272
Average 0.5385 0.0944 0.6281 0.0668

Table 5: Comparison of KG performance with 1 prompt feature and with all prompt features.

21185

