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Abstract

Long-context extension seeks to expand the
contextual window in pre-trained large lan-
guage models (LLMs), allowing them to han-
dle several multiples of their original training
context lengths. The primary method for ex-
tending the window length involves expand-
ing the initial positional encodings, such as
interpolating and extrapolation new positions
based on Rotary Position Embedding (RoPE).
This expansion inevitably disrupts the posi-
tional encodings learned during pre-training,
thereby affecting the attention allotment and
introducing unseen positional encoding distri-
butions. To address this issue, we propose a
new extension strategy based on RoPE, namely
Periodic Extrapolation Positional Encodings
(PEPE). This strategy expands pre-trained high-
dimensional components of positional encod-
ings by replicating them in a periodic manner,
thereby neither altering the learned positional
encoding spaces nor introducing new positional
encoding distributions. Experiments demon-
strate that PEPE-based approaches can signifi-
cantly improve long-context extension capabil-
ities using just one-fourth the fine-tuning steps
required by state-of-the-art methods. In addi-
tion, we analyze the characteristics of PEPE-
based methods and the key parameters that con-
tribute to their effectiveness. The code is pub-
licly available 1.

1 Introduction

Nowadays, Transformer-based (Vaswani, 2017)
large language models (LLMs) have experienced
rapid advancement (Touvron et al., 2023a), show-
casing impressive reasoning abilities that have sig-
nificantly propelled progress in the field of natu-
ral language processing. Long-context extension
(Chen et al., 2023) is a fundamental research area in
the field of LLM, referring to the ability to process
texts with substantially extended context lengths.

*Corresponding author: sr-guodsh@qcl.edu.cn
1https://github.com/JaxonHu-hub/PEPE
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Figure 1: Perplexity comparison on Proof-pile (Azer-
bayev et al., 2022) documents between PEPE and other
extension methods trained at a sequence length of 32k.

Extending the context window of LLMs basi-
cally requires augmenting the positional encodings,
a critical step in improving the model’s capability
to handle longer sequences effectively. Rotary po-
sition embeddings (RoPE) (Su et al., 2021) have
emerged as the leading positional encoding method
for LLMs, as seen in widely used models such as
Llama (Touvron et al., 2023a), PaLM (Chowdhery
et al., 2023) and Qwen (Yang et al., 2024). Nev-
ertheless, when the context length surpasses the
length of the training data, a straightforward extrap-
olation based on RoPE fails to achieve the expected
performance gains (Press et al., 2021). The key
challenge is that the introduction of new position
indices leads to an out-of-distribution (OOD) issue
(Han et al., 2024). To alleviate the issues brought
about by vanilla extrapolation, recent works have
delved into the varying characteristics of posi-
tional encodings across different dimensional com-
ponents. There has been a transition from linear
interpolation (Chen et al., 2023) methods to non-
uniform interpolation and extrapolation methods
(Peng and Quesnelle, 2023; Peng et al., 2023). For
instance, NTK-series methods (Peng and Ques-
nelle, 2023; Emozilla, 2023; Bloc97, 2023) address
different dimensions of the positional encoding dis-
tinctly, while NTK-by-parts (Bloc97, 2023) and
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YaRN (Peng et al., 2023) divide positional encod-
ings into three groups based on frequency, each
adopting different approaches. Differentiating and
processing positional encoding dimensions sepa-
rately is an effective approach. Notably, YaRN
has been adopted by several large language models
(Liu et al., 2024; Yang et al., 2024), demonstrating
its practical effectiveness in the community.

A key distinction across dimensions lies in
the periodic properties exhibited within the pre-
training window. From this perspective, the differ-
ence between the high-dimensional (low rotational
frequency) and low-dimensional (high rotational
frequency) components in RoPE resides in their
ability to learn complete and sufficient sine-cosine
periodic patterns (Liu et al., 2023). Extrapolating
the low-dimensional components does not intro-
duce new distributions in case of multiple com-
plete sine-cosine cycles have already been learned,
whereas the high-dimensional components behave
in the opposite manner. Therefore, current methods
predominantly employ interpolation for the high-
dimensional components of positional encodings
to mitigate severe OOD issues caused by extrapola-
tion (Peng and Quesnelle, 2023; Peng et al., 2023;
Emozilla, 2023; Bloc97, 2023). However, interpo-
lation alters the rotational frequency, and learning
new frequencies remains challenging, especially in
the case of long extension length.

In this paper, according to the distinct peri-
odic characteristics of low-dimensional versus
high-dimensional components in positional encod-
ings, we introduce PEPE (Periodic Extrapolation
Positional Encodings), a new method for extend-
ing positional encodings. For high-dimensional
components, PEPE leverages a cyclic mechanism
that reutilizes the incompletely learned periods, fa-
cilitating an infinite extension without altering the
pre-trained rotational frequency distribution. In
contrast, for low-dimensional components, we re-
tain the conventional direct extrapolation approach.
This strategy not only ensures efficient learning
but also enhances the effectiveness of long-range
extrapolation, addressing the OOD challenge asso-
ciated with extension context lengths. According to
different cyclic modes, PEPE can be implemented
in two ways: periodic shift extrapolation (PSE)
and its mirrored approach (mPSE). Fig. 1 shows
the comparison between the two modes of PEPE
and other extrapolation methods. PEPE exhibits
excellent stability in long-context expansion.

We summarize the contribution as follows:

(1) We propose a new long-context extension
method, PEPE, based on the perspective of periodic
integrity of high- and low-dimensional components
of positional encodings, which significantly miti-
gates the OOD issue.
(2) We propose two cyclic mechanisms for the high-
dimensional components, both of which demon-
strate the effectiveness of PEPE.
(3) Experimental results show that PEPE achieves
state-of-the-art performance in long-context exten-
sion with minimal training steps. It also demon-
strates excellent stability and can be combined with
other extrapolation techniques to further enhance
its applicability.

2 Background and Related Work

2.1 Preliminary
Our work builds upon the RoPE method (Su et al.,
2021), an enhanced approach to positional encod-
ing that has since been widely adopted in LLMs.
Formally, the encoding can be succinctly expressed
for each token as follows (Ding et al., 2024):

R(m, θ) = [cos(mθ0), sin(mθ0), cos(mθ1),

sin(mθ1), . . . , cos(mθd/2−1), sin(mθd/2−1)]
(1)

where m denotes the index of token position, d
represents the total dimensionality of positional
encodings, and θ signifies the rotation frequency,
defined as follows:

θi =
1

base
2i
d

, (2)

where i ∈ [0, d2 − 1] denotes the paired dimension
indices, and base represents a frequency hyper-
parameter. To more clearly represent the position
encodings across different dimensions, we define
δ ∈ [0, d) as the dimension index, and the encod-
ings within δ dimension as fδ(m, θi).

Distinguishing high-dimensional and low-
dimensional components is based on whether there
are n complete sine-cosine periods for different
dimensions. We define the distinction point δ̂
such mθi = 2nπ. According to Eq. 2, this yields
m 1

base
δ̂
d

= 2nπ. Solving for δ̂, we obtain:

δ̂ = ⌈d logbase
m

2nπ
⌉. (3)

Considering Llama2 models (Touvron et al.,
2023b), let base=10000, and d=128 as defaults and
take m=4096 as an example. Assuming n=1, cor-
responding to one complete sine-cosine period, we
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can calculate that the distinction point δ̂=92 accord-
ing to Eq. 3. Thus, indices δ ≤ 92 correspond to
the low-dimensional components, whereas indices
δ > 92 are associated with the high-dimensional
components. Additionally, in the long-context ex-
tension task, we denote the original pre-trained
context length as L, the extension length as L′.

2.2 Linear positional interpolation
Linear positional interpolation (PI) (Chen et al.,
2023) is a straightforward manner to implement
linear interpolation to compresses the positional
indices of RoPE proportionally based on the exten-
sion ratio s = L′

L . PI reduces the distance between
adjacent tokens across all dimensions at a certain
ratio. The newly introduced compact positional en-
coding introduces challenges for the model in dis-
tinguishing subtle differences between adjacent po-
sitions, particularly under high scaling ratios where
performance deteriorates significantly.

2.3 Non-uniform extension methods
NTK-series methods (Peng and Quesnelle, 2023;
Emozilla, 2023; Bloc97, 2023) are a set of non-
linear interpolation and extrapolation methods. In-
stead of directly adopting a fixed radio, they dis-
tribute interpolation pressure across different di-
mensions to mitigate the crowded-positions issue
in PI based on Neural Tangent Kernel (NTK) the-
ory (Jacot et al., 2018). According to the density
characteristics of positional information in differ-
ent dimensions, they insert less in lower dimen-
sions and more in higher dimensions, resulting
in both interpolation and extrapolation. NTK-by-
parts (Bloc97, 2023) first divides dimensions into
three dimension groups, each with a different in-
terpolation strategy. It uses PI for high-dimensions
while low-dimensions undergo extrapolation, and
use NTK-aware (Peng and Quesnelle, 2023) in-
between. YaRN (Peng et al., 2023) achieves better
extrapolation performance than NTK-by-parts by
incorporating attention scaling technology. From a
periodicity standpoint, since low-dimensional ex-
trapolation does not generate new periodic struc-
tures while high-dimensional spaces tend to do the
opposite, these methods may naturally conform to
this behavior. LongRoPE (Ding et al., 2024) de-
termines the optimal dimensional split points via
a search-based approach and applies distinct inter-
polation methods across three dimensional groups,
similar to NTK-by-parts and YaRN.

Other long-context window extension meth-

ods mainly include memory-retrieval approaches
(Borgeaud et al., 2022; Tworkowski et al., 2023;
Wang et al., 2023) and attention manipulating
mechanisms (Ratner et al., 2022; Han et al., 2024;
Xiao et al., 2023). These methods serve as com-
plements to the original LLM architecture and can
be applied in conjunction with the RoPE-based
position extension route (Ding et al., 2024). We fo-
cus on achieving long-context extension efficiently
with minimal fine-tuning at short-context length.

3 Periodic Extrapolation Positional
Encodings

Motivated by the periodic incompleteness of high-
dimensional components in positional encodings
inevitably leads to OOD issues, we present Periodic
Extrapolation Positional Encodings (PEPE), a posi-
tional encoding method that extends long-context
sequences by periodically replicating pre-trained
high-dimensional components.

3.1 Periodic View on OOD Problems

Current position encoding interpolation and exten-
sion methods inevitably face OOD issues, and we
examine this problem from the perspective of pe-
riods as follows. In RoPE, as the dimensionality
increases, the number of sine-cosine cycles gradu-
ally decreases until it becomes impossible to com-
plete a full cycle. Specifically, according to Eq. 2,
as the dimensionality increases, θ gradually de-
creases, leading to a reduction in the rotation speed.
Consequently, at a certain dimension, it becomes
impossible to complete a full sine-cosine cycle. Fig.
2(a) illustrates this phenomenon with δ=108 as an
example, where the current dimensional position
encoding is denoted as f = (m, θ).

Taking the extension length from L=4k to L′=8k
as an example, Fig. 2(b) illustrates common po-
sition extrapolation (PE) and interpolation (PI)
methods. As shown that, in the case of incom-
plete sine-cosine cycles (δ=108), PE is extrap-
olated along the original sine-cosine cycles, as
fPE(m, θ) = f(m, θ), leading to untrained posi-
tion encoding patterns (see the top of Fig. 2(b)).
PI decreases the rotation frequency on existing pe-
riods, which essentially compresses the periodic
space. As Fig. 2(b) shows, linear PI compresses
the original length to half of its original space, as
fLinearPI(m, θ) = f(m2 , θ). For example, the ex-
tended token position m=5120 corresponds to the
original token position m=2560. Non-uniform PI
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Figure 2: An overview of different long-context extension methods based on RoPE, taking δ = 108 as an example.
(a) illustrates the encoding of RoPE within the pre-training window length. (b) shows the encoding resulting OOD
phenomena of the widely used positional extrapolation and interpolation methods. (c) presents two modes of our
Periodic Extrapolation Positional Encodings (PEPE) method.

achieves dynamic frequency interpolation by mod-
ifying θ, as fNonlinearPI(m, θ) = f(m, θ′). A com-
mon approach is to increase the base, and further
obtain θ′ according to Eq. 2 (Roziere et al., 2023).
Actually, both of linear and non-linear PI methods
reduce the distance between adjacent tokens, re-
sulting in disrupting the original distance patterns
among tokens.

This suggests that, in the case of high-
dimensional positional components, PE tends to
extrapolate beyond the pre-training range, whereas
PI introduces denser positional encodings. Both
methods exhibit OOD limitations. Accordingly, an
ideal approach should maintain the integrity of the
pre-trained positional encoding distribution in high
dimensions. Inspired by this, we introduce PEPE,
a straightforward yet effective method that extends
positional encodings by treating incomplete cycles
as independent units and repeating them, instead of
enforcing full sinusoidal periodicity. Fig. 2(c) illus-
trates the different encoding extrapolation methods
used by the PEPE approach for low and high dimen-
sions. PEPE rotates the positional encodings that
have been extrapolated beyond the pre-trained dis-
tribution back into the original distribution through
shift operations. PEPE has two typical character-
istics: First, in the extension window, PEPE is a
purely extrapolation method that does not perform
interpolation in any dimension, thereby not alter-
ing the periodic sampling frequency. Second, by

performing a replication extrapolation operation
on the high-dimensional components of positional
encodings, it avoids the additional distribution in-
troduced by general extrapolation.

There are two modes for PEPE, as shown in Fig.
2(c). The first mode involves periodic shift ex-
trapolation (PSE) of high-dimensional components.
The second mode involves flipping the adjacent
high-dimensional components horizontally before
shifting them, i.e., mirrored periodic shift extrapo-
lation (mPSE). The latter method can maintain the
continuity of positional encodings but needs more
fine-tuning steps to learn the mirrored ways.

3.2 Periodic shift extrapolation

Based on the preceding analysis, we only need to
apply periodic shift handling to dimensions higher
than distinction dimensional point δ̂, while direct
extrapolation is used for the lower-dimensional
component. Formally, our periodic shift extrap-
olation encodings with δ can be represented as:

fPSE(m, θ, δ) =

{
f(m, θ), if δ ≤ δ̂

f(m mod L, θ), if δ > δ̂
(4)

According to Eq. 4, δ̂ is a critical parameter that
determines from which δ to start applying the PSE.
From the perspective of sine-cosine periodicity
analysis, we adopt the first full sine-cosine period
dimension (n=1) for δ̂ as default.
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Another critical parameter is m̂, which indicates
from which token to start applying the PSE. In Fig.
2(c), we begin using PSE from the extrapolation
portion (m̂=L) as default. Actually, considering the
issue of attention reallocation for the extrapolated
context, advancing m̂ would be a better choice.
Therefore, the complete periodic shift extrapolation
can be represented as:

fPSE(m, θ) =

{
f(m, θ), if m ≤ m̂

fPSE(m, θ, δ), otherwise
(5)

PSE has a notable characteristic that there are dis-
continuities between adjacent periods (see m=4096
at top of Fig. 2(c)). It may increase the difficulty of
learning attention for tokens on either side of the
discontinuity. To address this potential issue, we
propose the mirrored PSE mode.

3.3 Mirrored periodic shift extrapolation

In response to the issue of discontinuous position
encodings at the periodic junctions in PSE, we pro-
pose its mirrored mode, namely mPSE. The bot-
tom of Fig. 2(c) shows the mPSE mode, which
introduces a mirrored pattern that flips the periodic
shifts of odd-numbered cycles left and right, based
on PSE, ensuring continuous transitions between
adjacent periods. Formally, for high-dimensional
components, mPSE can be represented as:

f
high
mPSE(m, θ) =

{
f(m mod 2L, θ), if ⌊m

L
⌋ is even,

f((2L−m) mod 2L, θ), otherwise,
(6)

where ⌊mL ⌋ denotes the number of periodic trans-
lation. Similar to Eqs. 4 and 5 in PSE, mPSE also
has two important hyperparameters δ̂ and m̂.

The two modes, PSE and mPSE, both avoid
OOD operations on the high-dimensional compo-
nents of encodings through copy and shift opera-
tions, thereby demonstrating a rapid fitting capa-
bility during fine-tuning. Between the two, PSE is
simpler to learn, whereas mPSE demonstrates su-
perior performance in terms of attention continuity.

4 Experiments

To verify the effectiveness of our method, we first
compared common extension methods on three
tasks (Sec. 4.2). Then, we perform ablations of the
hyperparameters that affect PEPE’s performance
(Sec. 4.3). Additionally, we analyze two imple-
mentation modes of PEPE (Sec. 4.4). More details
of experiments can be found in the Appendix.

4.1 Setup

Baselines. The experiments are conducted on
Llama2-7B under three training sequence length
settings: 8k, 16k, and 32k. We compare sev-
eral commonly used extension techniques with our
methods, including PI (Chen et al., 2023), NTK
(Peng and Quesnelle, 2023), and YaRN (Peng et al.,
2023), using their official training configurations.
We utilize the “togethercomputer/Llama-2-7B-32k”
(Together.ai, 2023) model with PI applied, without
further fine-tuning.
Training Details. Following YaRN (Peng et al.,
2023), we use a learning rate of 2e-5 with lin-
ear decay and a global batch size of 64 on PG19
dataset (Rae et al., 2019). We set δ̂=92 (n=1) and
m̂=1.5k for both PSE and mPSE modes by default.
Additionally, we incorporate the attention scaling
technique from YaRN during the training of PEPE.
Notably, PEPE requires only 100 training steps,
while other methods like YaRN require four times
as many steps to converge. All experiments are
conducted on 8 A100 40GB GPUs. Due to GPU
memory limitations, we are only able to test up to
an extension context length of 80k.

4.2 Main Results

Similarly to LongRoPE (Ding et al., 2024), we con-
duct a comprehensive evaluation of PEPE’s effec-
tiveness by assessing its performance across three
key aspects: (1) perplexity on long documents, (2)
passkey retrieval task, and (3) LLM benchmarks.
Perplexity (PPL). We begin by comparing var-
ious state-of-the-art RoPE-based sequence exten-
sion methods in terms of perplexity. The evaluation
is carried out on the Proof-pile dataset (Azerbayev
et al., 2022), which contains a substantial amount
of long-text content. Following YaRN (Peng et al.,
2023), we select 10 samples from the Proof-pile
dataset with sequence lengths exceeding 80k to-
kens for each run. These sequences are then pro-
gressively truncated from 4k to 80k tokens to assess
model performance across varying context lengths.
All perplexity are computed using a sliding window
(Press et al., 2021) of size 256.

Table 1 summarizes the comparison results. We
evaluate the performance across different training
length configurations, specifically 8k, 16k, and 32k,
and also report the corresponding number of train-
ing steps required. Experimental results show that
PEPEs offer two key advantages: (1) PEPEs exhibit
excellent stability in terms of PPL across different
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Table 1: Perplexity results using PI (Chen et al., 2023), NTK (Peng and Quesnelle, 2023), YaRN (Peng et al., 2023)
and PEPE extension methods on Proof-pile dataset (Azerbayev et al., 2022), evaluated on the Llama2-7B model.
We set δ̂=92 and m̂=1.5k for both PSE and mPSE.

Training
Length Model Name Extension

Method
Training

Steps
Evaluation Context Length

4k 10k 20k 30k 40k 50k 60k 70k 80k

4k Llama2-7B - - 4.16 >102 >103 >103 >103 >103 >103 >103 >103

32k

Together-Llama2-7B PI - 4.21 3.66 2.98 2.73 6.70 27.78 96.05 >102 >102

NTK Llama2-7B NTK 400 4.76 4.14 3.40 3.25 7.49 19.79 44.15 85.05 >102

YaRN Llama2-7B YaRN 400 4.70 4.11 3.38 3.11 5.08 17.73 41.07 76.67 >102

PEPE-PSE Llama2-7B PSE 100 5.07 4.49 3.74 3.44 3.22 3.10 3.01 2.95 2.91
PEPE-mPSE Llama2-7B mPSE 100 4.96 4.40 3.64 3.35 3.15 3.02 2.92 2.87 2.83

16k

NTK Llama2-7B NTK 400 5.37 4.78 7.36 53.11 >102 >102 >102 >102 >102

YaRN Llama2-7B YaRN 400 4.79 4.19 5.38 45.44 >102 >102 >102 >102 >102

PEPE-PSE Llama2-7B PSE 100 5.62 5.09 4.29 3.98 3.74 3.63 3.55 3.53 3.50
PEPE-mPSE Llama2-7B mPSE 100 5.91 5.36 4.51 4.19 3.95 3.84 3.77 3.76 3.76

8k

NTK Llama2-7B NTK 400 5.04 7.66 >102 >102 >103 >103 >103 >103 >103

YaRN Llama2-7B YaRN 400 4.83 7.08 >102 >102 >103 >103 >103 >103 >103

PEPE-PSE Llama2-7B PSE 100 10.85 9.52 8.00 7.52 7.18 7.26 7.30 7.45 7.64
PEPE-mPSE Llama2-7B mPSE 100 6.39 5.87 4.95 4.66 4.49 4.50 4.55 4.75 5.07

training lengths and under long-sequence extrapola-
tion scenarios. Even when trained on sequences of
length 8k, they can stably extrapolate to a context
length of 80k during inference. (2) Compared to
methods such as YaRN, PEPE requires only one-
fourth of the training steps to achieve outstanding
long-sequence extension performance.

Passkey Retrieval. The Passkey Retrieval task
(Mohtashami and Jaggi, 2023) evaluates the ability
to locate a specific key embedded within an ex-
tremely long context. We conduct 10 iterations of
the passkey retrieval task using a training length
of 32k, with input lengths ranging from 4k to 70k
tokens, to assess performance across increasing
context lengths. As shown in Table 2, other meth-
ods like PI, NTK, and YaRN exhibit a sharp de-
cline in performance beyond the original training
window. In contrast, PEPE maintains strong extrap-
olation capabilities even with only 100 fine-tuning
steps. Furthermore, increasing the number of train-
ing steps significantly improves the stability and
adaptability of both PSE and mPSE, as shown in
last two rows of Table 2.

Standard LLM benchmarks. We conduct a sys-
tematic evaluation on the Hugging Face Open LLM
Leaderboard (Fourrier et al., 2024) focusing on
the original 4k context window with 32k training
length. This benchmark includes four tasks: 25-
shot ARC-Challenge (Clark et al., 2018), 10-shot
HellaSwag (Zellers et al., 2019), 5-shot MMLU
(Hendrycks et al., 2020), and 0-shot TruthfulQA

Table 2: Passkey retrieval accuracy of long-context
LLMs under various positional extension methods, with
sequence lengths ranging from 4k to 70k tokens.

Extension
Method

Training
Steps

Evaluation Context Length

4k 10k 20k 30k 40k 50k 60k 70k

RoPE - 1 0 0 0 0 0 0 0

PI - 1 1 1 1 0 0 0 0
NTK 400 1 1 0.9 0.4 0 0 0 0
YaRN 400 1 1 1 1 0 0 0 0

PSE 100 1 0.8 1 0.9 0.8 1 0.8 1
mPSE 100 1 0.9 0.9 0.8 0.5 0.7 0.8 0.2
PSE 150 1 1 0.9 1 1 1 1 0.9

mPSE 250 1 1 1 1 0.8 1 0.7 1

(Lin et al., 2021), which are commonly used to
assess language understanding and reasoning capa-
bilities. As shown in Table 3, extending the con-
text length from the original Llama2-7B leads to a
slight performance drop across multiple tasks for
all extrapolation methods. Overall, PEPE performs
at a level that is competitive with other extension
methods. Additionally, we conduct an extra evalu-
ation of PEPE under m=4k, where the positional
encodings within the 4k context length are left un-
changed. The results show slight improvements
over the 1.5k baseline across all four metrics.

4.3 Ablation Studies

The parameters that may influence PEPE’s perfor-
mance include its key internal components: the
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Table 3: Comparison of different extension methods
on standard LLM benchmarks, evaluated within a 4k
context length. ‘ARC.’, ‘Hel.’, and ‘Tru.’ denote ARC-
Challenge, HellaSwag and TruthfulQA, respectively.

Methods ARC. Hel. MMLU Tru.

Llama2-7B 49.91 58.99 32.05 45.71

PI 43.26 57.32 31.89 44.89
NTK 47.95 56.27 29.73 36.60
YaRN 48.46 56.84 32.91 41.25

PSE (m=1.5k) 47.01 56.19 31.35 39.08
mPSE (m=1.5k) 46.93 56.28 30.38 38.38

PSE (m=4k) 48.89 57.54 31.41 42.39
mPSE (m=4k) 48.55 56.38 31.09 39.99

dimension distinct point δ̂ and the starting token
position m̂, as well as the number of training steps,
the adjustable base value, and whether or not to
incorporate the attention scaling technique. In the
following, we present a detailed analysis of each
parameter under the default configuration: n=1
(δ̂=92) , m̂=4k, 100 training steps, base=10,000
and without using attention scaling. PSE and mPSE
are both trained on sequences of length 32k.
Analysis on δ̂. The value of δ̂ affects the start-
ing dimension of PEPE’s cyclic shift. To evaluate
its impact, we measure perplexity across δ̂ values
ranging from n=0 to ∞ sine-cosine cycle for both
PSE and mPSE, respectively. n=0 indicates that no
dimensions are considered while n=∞ denotes that
all dimensions are involved. The results, as shown
in Table 4, indicate that selecting one full cycle as
the δ̂ is not necessarily optimal. From the longer
length perspective, selecting δ̂ value corresponding
to around 0.5 cycle during training is a more favor-
able choice. This implies that a lower-dimensional
starting point can bring about slight performance
improvement by reducing the number of dimen-
sions directly extrapolation. The context expansion
performance drops after exceeding the fine-tuned
context length, when high- and low-dimensional
components are not distinguished (n=∞). When
n=0, i.e., without using PEPE and continuing to
use vanilla RoPE, the performance deteriorates sig-
nificantly beyond a reasoning length of 32k.
Analysis on m̂. The default setting is m=4k, which
means the positional encodings within the pre-
learned context window remain unchanged. We
conduct experiments by gradually decreasing m
from 4k to 1k. The experimental results shown
in Table 5 indicate that integrating PEPE earlier
can improve the perplexity performance. This is

Table 4: Perplexity of PSE and mPSE across varying
numbers n of sine-cosine cycles starting from different
dimensions. ∞ denotes that all dimensions are involved.

Extension
Method n

Evaluation Context Length

4k 10k 20k 40k 60k 80k

RoPE 0 4.76 8.11 22.4 60.9 109 160

PSE

∞ 4.70 5.54 5.01 6.76 49.2 161
2 4.49 4.85 4.14 3.74 3.83 4.91
1 4.65 5.01 4.31 3.95 3.98 4.61

0.5 4.50 4.72 4.05 3.68 3.69 4.15

mPSE

∞ 4.57 5.64 5.32 7.11 25.9 77.6
2 4.50 4.73 4.08 3.70 4.05 7.17
1 4.56 4.80 4.20 3.94 4.67 7.75

0.5 4.55 4.78 4.12 3.81 4.01 4.54

Table 5: Perplexity at different starting positions m̂.

Extension
Method m̂

Evaluation Context Length

4k 10k 20k 40k 60k 80k

PSE

4k 4.65 5.01 4.31 3.95 3.98 4.61
3k 5.18 4.95 4.31 3.85 3.79 4.09
2k 4.85 4.49 3.86 3.50 3.86 6.59

1.5k 4.86 4.40 3.72 3.50 6.30 18.2
1k 4.80 4.30 3.65 4.06 16.0 56.6

mPSE

4k 4.99 4.81 4.11 3.63 3.58 3.76
3k 4.57 4.58 4.00 3.53 3.42 3.52
2k 4.80 4.39 3.70 3.33 3.71 6.95

1.5k 5.02 4.40 3.66 3.22 3.07 3.06
1k 4.89 4.41 3.78 3.45 6.96 25.6

because the model learns more periodic patterns
within the pre-training window, which helps in ex-
tending to longer context lengths. However, if the
integration occurs too early (e.g., m=1k), it may
lead to performance degradation. This could be
due to the early integration significantly increasing
the perturbation to the positional encodings within
the pre-training window. Additionally, as indicated
by Eq. 3, reducing m shifts the dimensional dis-
tribution toward lower dimensions, causing more
dimensions to be involved in PEPE and thus exac-
erbating this negative effect.
Analysis on training steps. We separately evaluate
PSE and mPSE over training steps ranging from
0 to 400. The experimental results are shown in
Fig. 3. After more than 50 training steps, both
PSE and mPSE achieve stable PPL under the 80k
extrapolation range. The trend suggests that the
model has the potential to perform well beyond
80k. Notably, mPSE achieves better performance
with more training steps.
Analysis on base value. Increasing the base value
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Figure 3: Perplexity comparison of PSE and mPSE over
training steps from 0 to 400 on Proof-pile documents.

Table 6: Perplexity of PSE and mPSE with RoPE base
adjustment, base=10,000 as default.

Extension
Method base

Evaluation Context Length

4k 10k 20k 40k 60k 80k

PSE
104 4.65 5.01 4.31 3.95 3.98 4.61
105 4.55 4.09 3.43 3.33 12.8 46.8
106 4.59 4.09 3.40 3.11 8.82 31.8

mPSE
104 4.56 4.80 4.20 3.94 4.67 7.75
105 4.61 4.12 3.42 2.98 3.19 5.13
106 4.58 4.05 3.36 2.97 7.84 28.7

of RoPE is a commonly used strategy in long-
context extension techniques (Roziere et al., 2023;
Liu et al., 2023). Therefore, we investigate the
combined effect of base and PEPE. We first eval-
uate perplexity under different base values, and
the results are shown in Table 6. The results in-
dicate that increasing the base value can improve
performance within a certain extrapolation range.
However, when extrapolating to much longer se-
quence lengths, performance gradually degrades,
as altering the RoPE rotation frequency disrupts
the pre-trained positional encoding patterns.
Ablation of attention scaling. Further, we exam-
ine the effect of integrating the attention scaling
technique from YaRN (Peng et al., 2023) into PEPE.
The experiments include both perplexity evaluation
and passkey retrieval task under m=1.5k. As shown
in Table 7, integrating attention scaling into PEPE
can further improve both perplexity and passkey
retrieval performance, building upon PEPE’s inher-
ent long-context extension capability. This demon-

strates that PEPE has good compatibility with other
techniques and can work synergistically with them.

Table 7: Ablation study of attention scaling on perplex-
ity evaluation and passkey retrieval.

Extension
Method

Attn.
Scaling

Evaluation Context Length

4k 10k 20k 40k 60k 80k

Perplexity

PSE × 4.86 4.40 3.72 3.50 6.30 18.2
✓ 5.07 4.49 3.74 3.22 3.01 2.91

mPSE × 5.02 4.40 3.66 3.22 3.07 3.06
✓ 4.96 4.40 3.64 3.15 2.92 2.83

Passkey retrieval

PSE × 1.00 1.00 0.80 0.95 0.45 0.25
✓ 0.95 1.00 0.95 0.80 0.90 0.90

mPSE × 1.00 0.85 0.90 0.85 0.90 0.60
✓ 1.00 0.95 1.00 1.00 0.80 0.70

4.4 Discussion Between PSE and mPSE
Based on the experiments in Secs. 4.2 and 4.3,
we can draw the following comparative conclu-
sions regarding PSE and mPSE: (1) mPSE requires
more training steps to reach optimal performance
compared to PSE. Because mPSE applies a mirror-
ing operation before performing period extension
which needs more training steps to fully learn the
periodic patterns. (2) mPSE demonstrates superior
overall stability compared to PSE, as evidenced by
its lower perplexity on long sequences and smaller
performance drops when sequence length exceeds
the injection position point. PSE exhibits abrupt
changes in attention scores at injection points (m̂
and its multiples), whereas mPSE demonstrates
smoother transitions. This difference is likely the
primary factor contributing to mPSE’s enhanced
stability during extrapolation.

5 Conclusion

This paper presents PEPE, a novel positional en-
coding extension method designed to address the
OOD challenges. From a periodic perspective, by
applying shift operations on high-dimensional com-
ponents of positional encodings, PEPE avoids intro-
ducing new positional information while maintain-
ing compatibility with pre-trained models. Based
on PEPE, we develop two practical variants, PSE
and mPSE, both of which demonstrate strong sta-
bility under large extrapolation ratios. The results
show that PEPE achieves superior perplexity per-
formance and retrieval accuracy compared to cur-
rent methods. Looking forward, PEPE opens new
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possibilities for efficient context length extension
in LLMs, with potential applications in long-text
understanding, agent reasoning, and beyond.

6 Limitations

Our study has two main limitations. First, due to
GPU memory constraints, we only conduct com-
parisons on Llama2 within an 80k context length
extension. Based on the observed performance
trends, 80k does not appear to be the upper limit
of PEPE’s extension capability, and further investi-
gation at longer lengths is needed. Second, within
the fine-tuning context window range, compared to
methods like PI, the PEPE method does not demon-
strate significant performance gains. PEPE focuses
on achieving a large-scale context window exten-
sion under limited fine-tuning lengths. If sufficient
computational resources are available, fine-tuning
at the target extended context length would be a
better alternative than PEPE.
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A Appendix

A.1 Additional analysis on base value

Refer to (Xu et al., 2024), we analyze the attention
scores with respect to relative distances under simi-
lar tokens for both PSE and mPSE. The results are
shown in Fig. 4. It can be observed that: (1) In-
creasing the base value significantly amplifies the
attention magnitude. (2) Neither PSE nor mPSE
introduces excessive long-distance decay, which
is attributed to the positional shift strategy of high
dimensions.

According to these two characteristics, we fur-
ther evaluate the performance by increasing the
base in the passkey retrieval task. We select the
two best-performing PEPE models: PSE, which
was fine-tuned for 100 steps, and mPSE, which
was fine-tuned for 400 steps. Other parameters
are the same as those used in the default ablation
study in the main text. As shown in Table 8, with
default baset, PEPE methods exhibit relatively lim-
ited performance on this structured retrieval task.
When combined with base increasing to 105, their
performance improves significantly. Performance
on the passkey retrieval task can be enhanced by
appropriately increasing the base, especially when
using the mPSE method. Additionally, we find that
m̂ also has a notable impact on the performance
of the passkey retrieval task, and we discuss this
further below.

A.2 Impact of m̂ on passkey retrieval
efficiency

We conduct experiments with m̂ in the range of
1.5k to 4k. The experimental results shown in Ta-
ble 9 indicate that by reducing the value of m̂, the
performance on the passkey retrieval task can be
significantly improved. Moreover, a larger num-
ber of fine-tuning steps yields a substantial gain in
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Figure 4: The attention scores of similar tokens across relative distances within different base values, on RoPE,
PSE, and mPSE.

Table 8: Passkey retrieval accuracy of PEPE methods
with different RoPE base values.

Extension
Method base

Evaluation Context Length

2k 4k 8k 16k 32k 64k

PSE 104 1 1 0.6 0.35 0 0
105 1 1 1 1 0.4 0

mPSE 104 1 1 0.35 0.3 0.05 0
105 1 1 1 1 1 1

accuracy when m̂ is fixed at 1.5k. Essentially, re-
ducing the value of m can achieve an effect similar
to increasing the base. This is because a smaller m
causes the onset of oscillations in PEPE to occur
earlier (as shown in the middle of Fig. 4, where
the oscillation onset at 4k is advanced). This early
onset truncates the original declining trend of the
attention scores, thereby raising the average oscil-
lation level in PEPE.

Table 9: Passkey retrieval accuracy of PEPE methods
with different m̂.

Extension
Method m̂

Traing
Steps

Evaluation Context Length

2k 4k 8k 16k 32k 64k

PSE

4k 100 1 1 0.6 0.4 0 0
3k 100 1 0.8 0.8 0.1 0.1 0
2k 100 1 1 0.6 0.5 0.2 0.1

1.5k 100 1 1 0.8 1 0.5 0.3
1.5k 200 1 1 1 1 0.9 0.7

mPSE

4k 100 1 1 0.1 0 0 0
3k 100 1 1 0.7 0.4 0.1 0
2k 100 1 0.8 0.5 0.3 0 0

1.5k 100 1 0.9 0.9 0.9 0.9 0.6
1.5k 250 1 0.9 1 1 1 0.9
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Figure 5: Attention scores of relative distances for
RoPE, PSE and mPSE, evaluated on similar tokens.
The application of the Savitzky-Golay filter results in
smoothed attention curves, masking any apparent abrupt
changes in the plot. However, at m̂ = 4k, an actual dis-
continuous jump in attention behavior is revealed for
PSE.

A.3 Additional discussion between PSE and
mPSE on attention score

We discuss PSE and mPSE from the perspective of
attention scores. Fig. 5 presents the attention scores
of relative distances for RoPE, PSE and mPSE,
evaluated on similar tokens. We observe that PSE
exhibits an abrupt change in attention scores at
every m̂-token interval, while mPSE maintains a
continuous and smooth oscillation pattern. We con-
jecture that the smooth evolution of attention scores
helps the model achieve more stable performance
in passkey retrieval (as shown in the last two rows
of PSE and the last two rows of mPSE in Table 9).
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