HUMANITY’S LAST

CODE EXAM
Xiangyang Li* Xiaopeng Li*
Rongju Ruan  Xinyi Dai'

Xiaoshuang Liu

Humanity’s Last Code Exam:
Can Advanced LLMs Conquer Human’s Hardest Code

Competition?

Kuicai Dong Quanhu Zhang

Shengchun Xu

Yasheng Wang Ruiming Tang’
HUAWEI NOAH’S ARK LAB
{lixiangyang34, dong.kuicai, zhangquanhul, ruanrongju, daixinyib5,
liuxiaoshuang4, xushengchun, wangyasheng, tangruiming}@huawei.com
xiaopli2-c@my.cityu.edu.hk

Abstract

Code generation is a core capability of large lan-
guage models (LLMs), yet mainstream bench-
marks (e.g., APPs and LiveCodeBench) con-
tain questions with medium-level difficulty and
pose no challenge to advanced LLMs. To better
reflected the advanced reasoning and code gen-
eration ability, We introduce Humanity’s Last
Code Exam (HLCE), comprising 235 most
challenging problems from the International
Collegiate Programming Contest (ICPC World
Finals) and the International Olympiad in Infor-
matics (IOI) spanning 2010 — 2024. As part of
HLCE, we design a harmonized online—offline
sandbox that guarantees fully reproducible eval-
uation. Through our comprehensive evalua-
tion, we observe that even the strongest rea-
soning LL.Ms: o4-mini(high) and Gemini-2.5
Pro, achieve pass@1 rates of only 15.9% and
11.4%, respectively. Meanwhile, we propose a
novel "self-recognition" task to measure LLMs’
awareness of their own capabilities. Results in-
dicate that LLMs’ self-recognition abilities are
not proportionally correlated with their code
generation performance. Finally, our empiri-
cal validation of test-time scaling laws reveals
that current advanced LLMs have substantial
room for improvement on complex program-
ming tasks. We expect HLCE to become a
milestone challenge for code generation and to
catalyze advances in high-performance reason-
ing and human—AlI collaborative programming.
Our code and dataset are also public available!.

1 Introduction

Large Language Models (LLMs) (Liu et al., 2024;
Achiam et al., 2023; Jaech et al., 2024; Hui et al.,
2024) have demonstrated human-level proficiency
across a wide range of text understanding (Dong

“These authors contributed equally to this work.

Corresponding authors.

"https://github.com/Humanity-s-Last-Code-Exam/
HLCE

et al., 2023), reasoning (Yang et al., 2025b), and
generation tasks. Among these, code understand-
ing and generation (Hui et al., 2024; Li et al.,
2025; Guo et al., 2024; Zhu et al., 2024) have
emerged as key research areas, since code inher-
ently reflects reasoning and logical thinking skills.
To evaluate LLMs’ capabilities in this domain,
many code generation benchmarks, such as Live-
CodeBench (Jain et al., 2024), MBPP (Austin et al.,
2021), HumanEval (Chen et al., 2021), and SWE-
bench (Jimenez et al., 2023), have been established.
These benchmarks have accelerated the progress of
LILM-based code models, but the most advanced
LLMs are now achieving near-perfect or saturated
performance on many of these tasks. This raises
the question: Do current benchmarks truly reflect
the advanced reasoning and code generation abil-
ities of state-of-the-art LLLMs, especially when it
comes to complex, structured, or algorithmic cod-
ing challenges?

Current benchmarks suffer from several critical
limitations: (1) Limited Difficulty: With the in-
creasing capabilities of LLMs, many benchmarks
have become too easy, as shown in Figure 1. For
example, benchmarks like HumanEval already re-
port high pass rates, and achieving perfect scores is
now a matter of incremental progress. (2) Absence
of Interactive-based Evaluation: Most contem-
porary code competition benchmarks (e.g., Live-
CodeBench) rely on standard I/O judging, where
code submissions are evaluated via input/output
pairs. This facilitates outcome-reward reinforce-
ment learning (Guo et al., 2025; Yang et al., 2025a;
Duong et al., 2025), allowing models to exploit
these feedback loops. However, interactive-based
judging® remains largely unexplored for LLMs.
The abilities of LLMs in this setting are thus

YInteractive-based judging is such as International
Olympiad in Informatics (IOI) problems, where participants
implement specific function signatures and the evaluation sys-
tem interacts with these functions directly

21122

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 21122-21137
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/Humanity-s-Last-Code-Exam/HLCE
https://github.com/Humanity-s-Last-Code-Exam/HLCE

DeepSeek-R1 OpenAl-03-mini(High) OpenAl-04-mini(High) Gemini-2.5-Pro
100 - 97.7 97,6 98.5 990
80 - 76.9
74.9
—_ 73.3
° 71.0 72.0
) 68.1
o 64.5 63.2
= 60.4
€ 60 56.9
[}
(]
o 49.249.3
o
~
3 40+
o
3
(6]
[}
<
201 15.9
10.8 11.4
5.2
0 : : . . !
HumanEval LiveCodeBench-v5 SWE-bench Verified Aider polyglot HLCE(Ours)
(Pass@1) (Pass@1) (Acc) (Acc) (Pass@1)

Figure 1: Performance of advanced LLMs on widely-used code generation benchmarks and HLCE.

insufficiently characterized. (3) Underexplored
Test-time Scaling Laws: The relationship be-
tween model scale and performance at test-time in
code generation is insufficiently probed. While re-
cent models like 04-mini and Gemini-2.5-pro have
achieved impressive results, the scalability and po-
tential upper bounds of test-time performance are
still open questions that current benchmarks do not
address.

To address these limitations, we introduce a new
benchmark, Humanity’s Last Code Exam (HLCE),
comprising carefully curated and rigorously fil-
tered programming problems sourced from the 101
and ICPC World Finals competitions from 2010
to 2024. After extensive manual cleaning and val-
idation, the benchmark contains 235 high-quality
competitive programming problems, each accom-
panied by comprehensive test cases. HLCE extends
beyond traditional ACM input/output formats to in-
clude interactive challenges that demand dynamic
program behavior and real-time interaction.

Using HLCE, we evaluate 12 leading LLMs, in-
cluding both reasoning and non-reasoning models.
Our results indicate that even state-of-the-art mod-
els o4-mini(high) and Gemini-2.5 Pro achieve only
15.1% and 11.4% pass@]1 rates, respectively, on
HLCE. This demonstrates that HLCE presents a
significantly higher level of difficulty compared
to existing code generation benchmarks. Further-
more, we introduce a novel self-recognition task,
in which LLMs must determine whether their gen-
erated code solutions are correct or incorrect, pro-

viding direct insight into the models’ capacity for
self-assessment and error recognition. Additionally,
HLCE enables empirical analysis of test-time scal-
ing laws. Our findings reveal that, despite the im-
pressive capabilities of models like 04-mini(high)
and Gemini-2.5 Pro, the upper bounds of test-time
performance remain largely unexplored, suggesting
considerable room for LLM-based reasoning.

Finally, we consider an intriguing question: Can
advanced LLMs genuinely compete with top hu-
man programmers in IOI and ICPC World Finals?
To explore this, we collected performance data for
medalists from these competitions spanning 2010
to 2024 and directly compared their results to those
of leading LLMs. Our analysis shows that models
such as 03-mini, Gemini-2.5-pro, and o4-mini are
capable of achieving medal-level performance in
ICPC competitions. However, these models still
underperform compared to human medalists in the
I0I, highlighting the persisting challenges in truly
top-tier human-competitive code generation. In
summary, our contributions are as follows:

* We introduce HLCE, a novel benchmark compris-
ing 235 competitive programming problems from
I0I and ICPC World Finals (2010-2024), featur-
ing both standard and interactive programming
challenges that significantly exceed the difficulty
of existing code generation benchmarks.

* We conduct comprehensive evaluations on 12
leading LLMs, showing that even most advanced
LLMs achieve only 15.1% and 11.4% pass@1

21123



Benchmark Diff> Lang- Test Problem Human
enchma level uage Cases Category Results
OlympicArena | ) X Interactive X
CodeContest s C++ ¢ Standardl/O X
LiveCodeBench| Bl ) Python ¢/ Standard /0 X
APPS B ) Python v/ Standard /0 X
C++, Standard I/0O
HLCE (Ours) Python v &lInteractive v

Table 1: HLCE vs other code competition benchmarks.

rates. We also propose a novel self-recognition
task to measure models’ abilities to recognize the
correctness of their own generated solutions.

* We empirically validate test-time scaling laws on
HLCE, demonstrating that current LLMs have
not yet reached their performance upper bounds
and highlighting substantial room for further ad-
vancement via improved reasoning capabilities.

* We provide comparative analyses with top human
competitors, revealing the gap between advanced
LLMs and competition medalists.

2 Related Work

Large Language Models for Code Generation.
Recent advancements in LLMs have significantly
enhanced the capability of automated code gen-
eration. Models such as Codex (Chen et al.,
2021), StarCoder (Li et al., 2023), and CodelLlama
(Roziere et al., 2023) have demonstrated remark-
able proficiency in understanding and generating
programming code across various languages. The
emergence of instruction-tuned models like Chat-
GPT (Achiam et al., 2023) and Claude (Anthropic,
2025) has further pushed the boundaries of code
generation capabilities, allowing for more contextu-
ally appropriate and functionally correct code out-
puts. More recently, reasoning-enhanced models
have made substantial progress in the code gener-
ation domain, with claude-3.7 (Anthropic, 2025),
deepSeek-rl (Guo et al., 2025), and 04-mini (Ope-
nAl, 2025) exhibiting extraordinary capabilities in
producing complex, functional code.

Code Generation Benchmarks. LLM code
generation evaluation has evolved through diverse
benchmarks. HumanEval (Chen et al., 2021) es-
tablished a standard with Python function com-
pletion tasks, while MBPP (Austin et al., 2021)
expanded this approach with varied difficulty prob-
lems. Specialized benchmarks emerged targeting
different programming aspects: CodeContests (Li

et al., 2022) and APPS (Hendrycks et al., 2021) fo-
cus on competitive programming challenges, while
DS-1000 (Lai et al., 2023) addresses data sci-
ence tasks. Recent developments include Live-
CodeBench (Jain et al., 2024) for measuring per-
formance on coding competitions across different
time periods, Aider (Aider, 2024) evaluate LLM’s
ability to follow instructions and edit code success-
fully without human intervention, and SWE-Bench
(Jimenez et al., 2023) for real-world GitHub issues.
Open-R1 (Face, 2025) maintained a leaderboard
of 101 2024, but only a few problems were prone
to causing errors and overfitting. As illustrated in
Figure 1, HLCE distinguishes itself through its ex-
ceptional difficulty level: even the most advanced
reasoning-focused LLMs struggle to perform well,
thereby establishing a new ceiling for evaluating
the code generation capabilities of current models.

3 HLCE Benchmark

As illustrated in Figure 2, the HLCE framework
comprises three principal components: Dataset,
Evaluation Task, and Evaluation Framework.

3.1 Dataset

We collect our dataset from two premier com-
petitive programming contests: the International
Olympiad in Informatics (IOI) and the International
Collegiate Programming Contest (ICPC) World Fi-
nals. The competitions represent state-of-the-art
algorithmic problem-solving challenges, attracting
elite participants worldwide and featuring meticu-
lously designed problems that evaluate advanced
computational thinking capabilities.

For ICPC World Finals, our dataset construc-
tion process is as follows:

¢ Extracting Problem Statements: Since offi-
cial problem descriptions are only available in
PDF format, we first attempted to use various
PDF parsing tools (e.g., Markitdown (Microsoft,
2024)), but none yielded satisfactory results.
Hence, we manually copied and pasted problem
content from the PDFs, then used ChatGPT to
further refine and standardize the formatting.

* Collecting Test Cases: We carefully gathered
all official test cases for each problem to ensure
completeness and accuracy for evaluation.

* Data Filtering: We removed problems with cor-
rupted or missing official test cases (such as some
problems from 2018), as well as interactive prob-

21124



4 N
- : = j icpe I Taskl: Code Generation
5. 1
®uMiCPC . pRmlope |
o 1 D B e © o >
R 1 Y A 1 Solution
89 Problems - 146 Problems 1 5 ) 1
- 15 Years - 12 Years 1 @ — EE Solutions . .
1 - = - 1 Task2: Self Recognition
onstruct J % ] Data Manual] ! Online - I8 Offline 1 - Solution =
w| Filter | o at I Check | ! Evaluation Evaluation 1 (= + °
Problem | ¢ 1 I Problems Wrong @ e LIM
Crawling ! 1 Solution = Judge
1 1
1 1
L Dataset Construction Evaluation Pipeline Task Types )

Figure 2: HLCE Benchmark Overview.

lems incompatible with the standard ACM in-
put/output format.
This rigorous process resulted in a dataset of 146
problems from the 2011-2023 ICPC World Finals,
each accompanied by complete test cases.

For 101, the construction process is as follows:

* Extracting Problem Statements: We identi-
fied a comprehensive dump? of IOI problems on
Codeforces and systematically extracted all prob-
lem descriptions using web scraping techniques.
The raw extracted content was cleaned and refor-
matted using ChatGPT to resolve formatting and
consistency issues.

* Collecting Test Cases: We gathered all official
test cases corresponding to each problem for eval-
uation purposes.

* Data Filtering: Output-only problems, which
require only output files instead of program code,
were excluded due to evaluation challenges.

The resulting IOl dataset includes 89 problems

from 2010-2024, each with full test cases and stan-

dardized formatting.

3.2 Evaluation Tasks

We define two distinct evaluation tasks in our
benchmark. The first is the classic code gener-
ation task, which serves as a standard metric to
evaluate the ability of LLMs to generate accurate
code. In addition to this, we propose a novel task
termed the self-recognition task, which aims to
evaluate the model’s ability to recognize whether
the code it generates is correct or incorrect. This
task provides a unique perspective on the model’s
reasoning and introspection capabilities, which are
crucial for applications requiring reliable and au-
tonomous coding solutions.

3https://ioi.contest.codeforces.com/group/32KGs X giK A/blog

3.3 Evaluation Framework

For the code generation task on ICPC World Finals
problems, we implemented a Python-based eval-
uation framework that utilizes standard test cases
with predefined input/output pairs.

For the I0I dataset, despite having collected all
test cases, most IOl problems require interaction
between the evaluation system and C++ functions
in the submission, necessitating the implementation
of specific evaluation programs for each problem.
To address this issue, we developed an automated
submission bot that interfaces with the Codeforces
10I platform. This bot submits LLM-generated
solutions to the official Codeforces 10l judging
system and retrieves detailed scoring information
and execution results for each problem.

For the self-recognition task, we implemented a
separate Python evaluation framework designed to
assess LLMs’ ability to accurately recognize their
own capabilities.

4 Experiments

In this section, we evaluate and analyze the per-
formance of current state-of-the-art LLMs on two
tasks from the HLCE benchmark.

4.1 Experimental Setup

Benchmarked Models. To conduct a comprehen-
sive evaluation, we assessed a diverse set of SOTA
LLMs, encompassing both reasoning and non-
reasoning models. For non-reasoning LLMs, we se-
lected gpt-4o0-mini, claude-3-5-sonnet-20241022,
claude-3-7-sonnet-20250219, gpt-40-2024-05-13,
deepseek-v3-0324, and chatgpt-4o-latest. The
reasoning models included ol-mini, ol, o3-
mini (High), Gemini-2.5-Pro, DeepSeek-R1, and
claude-3.7-sonnet-thinking.

Implementation Details. For all models, we

21125



utilized the OpenRouter* API with default hyper-
parameters. We generated 5 responses per question
and evaluated performance using pass@1 (Chen
et al., 2021) and pass@5 metrics. For IOl ques-
tions, scoring is based on test case success, with
100 indicating all tests passed. Scores below 100
are considered failures. Additional details are pro-
vided in Appendix A.

4.2 Evaluation Results on HLCE
4.2.1 Results on Code Generation Task

Based on the results in Table 2, we can observe
several significant trends in the performance of
LLMs on the HLCE code generation task:

Task Difficulty The results highlight the extraor-
dinary difficulty of our HLCE benchmark com-
pared to existing code generation tasks. While
o4-mini(high) achieved impressive scores on stan-
dard benchmarks (98.5% pass@1 on HumanEval,
74.9% pass@1 on LivecodeBench, 68.1% pass@1
on SWE-bench Verified, and 72.0% on Aider), it
only achieved a pass@1 rate of 15.85% on HLCE.
This significant performance gap reveals several
issues: HLCE problems are exceptionally challeng-
ing, particularly those from IOI (6.48% pass@1
rate), requiring advanced computational thinking
that current Large Language Models (LLMs) strug-
gle to master; the gap between pass@ 1 and pass@5
rates (15.85% vs. 29.31%) indicates that models
possess the necessary knowledge but lack reason-
ing consistency. This difficulty establishes HLCE
as a critical benchmark for measuring advanced
reasoning and algorithmic problem-solving capa-
bilities in LL.Ms.

Non-reasoning vs. Reasoning Models A sig-
nificant performance gap exists between non-
reasoning and reasoning-enhanced LLMs. Al-
most all reasoning models consistently outperform
non-reasoning counterparts across all metrics and
datasets. The best reasoning model (04-mini(high))
achieves 15.85% average pass@ 1, approximately
4.5 times higher than the best non-reasoning model
(deepseek-v3-0324) at 3.53%. Notably, deepseek-
v3-0324 exhibits superior performance among non-
reasoning models, even surpassing the reasoning
model Claude-3.7-Thinking. We attribute this ca-
pability to DeepSeek-V3-0324 being distilled from
DeepSeek-R1 data, which enhanced its coding abil-
ities. This suggests that targeted distillation from

*https://openrouter.ai/

reasoning-rich data could yield models with ad-
vanced coding capabilities without requiring ex-
plicit reasoning during inference.

Model degradation Phenomenon An interest-
ing exception to the general trend is the claude-
3.7-thinking model, which underperforms com-
pared to non-reasoning models and shows notably
weaker results on IOI problems than both claude-
3.5-sonnet and claude-3.7-sonnet. This model
achieves 0% pass rates on IOl problems, repre-
senting a significant decline despite its enhanced
reasoning capabilities. We hypothesize this degra-
dation stems from Anthropic’s optimization focus
on general software engineering rather than com-
petitive programming. The claude-3.7 technical
report (Anthropic, 2025) indicates that Claude 3.7
Sonnet achieves 62.3% accuracy on SWE-bench
Verified, outperforming o3-mini(high) (49.3%),
suggesting a deliberate trade-off favoring practi-
cal software engineering tasks.

Standard I/O vs. Interactive Evaluation A
striking observation is the significant performance
gap of models between 10I and ICPC World Finals
competitions. Even o4-mini(high), which achieves
a pass@1 rate of 25.21% on ICPC World Finals,
only manages 6.48% on IOI. We hypothesize that
this substantial discrepancy stems from the training
methodology of current reasoning models, which
predominantly utilize Standard I/O-based data with
outcome-reward RL. This approach aligns well
with most ICPC problems but fails to address the
interactive nature of IOI problems, which often
require program interaction with a judge. This find-
ing underscores the importance of incorporating
more diverse training data and developing more
robust RL training environments to enhance model
performance across different problem types.

4.2.2 Results on Self-recognition Task

The self-recognition task evaluates models’ ability
to accurately judge the correctness of their own so-
lutions, providing insights into their metacognitive
capabilities. Table 3 presents the AUC scores for
this task across various models.

Performance  Comparison Among non-
reasoning models, ChatGPT-4o-latest demonstrates
superior self-recognition with an AUC of 0.84,
despite showing only moderate performance
in code generation (pass@1: 1.18%, pass@5:
2.37%). This suggests that strong self-recognition

21126



Model ICPC World Finals 101 Avg.
pass@1  pass@5 | pass@1 pass@5 | pass@1 pass@5
Non-reasoning
gpt-40-mini 0.96 2.99 0.00 0.00 0.48 1.50
claude-3.5-sonnet 2.74 5.04 0.67 1.12 1.71 3.08
claude-3.7-sonnet 3.84 6.41 1.12 1.12 2.48 3.77
gpt-40-2024-05-13 1.99 3.35 0.45 1.12 1.22 2.24
deepseek-v3-0324 6.16 12.1 0.90 1.12 3.53 6.61
chatgpt-4o-latest 1.91 3.61 0.45 1.12 1.18 2.37
Reasoning

claude-3.7-thinking 4.25 8.22 0.00 0.00 2.13 4.11
ol-mini 10.55 19.86 2.34 3.37 6.45 11.62
DeepSeek-R1 8.08 14.38 2.23 5.62 5.16 10.00
03-mini (High) 13.42 29.45 8.26 10.23 10.84 19.84
Gemini-2.5-Pro 17.40 29.45 5.39 11.24 11.40 20.35
o4-mini (High) 25.21 43.84 6.48 14.77 15.85 29.31

Table 2: Performance results on HLCE code generation task.

Model Name | AUCT
an gpt-40-mini 0.60
E claude-3.5-sonnet 0.75
% claude-3.7-sonnet 0.69
£ gpt-40-2024-05-13 0.76
£ deepseek-v3-0324 0.63
z chatgpt-4o-latest 0.84
claude-3.7-thinking | 0.79
& o 1-mini 0.73
'g DeepSeek-R1 0.81
§ 03-mini (High) 0.66
& Gemini-2.5-Pro 0.72
04-mini (High) 0.63

Table 3: Performance results on self-recognition task, 1
denotes higher is better.

capability does not necessarily correlate with
superior code generation performance. Similarly,
DeepSeek-R1 achieves the highest AUC (0.81)
among reasoning models while ranking in the
middle tier for code generation.

Knowledge of Self-Knowledge: The Socratic
Paradox in LLMs The Socratic paradox, en-
capsulated in the statement "I know that I know
nothing," represents the philosophical understand-
ing that true wisdom begins with recognizing the
limits of one’s knowledge. However, across the
two tasks in HLCE, we observe a contrasting phe-
nomenon. Interestingly, the top-performing model
in self-recognition comes from the non-reasoning

category (chatgpt-4o-latest: 0.84), outperform-
ing all reasoning models. This contrasts with the
code generation task, where reasoning models (par-
ticularly o4-mini) significantly outperformed non-
reasoning counterparts. This empirical evidence re-
veals a fundamental challeng: some models excel at
problem-solving but lack accurate self-recognition,
while others show better self-recognition despite
lower performance. This disconnect suggests rea-
soning abilities and self-recognition develop along
different trajectories in current LLM architectures,
highlighting the need for research that enhances
both dimensions simultaneously.

4.3 Test Time Scaling Law on HLCE

Test time scaling law, where increased computa-
tional resources during inference improve model
performance (Jaech et al., 2024; Face, 2025; Ope-
nAl, 2025), has been validated on Olympic-level
mathematics (Muennighoff et al., 2025) but rarely
on Olympic-level programming challenges, except
by OpenAl (El-Kishky et al., 2025). Therefore,
in this section, we utilize the extremely difficult
HLCE benchmark to verify that the test time scal-
ing law still holds for current SOTA LLMs. Specif-
ically, we group all generated responses by token
count and calculate the pass@1 rate for each group
in ICPC World Finals. The results are presented in
Figures 3a and 3b.

21127



(a) Pass@1 vs. Average Outpu

t Tokens in Non-reasoning Models

[y O
4% —O— chatgpt-4o-latest —O— claude-3-5-sonnet —O— claude-3-7-sonnet
- - 4% 1 o 5%
© 3% - ® ®
a B 3% a
g £ & 4o
2% 2% °
T T T T T T T T T T T T T T T T
700 750 800 850 590 600 610 620 630 640 650 700 750 800 850 900
—O— DeepSeek-V3-0324 39
5
® 8% 7 ® 3% ®
* 6% - & 2% - & 2% -
=O— gpt-40-2024-05-13 =O— gpt-4o0-mini
T T T T T 2% T T T T T T T T T T T T
1500 1600 1700 1800 1900 630 640 650 660 670 680 690 620 640 660 680 700
(b) Pass@1 vs. Average Output Tokens in Reasoning Models
14% 7 45% 7 o04-mini-high 03-mini-high
B 12% o 40% - 5 40%
a . a a
& 10% & 35% o & 30% -
4 DeepSeek-R1
8% 30%
T T T T T T T T T T T T T T T T
13.5k 14.0k 14.5k 15.0k 15.5k 16.0k 5.5k 6.0k 65k 7.0k 7.5k 18.0k  19.0k  20.0k 21.0k 22.0k
ol-mini 30% 1 claude-3-7-sonnet
- 15% o o . 8%
® © 25% ®
8 10% - 5 s
a ° o 20% a 6%
gemini-2.5-pro-preview
5%

T
8.0k

T T T T T
9.0k 10.0k 11.0k 12.0k 13.0k

26.0k 27

Figure 3: Comparison of Non-Reasoning

Test Time Scaling Law Holds As shown in the
figures, both models with and without reasoning ca-
pabilities demonstrate a clear test time scaling law
on the HLCE benchmark. Pass@1 rate gradually
increases as thinking time increases. This indicates
that complex programming problems benefit sig-
nificantly from extended reasoning processes, and
models can leverage additional computation time
to refine their solutions and correct potential errors.

Test Time Scaling Law has not yet reached its
Boundary Even for the most capable models
such as o4-mini(high) and Gemini-2.5-pro, the
pass@1 rate continues to increase with longer rea-
soning sequences. This suggests that despite the im-
pressive capabilities of current state-of-the-art mod-
els, the test time scaling law has not yet reached
its limit. Surprisingly, we observed that compared
to 03-mini(high), o4-mini(high) reduced the av-
erage output token length by approximately two-
thirds. This finding has important implications
for the future development of code LLMs, indicat-
ing that we can confidently continue to optimize
test-time scaling laws to further enhance model
performance.

2

T
2.0k

T
2.2k

T
2.4k

T T T
.0k 28.0k 29.0k 1.8k 2.6k

and Reasoning Models in Test-time Scaling.

4.4 Can LLMs Surpass Top-tier Human?

To assess whether the latest LLMs can truly com-
pete with elite human programmers, we compared
the performance of SOTA LLMs against the gold,
silver, and bronze medal thresholds from histori-
cal IOI and ICPC World Finals competitions. The
comparative results are presented in Tables 4 and 5.

LLMs Could Reach Medal Level From Ta-
bles 4 and 5, we observe a remarkable finding:
current sota models can achieve medal-winning
performance in prestigious programming compe-
titions such as I0I and ICPC World Finals. No-
tably, Gemini-2.5-pro and o4-mini(high) demon-
strate exceptional capabilities, securing silver and
gold medals in IOl and ICPC World Finals, re-
spectively. This indicates that contemporary SOTA
LLMs have developed computational reasoning ca-
pabilities that rival those of top human competi-
tors. Furthermore, Gemini-2.5-Pro exhibits impres-
sive consistency in IOl performance, earning five
bronze medals and one silver medal. These results
suggest that in the near future, we may reason-
ably anticipate LLMs achieving gold medal perfor-
mance levels across such competitions.

1128



I0I(Max Points) ICPC World Finals(Solved Problems)

Year BI’:)I;IZC Si‘I\;er Gold|03-mini Gemini 0o4-mini Year Brgl'lze Si‘l\;er Gold|03-mini Gemini o4-mini

' '+ (high) 2.5 pro (high) '+ '+ (high) 2.5 pro (high)
2024| 217 289 360| 133 138 89 2023| 7 8 9 3 3 3
2023| 153 230 334| 53 1579 52 2022 8 8 9 2 3 4
2022| 147 258 416| 5 1509 138 2021 8 8 9 5 4 5
2021 203 289 3732206 292F 2199 20201 9 1011 2 4 6
2020 236 338 480| 92 2379 119 2019 7 7 8 1 2 2
2016 240 328 416| 212 3175 12 gg}g ; ; 180 2 ; i
2015 185 326 440|211% 19 162 2016| 9 o 10 s 1 6
2014|223 323 449\ 38 2245 150 5015 9 0 10| 9% . g
2013| 220 359 480| 100 203 323% 2014| 4 s 6 ) 4 4
2012| 157 237 364 | 40 224 2000 2013 6 7 3 3 ) 6
2011 267 370 478| 0 224 0 012l 6 7 7 4 3 3
2011 7 7 8 3 4 6

Table 4: Human Performance thresholds for medals and
the best LLM Performance in IOI. We utilize the highest
score from the five responses.

Discrepancy Between Medal Achievement and
Pass@1 Rate The intriguing discrepancy ob-
served in Table 4 and Table 2, where models like
04-mini and Gemini-2.5-Pro can achieve medal-
worthy scores in IOI competitions while maintain-
ing relatively low pass @1 rates, highlights a critical
phenomenon in LLM code generation capabilities.
We select the highest score from five submissions
as the model’s total score, indicating that these
models possess the knowledge required to solve
problems correctly, yet struggle to produce cor-
rect solutions in a single attempt, resulting in low
pass@1 rates. This finding underscores the impor-
tance of developing more reliable methods to guide
LLMs’ problem-solving capabilities as a crucial
direction for future research.

4.5 Efforts to Prevent Data Leakage

The critical issue of LLMs overfitting (Jain et al.,
2024)to benchmark leaderboards remains inade-
quately addressed. To ensure fair evaluation, we
established a private leaderboard using 2024 ICPC
World Finals problems with unreleased test cases,
for which we constructed our own test cases, creat-
ing an unbiased assessment environment.

Our evaluation employs a two-tier system: mod-
els submitted to the public leaderboard undergo
automatic testing on our private dataset. This ap-
proach reveals potential overfitting by comparing
cross-leaderboard performance. Models with con-
sistent results likely demonstrate authentic code
generation capabilities, while performance dispari-
ties may indicate benchmark-specific overfitting.

Table 5: Human Performance thresholds for medals and
the best LLM Performance in ICPC World Finals. A
problem is considered solved if any of the five responses
solves it.

5 Discussion

The Future Direction of Code LLM Capabilities
The code LLM landscape is rapidly evolving with
divergent approaches to balancing general coding
capabilities and competitive programming skills.
Claude 3.7 appears to prioritize general code gen-
eration over specialized algorithmic performance,
possibly reflecting Anthropic’s assessment of mar-
ket demand for practical development assistance.
Conversely, Gemini 2.5 Pro excels in both domains,
suggesting that with sufficient scale and sophis-
tication, the trade-off between these capabilities
may be less constraining than previously thought.
Therefore, general code abilities and competitive
programming abilities in future LLMs are not mu-
tually exclusive directions. LLM performance in
programming competitions remains an important
metric for gauging current progress toward AGI.

The Future Direction of Test-Time Scaling
in Code LLM With the powerful performance
demonstrated by Gemini 2.5-Pro and o4-mini
(high), concerns have emerged about whether Test-
time Scaling Laws, similar to Pre-training Scaling
Laws (Hoffmann et al., 2022), are approaching
their limits. Our experiments demonstrate that test-
time scaling substantially impacts model perfor-
mance. While these results are impressive, we have
likely not reached the ceiling of potential improve-
ments through such techniques. As models con-
tinue to scale in test time, we anticipate further ad-
vancements in reasoning efficiency (Dumitru et al.,

21129



2025) and efficacy, and generating sophisticated
algorithmic solutions.

6 Conclusion

In this work, we introduced HLCE, a challenging
benchmark of 235 competitive programming prob-
lems from 101 and ICPC World Finals. Top mod-
els achieve only 15.1% and 11.4% pass@1 rates.
Our benchmark includes standard and interactive
programming challenges alongside a novel self-
assessment task. By incorporating human competi-
tion data, we established metrics comparing LLMs
with top-tier programmers, revealing substantial
room for improvement. Test-time scaling law val-
idation confirms current models have not reached
performance ceilings, suggesting promising direc-
tions for advancing LLMs’ reasoning in complex
programming tasks. HLCE aims to drive progress
toward code LLMs that reach the proficiency level
of elite human competitors.

7 Limitations

Due to API pricing constraints and inference la-
tency limitations, we could only generate 5 re-
sponses for each reasoning model. With more
responses, LLMs would likely achieve better re-
sults in historical competitions. However, such a
comparison might not be entirely fair, as within the
specified competition time frame, human coding
speed cannot match that of LLMs.

IOl problems require online submissions,
resulting in longer submission processing
times—approximately three minutes per prob-
lem on average. While this delay is generally
acceptable for our evaluation purposes, it does add
operational overhead to the evaluation process.

8 Ethical Considerations

‘We ensure that the distribution of each dataset com-
plies with the corresponding licenses, all of which
are listed below:

e JOI: Provided under “CC-BY-SA 4.0” license.

e ICPC World Finals: Provided under “CC-BY-
SA 4.0” license.

For the new artifacts contributed in HLCE, in-
cluding but not limited to the questions, test cases,
and evaluation scripts, we make them available
solely for research purposes. Users are permitted

to use, modify, and share these annotations for aca-
demic and non-commercial research activities. Any
other use, including commercial exploitation, is not
permitted without explicit written permission from
the authors.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Aider. 2024. Leaderboards - aider documentation.

Anthropic. 2025. Introducing the claude 3 model fam-
ily.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Kuicai Dong, Aixin Sun, Jung-jae Kim, and Xiaoli
Li. 2023. Open information extraction via chunks.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
15390-15404, Singapore. Association for Computa-
tional Linguistics.

Razvan-Gabriel Dumitru, Minglai Yang, Vikas Yadav,
and Mihai Surdeanu. 2025. Copyspec: Accelerating
Ilms with speculative copy-and-paste without com-
promising quality. Preprint, arXiv:2502.08923.

Thang Duong, Minglai Yang, and Chicheng Zhang.
2025. Improving the data-efficiency of reinforce-
ment learning by warm-starting with 1lm. Preprint,
arXiv:2505.10861.

Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Bo-
rys Minaiev, Daniel Selsam, David Dohan, Francis
Song, Hunter Lightman, Ignasi Clavera, Jakub Pa-
chocki, and 1 others. 2025. Competitive program-
ming with large reasoning models. arXiv preprint
arXiv:2502.06807.

Hugging Face. 2025. Open rl: A fully open reproduc-
tion of deepseek-r1.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

21130


https://aider.chat/docs/leaderboards/
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.18653/v1/2023.emnlp-main.951
https://arxiv.org/abs/2502.08923
https://arxiv.org/abs/2502.08923
https://arxiv.org/abs/2502.08923
https://arxiv.org/abs/2505.10861
https://arxiv.org/abs/2505.10861
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, and 1 others. 2024. Deepseek-
coder: When the large language model meets
programming—the rise of code intelligence. arXiv
preprint arXiv:2401.14196.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and 1 others.
2021. Measuring coding challenge competence with
apps. arXiv preprint arXiv:2105.09938.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, and 1 others. 2022.
Training compute-optimal large language models.
arXiv preprint arXiv:2203.15556.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang,
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, and 1 others. 2024.
Qwen?2. 5-coder technical report. arXiv preprint
arXiv:2409.12186.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A
natural and reliable benchmark for data science code
generation. In International Conference on Machine
Learning, pages 18319-18345. PMLR.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, and
1 others. 2023. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161.

Xiangyang Li, Kuicai Dong, Yi Quan Lee, Wei Xia,
Hao Zhang, Xinyi Dai, Yasheng Wang, and Ruiming
Tang. 2025. ColR: A comprehensive benchmark for
code information retrieval models. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 22074-22091, Vienna, Austria. Association
for Computational Linguistics.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, and
1 others. 2022. Competition-level code generation
with alphacode. Science, 378(6624):1092—-1097.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Microsoft. 2024. Python tool for converting files and
office documents to markdown.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

OpenAl. 2025. Introducing 03 and 04-mini.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, and 1
others. 2023. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, and 1 others.
2025a. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

Minglai Yang, Ethan Huang, Liang Zhang, Mihai Sur-
deanu, William Wang, and Liangming Pan. 2025b.
How is llm reasoning distracted by irrelevant context?
an analysis using a controlled benchmark. Preprint,
arXiv:2505.18761.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, and 1 others. 2024. Deepseek-
coder-v2: Breaking the barrier of closed-source

models in code intelligence. arXiv preprint
arXiv:2406.11931.

A Appendix

A.1 Dataset Statistic

The total quantity of filtered HLCE is presented in
Table 6.

A.2 Problem Example

In Figures 4 and 5, we present sample problems
from IOI and ICPC World Finals respectively.
A.3 API Cost

We calculated the actual API costs incurred during
our evaluation process, with results presented in
Table 7. Interestingly, the 04-mini model demon-
strated remarkably low cost, emerging as the most

21131


https://doi.org/10.18653/v1/2025.acl-long.1072
https://doi.org/10.18653/v1/2025.acl-long.1072
https://github.com/microsoft/markitdown
https://github.com/microsoft/markitdown
https://openai.com/index/introducing-o3-and-o4-mini/
https://arxiv.org/abs/2505.18761
https://arxiv.org/abs/2505.18761

Year ICPC World Finals 101
2010 - 8
2011 11 6
2012 12 6
2013 11 6
2014 12 6
2015 13 6
2016 13 6
2017 12 5
2018 5 6
2019 11 5
2020 14 6
2021 12 6
2022 10 6
2023 10 6
2024 - 6

Table 6: Problem Counts in ICPC and 10I by Year

Model Cost (USD)
Gemini-2.5-Pro 758.11
DeepSeek-R1 359.55
03-mini 239.70
claude-3.7-sonnet-thinking 118.44
ol-mini 109.86
04-mini 77.90
claude-3-7-sonnet 39.48
gpt-40-2024-05-13 25.67
claude-3-5-sonnet 23.37
chatgpt-4o-latest 19.98
deepseek-v3 16.98
gpt-40-mini 1.02
Total 1,790.06

Table 7: API costs for our experiments.

economical among all inference models evaluated.
This finding is particularly significant as it suggests
a promising development trend for code-oriented
LLMs: substantial performance improvements may
be achievable with minimal financial investment.

The cost-effectiveness of the o4-mini model
indicates that efficient architectures and training
methodologies can significantly reduce compu-
tational expenses without compromising perfor-
mance quality. This balance between cost and ca-
pability represents an important direction for the
future development of code generation and infer-
ence systems, potentially democratizing access to
powerful code LLMs for a wider range of applica-
tions and users.

A.4 Evaluation Details

A.4.1 Evaluation Parameters

For ICPC World Finals problems, following the
LiveCodeBench, we set the execution timeout to
30 seconds without imposing memory limitations.
For IOI problems, we utilize the web response in-
formation returned by the bot.

A.4.2 Used Prompt

In this section, we present all the task prompts
utilized for the ICPC and IOI competitions, as il-
lustrated in Figures 6, 7, and 8.

A.4.3 Evation Metric

Pass@K To evaluate the performance of code
generation models, we employ the pass @k metric.
This metric assesses a model’s ability to generate
at least one correct solution within k attempts.

Given a coding problem, we sample k candidate
solutions from the model and evaluate each solution
against test cases. The pass@k metric is defined
as:

pass@k =E,..p

(")
' (v) ] @
where:

* x represents a coding problem sampled from
dataset D

* n is the total number of solutions generated
for each problem

* cis the number of correct solutions among the
n generations

* (") and (}) represent binomial coefficients

Intuitively, this formula calculates the probabil-
ity of finding at least one correct solution when
randomly selecting k samples from n generated so-
lutions. When n = k, the formula simplifies to
¢/n, which is the fraction of correct solutions. For
our experiments, we report pass@1, pass@5 to pro-
vide a comprehensive view of model performance
across different sampling scenarios.

AUC (Area Under the Curve) The Area Under
the Curve (AUC) measures the performance of bi-
nary classification models by quantifying the area
under the Receiver Operating Characteristic (ROC)
curve. Mathematically, AUC is defined as:

21132



1
AUC = / TPR(FPR™'(t))dt  (2)
0

where TPR is the True Positive Rate and FPR is
the False Positive Rate.

In practice, AUC is computed using the trape-
zoidal rule:

1 n—1
AUC ~ 3 Z; ( (FPRiy, — FPR))

(TPR; + TPR¢+1)) 3

The AUC represents the probability that a ran-
domly selected positive instance will rank higher
than a randomly selected negative instance. An
AUC of 1.0 indicates perfect classification, while
0.5 suggests performance equivalent to random
chance.

In the self-recognition task, we employ the AUC
metric to evaluate whether LLLMs can accurately
identify if their generated answers are correct or
incorrect. This metric provides a comprehensive
measure of the model’s ability to discriminate be-
tween its own correct and incorrect responses, ef-
fectively quantifying the model’s self-recognition
capabilities.

21133



Example of ICPC World Finals problems

Questionld:2021-H

QuestionName:Mining Your Own Business

Problem Description

John Digger is the owner of a large illudium phosdex mine. The mine is made up of a series of tunnels that meet at various
large junctions. Unlike some owners, Digger actually cares about the welfare of his workers and has a concern about the
layout of the mine. Specifically, he worries that there may be a junction which, in case of collapse, will cut off workers in
one section of the mine from other workers (illudium phosdex, as you know, is highly unstable). To counter this, he wants
to install special escape shafts from the junctions to the surface. He could install one escape shaft at each junction, but
Digger doesn’t care about his workers that much. Instead, he wants to install the minimum number of escape shafts so that
if any of the junctions collapses, all the workers who survive the junction collapse will have a path to the surface.

Write a program to calculate the minimum number of escape shafts and the total number of ways in which this minimum
number of escape shafts can be installed.

Input

The input consists of several test cases. The first line of each case contains a positive integer N (N < 5 - 10?) indicating
the number of mine tunnels. Following this are NV lines each containing two distinct integers s and ¢, where s and ¢ are
junction numbers. Junctions are numbered consecutively starting at 1. Each pair of junctions is joined by at most a single
tunnel. Each set of mine tunnels forms one connected unit (that is, you can get from any one junction to any other).

The last test case is followed by a line containing a single zero.

Output

For each test case, display its case number followed by the minimum number of escape shafts needed for the system of
mine tunnels and the total number of ways these escape shafts can be installed. You may assume that the result fits in a
signed 64-bit integer.

Follow the format of the sample output.

Sample Input

(Xe]

NOYYWOUTOYN U1 — W

O W WNN= =0 W=0="N=WwWh =
~NOoO Ol bk~ WwWiN

Sample Output

Case 1: 2 4
Case 2: 41

Figure 4: Example of ICPC World Finals problem.

21134



Example of 101 Problem

ProblemID:2024 D. Hieroglyphs

Time limit: 2 seconds

Memory limit: 1024 megabytes

Input/Output: standard

Problem Statement:

A team of researchers is studying the similarities between sequences of hieroglyphs. They represent each hieroglyph with
a non-negative integer. To perform their study, they use the following concepts about sequences.

For a fixed sequence A, a sequence S is called a subsequence of A if and only if S can be obtained by removing some
elements (possibly none) from A.

The table below shows some examples of subsequences of a sequence A = [3,2, 1, 2].

Subsequence | How it can be obtained from A
[3,2,1,2] No elements are removed.
[2,1,2] [3,2,1,2]

3,2, 2] (3,2,1,2]

3,2] [3.2,1,2]or [3,2, 1, 2]

(3] (3,2,1,2]

[ (3.2 1,2]

Implementation details:
You should implement the following procedure:

std::vector<int> ucs(std::vector<int> A, std::vector<int> B)
* A: array of length N describing the first sequence.
* B: array of length M describing the second sequence.

« If there exists a universal common subsequence of A and B, the procedure should return an array containing this
sequence. Otherwise, the procedure should return [—1] (an array of length 1, whose only element is —1).

This procedure is called exactly once for each test case.
Input:
The sample grader reads in the following format:

e linel: N M (1 < N < 100000, 1 < M < 100000)
« line 2: A[0] A[1]... A[N — 1] (0 < A[i] < 200000)
« line 3: B[0] B[1]... B[M —1] (0 < B[j] < 200000)

Output:
The sample grader prints in the following format:

e linel: T

e line 2: R[0] R[1]...R[T — 1]
Here, R is the array returned by ucs and 7' is its length.
Sample Input:
6 5
001012

102

Sample Output:

4
0102

Figure 5: Example of IOI problem.

21135



You are now an expert contestant in the International Olympiad in Informatics (IOI). For most
problems, please implement a C++ solution for the given problem with the following guidelines:
- You will be given a problem statement, test case constraints and example test inputs and
outputs. Please reason step by step about the solution, then provide a complete implementation
in C++.

- You should correctly implement the routine(s) described in Implementation Details, without
reading or writing anything directly from stdin or to stdout, as input and output are passed
through the implemented routines.

- Assume your code will be run on the OFFICIAL grader, and do not add a main, a sample grader,
or any other test function unless it has been explicitly requested.

- IMPORTANT: When implementing functions required by the problem description that use notation
like int[] or int64[] for function parameters, implement them as C++ std::vector types (e.g.,
vector<int> or vector<long long>), not as raw arrays or pointers.

- When declaring or implementing functions that are provided by the grader, use the EXACT same
parameter types as specified. Do not use const references (const vector<int>&) or non-const
references (vector<int>&) when the grader expects vector<int>, even if it would be more
efficient.

- For multi-dimensional arrays like int[J[], implement them as nested vectors (e.g.,
vector<vector<int») without references.

Please place your code between the following delimiters:

T Tepp
// Your code will be placed here

Figure 6: Prompt for IOI code generation tasks.

You are an expert Python programmer.
- You will be given a problem statement, test case constraints and example test inputs and
outputs.

- You will generate a correct Python program that matches the specification and passes all
tests

- Read the inputs from stdin solve the problem and write the answer to stdout (do not directly
test on the sample inputs). Enclose your code within delimiters as follows. Ensure that when
the python program runs, it reads the inputs, runs the algorithm and writes output to STDOUT.
Please place your code between the following delimiters:

T “python
# YOUR CODE HERE

Figure 7: Prompt for ICPC World Finals code generation tasks.

21136




You are now a code review expert. I will provide you with a programming problem description
along with a corresponding code implementation. Your task is to:

1. Carefully read and understand the problem requirements;

2. Analyze whether the code logic correctly fulfills the problem’s requirements;

3. Determine whether the code can pass all test cases, including regular cases, edge cases,
and potential hidden tests;

4. In your response, first provide a detailed explanation of your analysis, including any
strengths, potential issues, or bugs you identify;

5. Finally, give your conclusion — it must be either of the following two options, and should
be wrapped using the delimiter below:

T Tanswer
Yes

or

T T Tanswer
No

Figure 8: Prompt for Self-recognition tasks.

21137




