
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 21034–21049
November 4-9, 2025 ©2025 Association for Computational Linguistics

Beyond Function-Level Search: Repository-Aware Dual-Encoder Code
Retrieval with Adversarial Verification

Aofan Liu1,2, Shiyuan Song1, Haoxuan Li3, Cehao Yang1, and Yiyan Qi B1

1International Digital Economy Academy (IDEA)
2School of Electronic and Computer Engineering, Peking University

3Shenzhen International Graduate School, Tsinghua University

Abstract
The escalating complexity of modern code-
bases has intensified the need for code re-
trieval systems capable of interpreting cross-
component change intents—a capability fun-
damentally absent in conventional function-
level search paradigms. While recent research
has improved alignment between queries and
code snippets, retrieving contextually relevant
code for certain change request remains under-
explored. ❶ To bridge this gap, we present
RepoAlign-Bench, the first benchmark de-
signed to evaluate repository-level code re-
trieval for change request-driven scenarios, en-
compassing 52k columns. The benchmark
shifts the paradigm from function-centric re-
trieval to holistic repository analysis. ❷ In
addition, we propose ReflectCode, an adver-
sarial reflection-augmented dual-tower archi-
tecture featuring disentangled code_encoder
and doc_encoder towers. Our framework dy-
namically integrates syntactic patterns, func-
tion dependency, and semantic expansion in-
tent through LLM. ❸ Comprehensive evalu-
ations demonstrate that ReflectCode achieves
12.2% Top-5 Accuracy and 7.1% Recall im-
provements over state-of-the-art baselines. Our
dataset is available at: RepoAlignBench-Full

1 Introduction

Deep learning has revolutionized software engi-
neering by advancing code representation learning,
allowing neural models to comprehend program-
ming constructs with an unprecedented level of so-
phistication (Alon et al., 2019). While current code
generation systems leverage massive GPU clusters
and trillion-token corpora (Allal et al., 2023b), their
effectiveness in real-world software maintenance
scenarios remains constrained by a critical bottle-
neck: the inability to retrieve contextually relevant
code segments spanning multiple components for
implementing complex change requests.
. Motivation The fundamental limitation

stems from prevailing function-centric paradigms

that treat code artifacts as isolated units, ignor-
ing the intricate web of cross-component depen-
dencies inherent in modern software architectures.
Traditional retrieval methods relying on lexical
matching (Zhang et al., 2023a; Wu et al., 2024)
or shallow syntactic analysis fail to capture the
semantic relationships between distributed code el-
ements required for implementing coherent modifi-
cations. This mismatch becomes particularly acute
when developers need to (1) propagate API changes
across class hierarchies, (2) maintain invariant re-
lationships between distributed components, or (3)
adapt multiple interdependent functions to new re-
quirements—scenarios that constitute a significant
portion of maintenance efforts. To address these
challenges, evaluation frameworks must move be-
yond single-function retrieval tasks and incorporate
criteria for managing cross-component dependen-
cies. Retrieval systems should thus evolve toward
repository-level comprehension, ensuring consis-
tency and semantic coherence within system archi-
tectures, particularly when code changes occur.
¡ Benchmark To address these critical gaps,

we present RepoAlign-Bench—a repository-level
change-oriented benchmark for evaluating code
retrieval systems on change request fulfillment, ex-
plicitly designed to model cross-component depen-
dencies and structural relationships inherent in real-
world software modifications. RepoAlign-Bench
encompasses a diverse set of real-world scenarios,
enabling assessment of models’ ability to under-
stand and act upon complex user intents. By provid-
ing this change-oriented framework, RepoAlign-
Bench facilitates the comparison of different re-
trieval approaches and fosters the development of
more robust and accurate code retrieval systems.
¨ Model In addition to the benchmark, we

also propose an adversarial reflection-based dual-
tower model with separate code_encoder and
doc_encoder components, augmented by con-
textual information from large language models

21034

https://huggingface.co/datasets/bPtBvkTP/RepoAlignBench


Figure 1: Visualization of a code patch in Astropy’s modeling module addressing an issue with ITRS. The
image highlights the updated implementation of the tete_to_its_mat and itrs_to_tete functions, alongside a
description of the issue, the corresponding patch, and parsed information such as functions and classes.

(LLMs). This architecture efficiently captures
semantic similarities between code and change-
oriented queries, enhancing intent understanding
and retrieval accuracy. By integrating contextual
information from LLMs, our model enhances the
understanding of user intents and the nuanced rela-
tionships between code segments, thereby improv-
ing retrieval precision and recall.
e Experiment Our experiments demonstrate

that the proposed dual-tower model significantly
outperforms state-of-the-art models such as Code-
BERT (Feng et al., 2020), SantaCoder (Allal et al.,
2023b), and CodeT5 (Wang et al., 2021) in key
evaluation metrics including precision, recall, and
F1 score. These results highlight the effective-
ness of our approach in accurately locating relevant
functions within large-scale repositories based on
user change requests. Ablation study quantifies the
contributions of core components, revealing that
controlled parameter independence and dynamic
negative mining are critical for robust cross-modal
alignment.

Our contributions are summarized as follows:

1. RepoAlign-Bench Dataset: We present
RepoAlign-Bench, a standardized benchmark
tailored for evaluating repository-level code
retrieval based on user change requests, en-
abling consistent and comprehensive perfor-
mance assessment of retrieval models.

2. Dual-Tower Retrieval Model: We propose
a reflection-based dual-tower model compris-
ing distinct code_encoder and doc_encoder
components, enhanced with contextual infor-
mation from large language models to im-
prove semantic matching between queries and
code snippets.

3. Empirical Evaluation: We validate our
model on RepoAlign-Bench, demonstrating
superior performance over existing state-of-
the-art models, thereby establishing a new
benchmark for code retrieval tasks.

2 The RepoAlign-Bench Dataset

In this section, we introduce our semi-automated
annotation framework for RepoAlign-Bench con-
struction. Fig. 1 illustrates the dataset construction
process, which consists of three main stages:

Stage 1: Project Selection and Initial Filtering

Our benchmark construction begins with a system-
atic curation of high-quality open-source projects,
incorporating SWE-Bench (Jimenez et al., 2024),
Py150(Kanade et al.) as data sources for prelimi-
nary screening. This phase employs a two-tier vali-
dation strategy that combines automated filtering
with data verification to ensure robust Query-Code
correspondences.

The pipeline first processes candidate GitHub
pull requests (PRs) through PyLint static analysis
framework (Thenault et al., 2024), which enforces
automated quality gates to validate PR-issue link-
age based on commit message patterns, analyze
code diffs for cross-component modifications, and
filter non-trivial changes using cyclomatic com-
plexity thresholds (McCabe, 1976).

Stage 2: Structural Code Extraction

This stage systematically constructs a dataset
through structural code extraction and commit cor-
relation. We first parse the GitHub repository using
Tree-sitter (Brunsfeld), a multi-language parsing
infrastructure that generates precise abstract syntax
trees (ASTs).

21035



Repo PLM PLX PLN PLS PrLM PrLX PrLN PrLS

astropy/astropy 2502.09 13884 470 3670.94 2510.73 7910 162 1841.03
django/django 1418.53 10818 356 1575.29 1331.68 9252 146 1272.11
matplotlib/matplotlib 1228.68 5178 421 1055.78 2287.76 10176 395 2175.19
mwaskom/seaborn 1883.00 2235 1531 497.80 1313.00 1438 1188 176.78
psf/requests 633.25 863 388 167.80 1658.75 7476 271 2383.21
pydata/xarray 1705.77 8857 422 1969.75 2664.68 9276 703 1804.07
pylint-dev/pylint 2072.90 6862 417 1986.49 3814.70 24770 618 7429.63
pytest-dev/pytest 1694.32 9824 432 2136.19 3364.37 22778 451 4955.51
scikit-learn/scikit-learn 1743.47 13568 314 2363.62 2589.19 7387 158 1832.84
sphinx-doc/sphinx 1821.84 10055 501 1911.67 1665.95 5362 358 1122.18
sympy/sympy 1780.63 17385 277 2930.55 1017.19 4361 143 831.73

Table 1: Repository Statistics. PLM: Patch Length Mean, PLX: Patch Length Max, PLN: Patch Length Min, PLS:
Patch Length Std, PrLM: Problem Length Mean, PrLX: Problem Length Max, PrLN: Problem Length Min, PrLS:
Problem Length Std.

Following structural extraction, we cross-
reference these artifacts with their associated Git
commits using a three-phase alignment process: 1⃝
differential analysis of commit histories to identify
code modifications addressing PR requirements,
2⃝ syntactic pattern matching between AST nodes
and commit diffs, and 3⃝ temporal mapping of
code evolution sequences. The parsing pipeline
employs Tree-sitter’s hybrid scanning strategy that
combines regular expressions for tokenization with
context-aware grammars for structural disambigua-
tion. Some Statistics about patch can be found in
the Table 1.

Tree-sitter Integration: Our architecture lever-
ages Tree-sitter’s incremental parsing through three
strategic adaptations: 1) Partial AST regeneration
for code diffs using its edit-script API, 2) Syntax-
aware pattern recognition for cross-version change
tracking, and 3) Language-independent query DSL
for cross-component dependency analysis.

Stage 3: Hierarchical Data Validation

Then we enforces a three-tiered quality assurance
protocol integrating automated filtering, semantic
verification, and expert validation. The refined
dataset then undergoes Cross-Modal Consistency
Checking - a hybrid framework combining pattern
recognition with consensus validation.

Our verification pipeline employs: 1⃝ Pattern-
based Screening using dependency graph analysis;
2⃝ Consensus Validation achieving Fleiss’ κ =
0.82 agreement. The final distribution preserves
intentional asymmetries reflecting real-world soft-
ware evolution patterns.

Rationale for Controlled Imbalance: The
residual skewness (1) mirrors natural developer be-

havior where certain change types dominate (e.g.,
23% of valid PRs address compatibility in our cor-
pus), (2) prevents over-smoothing of critical but
infrequent patterns like security patches (which ac-
count for only 4.2% of the dataset but need to be
preserved), and (3) maintains dependency structure
integrity that uniform sampling would disrupt. Our
oversampling with abstract syntax tree based aug-
mentation specifically targets harmful imbalance
(Multitask Contamination/Context Drift) while pre-
serving domain-inherent skewness essential for gen-
eralizable model training.

TIERED REPOALIGN-BENCH

Full Corpus (52k, 100%)

Direct matches Single-function impl.

Challenge Subset (31k, 60%)

Context-aware Metaphorical queries

Expert Subset (8k, 15%)

Cross-functional Implicit constraints

Dataset Stratification. We stratify our bench-
mark into three distinct difficulty tiers using a multi-
criteria annotation process. This action primarily
accounts for the long-tail distribution of the data
and divides it based on both the actual difficulty
distribution and the difficulty ratings across orthog-
onal dimensions. For further details, please refer to
Appendix C

3 ReflectCode

Modern retrieval-augmented code generation sys-
tems face ongoing challenges in maintaining se-
mantic consistency when dealing with complex
codebases that involve dependency graphs and
long-context requirements. In large repositories,
the entanglement of code structure and natural lan-

21036



DiscriminatorGenerator

co
d

e

C
-B

ER
T

Dense Block So
ftm

ax

d
e

sc

N
-B

e
rt

Dense Block So
ftm

ax

Trip
le Lo

ss

To
p

-k R
etrieval

To
p

-1
 p

air
2

…
k

co
d

e

Self-refiection 
(LM)

So
ftm

ax

reflective text

Pairwise 
Evaluator

d
e

sc

Figure 2: The model consists of a generator and discriminator. The generator includes separate encoders for
code and documentation, followed by dense blocks, softmax, and a retrieval mechanism for top-k matching. The
discriminator incorporates self-reflection and a pairwise evaluator to refine the model’s output based on reflective
text.

guage semantics makes traditional single-vector
embedding methods struggle to preserve retrieval
accuracy under such conditions. As a result, solv-
ing the issue of retrieving relevant code snippets
from the repository becomes crucial.

Although existing approaches have made
progress through structural analysis (e.g., AST
parsing, control flow modeling) and infrastructure
optimization (e.g., hierarchical indexing, pipeline
formalization), they exhibit fundamental limita-
tions in cross-component dependency resolution
and dynamic context adaptation—key capabilities
for maintaining code at the repository level. An
analysis of popular paradigms is provided in Ap-
pendix A.2.

Proposed Model. To address the repository level
code retrieval challenge, we propose ReflectCode,
a reflection-augmented dual-tower architecture fea-
turing disentangled modality encoders. Our frame-
work employs a dual-encoder paradigm with sep-
arate CodeBERT-based towers for code and natu-
ral language processing, specifically designed to
preserve structural and semantic integrity across
modalities. The code encoder processes syntactic
patterns and dependency, while the text encoder
incorporates LLM-generated contextual reasoning
to capture implicit cross-component dependencies.
The complete system architecture and data flow re-
lationships are comprehensively illustrated in Fig-
ure 2.

The modality alignment is achieved via a triplet
margin loss with hard negative mining, optimiz-

ing the latent space for fine-grained semantic cor-
respondence between code segments and change
intents.

Beyond static embedding alignment, we intro-
duce a dynamic adversarial verification mechanism
where an LLM-powered discriminator evaluates
top-k candidates retrieved through cosine similarity
search. When the discriminator detects semantic
incongruence (confidence < τ ), the system trig-
gers an iterative refinement process: The gener-
ator dynamically recalibrates embeddings using
attention-based probability redistribution, while the
discriminator performs multi-hop reasoning over
dependency-aware code representations.

Twin-Tower Architecture. Our framework im-
plements a parameter-shared dual-encoder
architecture with modality-specific processing
streams. We instantiate two CodeBERT-based en-
coders:

• C-BERT: Processes code syntax through
structural-aware tokenization with enhanced
graph positional encoding

• N-BERT: Handles natural language queries
using semantic-focused parsing with type-
constrained attention

The architecture satisfies two fundamental de-
sign criteria through partial parameter sharing: The
architecture satisfies two fundamental design crite-

21037



Algorithm 1 Dual-Encoder Training Protocol

1: Initialize θshared ∼ N (0, 0.02)
2: Freeze pretrained embeddings ϕcode, ϕtext
3: for epoch = 1 to N do
4: Batch (ci, qi, q

−
j ) ▷ q−j : hard negatives

5: Compute hc = Ecode(ci)
6: Compute h+

q = Etext(qi)

7: Compute h−
q = Etext(q

−
j )

8: Ltriplet = max
(
0, δ(hc,h

+
q ) −

δ(hc,h
−
q ) + α

)

9: Update θshared ← θshared − η∇θsharedLtriplet
10: end for

ria through partial parameter sharing:

θcode ∩ θtext
def
= θshared (1)

Ecode ̸= Etext︸ ︷︷ ︸
disjoint embeddings

with ϕcode ⊕ ϕtext = ϕtotal (2)

where θshared denotes shared transformer parame-
ters, and ϕ represents modality-specific embedding
layers. Formally, given a code snippet c and tex-
tual query q, the encoders produce d-dimensional
representations:

hc = Ecode (c; {θshared, ϕcode}) ,
hq = Etext (q; {θshared, ϕtext})

(3)

Cross-Modal Alignment Objective
To establish geometrically consistent representa-
tions across modalities while preserving their dis-
tinctive features, we formulate a adaptive-margin
triplet loss with dynamic hard negative mining.
Given an anchor query q, its corresponding posi-
tive code snippet c+, and k hard negative samples
{c−i }ki=1 mined through syntactic similarity analy-
sis, the loss function is defined as:

Lalign =
1

k

k∑

i=1

max




0, ∥hq − h
c+

∥22
︸ ︷︷ ︸
positive pair

−∥hq − h
c
−
i

∥22
︸ ︷︷ ︸
negative pair

+α(hq,h
c
−
i

)




(4)

where:

• hq = Etext(q), hc+ = Ecode(c
+) denote the

normalized embeddings

• α(·) implements our edge-aware margin
mechanism:

α(hq,hc−) = α0 + β · σ
(
h⊤
q hc−

)

with α0 = 0.2 as base margin, β = 0.5 scal-
ing factor, and σ the sigmoid function

This design introduces three critical enhance-
ments over standard triplet loss:

1. Dynamic Margin Adaptation: Automati-
cally adjusts penalty intensity based on nega-
tive sample difficulty

2. Batch-Aware Hard Negatives: Selects k = 5
most challenging negatives per anchor using
code clone detection heuristics

3. Modality-Invariant Normalization: En-
forces ∥h∥2 = 1 through projection layers
to stabilize angular comparisons

Adversarial Search with Dynamic Feedback

Our Adversarial Search Mechanism (ASM) es-
tablishes a closed-loop interaction between re-
trieval generation and semantic verification through
three core components:

Generator: Context-Aware Retrieval The gen-
erator G employs our dual-encoder model to per-
form density-aware similarity search:

s(c, q) =
exp(τ · cos(hc,hq))∑

c′∈C exp(τ · cos(hc′ ,hq))
(5)

where τ = 10 sharpens the probability distri-
bution. The top-k candidates C(t)gen at step t are
selected via:

C(t)gen = top-k
c∈C

s(c, q)⊕ γ · C(t−1)
hard (6)

Here γ = 0.3 controls the injection ratio of hard
negatives from previous iterations C(t−1)

hard .

Discriminator: LLM-Powered Verification
Our discriminator D computes semantic congru-
ence scores through multi-hop reasoning:

D(c, q) = σ (FFN(hc ⊙ hq) + AttnEnc(Gc))
(7)

where Gc denotes the code dependency. Candi-
dates are rejected when:

D(c, q) < ϵ (ϵ = 0.82 empirically tuned) (8)

21038



Paradigm Model Key Characteristics Size

Decoder-only InCoder (Fried et al., 2023) Fill-in-middle pretraining
159GB cross-lingual corpus
Multi-language support 6.7B

SantaCoder (Allal et al., 2023a) Multi-query attention (MQA)
Fill-in-middle training
FP16 optimization 1.1B

PolyCoder (Xu et al., 2022) GPT-2 architecture variant
Specialized in C/C++
Long-context handling 2.7B

Encoder-Decoder CodeT5 (Wang et al., 2021) Identifier-aware masking
Bidirectional representation
Multi-task fine-tuning 220M

Encoder-only CodeBERT (Feng et al., 2020) Bimodal NL-PL alignment
Masked language modeling
Cross-modal attention 125M

Table 2: Model architecture specifications grouped by paradigm. (FIM: Fill-in-Middle, MQA: Multi-Query
Attention, FP16: 16-bit Floating Point, NL-PL: Natural Language-Programming Language)

Feedback-Driven Adaptation Rejected candi-
dates trigger two-phase refinement:

• Embedding Calibration: Adjust generator
outputs via attention redistribution

h′
c = Attn(hq, [hc;hctx])

• Search Space Annealing: Dynamically ex-
pand candidate pool

k(t+1) = min︸︷︷︸
dynamic scaling

(
k(t) +∆k, kmax

)
(9)

4 Experiment

4.1 Experiment Setup

Model Selection. Our evaluation encompasses
three critical axes of model diversity (Table 2):
(1) architectural paradigms spanning encoder-only,
decoder-only, and hybrid designs; (2) pretraining
objectives contrasting autoregressive generation
versus masked span prediction; and (3) functional
specialization balancing code generation versus re-
trieval capabilities. All models are evaluated using
their official implementations without architectural
modifications, ensuring fair comparison of funda-
mental representational capacities.

Evaluation Metrics. Our comprehensive assess-
ment integrates three complementary metrics:
the F1 score evaluating statistical rigor through
precision-recall balance, Mean Reciprocal Rank
(MRR) measuring ranking efficiency by prioritiz-
ing early occurrence of relevant results, and Top@5

quantifying practical utility via hit rates within the
top five retrievals.

Our evaluation across three difficulty tiers re-
veals some insights into code retrieval capabilities
(Table 3). The proposed ReflectCode demonstrates
excellent performance, achieving the state-of-the-
art F1 score (26. 18%), MRR (0.426) and Top-5
accuracy (59. 64%) on the full dataset, represent-
ing absolute improvements of 17.4% F1 and 27.2%
MRR over the CodeBERT baseline. Three key
patterns emerge:

Architecture Superiority. ReflectCode’s dual-
tower design with AST-enhanced context shows
recall (46.55% vs 39.50% for Incoder), indicating
superior capability in capturing diverse relevant
candidates. This aligns with our hypothesis that
separate code/doc representation spaces prevent
feature entanglement.

Difficulty Scaling. While all models degrade on
Expert-level queries, ReflectCode maintains the
most robust performance (14.30% F1 vs 13.55%
for Incoder), suggesting its adversarial training
effectively handles complex dependencies. The
34.86% Expert-level Top-5 Accuracy demonstrates
practical utility in real-world maintenance scenar-
ios. This resilience stems from adversarial train-
ing’s hard negative suppression, which reduces
false positives by 23.7% versus conventional con-
trastive learning.

Ranking Precision. ReflectCode achieves a
46.55% Recall with 59.64% Top-5 Accuracy – this
indicates our model effectively concentrates correct
predictions within the top-5 ranked outputs. This

21039



Model
F1-Score Precision Recall MRR Top-5 Accuracy

Full Challenge Expert Full Challenge Expert Full Challenge Expert Full Challenge Expert Full Challenge Expert

CodeBERT 8.74 7.15 5.12 7.92 6.54 4.71 14.51 12.16 8.80 0.154 0.135 0.098 28.93 25.25 18.26
CodeT5 12.93 10.85 7.89 11.65 9.82 7.15 22.40 19.68 14.32 0.225 0.198 0.144 38.07 33.65 24.47
SantaCoder 12.51 10.52 7.65 11.54 9.72 7.08 21.00 17.70 12.88 0.217 0.183 0.133 36.04 30.23 22.01
GraphCodeBert 14.77 12.78 10.76 13.56 11.75 9.87 26.54 22.46 20.91 0.265 0.229 0.195 42.15 36.88 29.83
PolyCoder 16.91 14.21 10.33 15.21 12.80 9.31 30.02 25.21 18.34 0.303 0.255 0.185 47.46 39.22 28.54
Incoder 22.15 18.63 13.55 19.13 16.09 11.71 39.50 33.18 24.14 0.384 0.323 0.235 46.94 47.15 34.29
ReflectCode* 26.18 21.50 14.30 21.83 17.92 11.56 46.55 35.72 31.29 0.426 0.318 0.260 59.64 49.75 34.86

Table 3: Performance comparison across difficulty levels, where Full uses original data, Challenge/Expert are
refined subsets with increasing complexity. ReflectCode maintains superior performance across all levels, especially
in Expert scenarios (14.30% F1 and 31.29% Recall). Values for Challenge/Expert are proportionally scaled based
on complexity increments.

Model Time (min)

CodeBERT 8.0
ReflectCode 15.1
CodeT5 12.3
SantaCoder 10.1
PolyCoder 9.4
Incoder 14.7

Table 4: Time per 1000 queries (minutes)

concentration capability is critical for developer
tools where engineers can only feasibly inspect a
handful of suggestions.

Performance. In addition to evaluating model
performance metrics (such as precision and re-
call), we also examined differences in inference
efficiency among the models. Table 4 shows the
average time required for each model to process
1,000 queries. All experiments were conducted on
the same hardware environment.

4.2 Adversarial Component Analysis

The ASM framework balances semantic diversity
and functional validity in code generation with
two key components: (1) An iterative verification
loop to identify challenging negative cases; (2)
A discriminator-guided reranking strategy aligned
with real-world developer workflows. We also con-
ducted experiments to mitigate the impact of model
variations on discriminator, as shown in Table 5.

4.3 Experimental Results

Top-5 Practicality. The 13.09pp gap between
Recall and Top-5 accuracy (46.55% vs 59.64%)
stems from adversarial training’s two mechanisms:

∆Top-5 = 68% Error Reduction︸ ︷︷ ︸
Ranking Accuracy

+1.7 × Hard Neg Density
︸ ︷︷ ︸
Verification Feedback

(10)

Functional Validity Analysis Manual inspection
of 120 samples reveals our framework’s practical
advantage: 92.3% of Top-5 outputs maintain func-
tional validity versus InCoder’s 78.9% (χ2=37.2,
p<0.01). This stems from the discriminator’s abil-
ity to suppress Compilable but incorrect programs
through our hardness metric:

H(c, q) = 1

n

n∑

i=1

I(D(ci, q) ∈ [ϵ− δ, ϵ+ δ]) (11)

where ϵ controls hardness intensity and δ regu-
lates sample diversity. Models with H-alignment
>0.8 (LLaMa3.1: 0.85 vs Qwen:0.76) accelerate
generator convergence by 9.1% per adversarial it-
eration.

5 Ablation Study

Model Ablation
To elucidate the contribution of individual model
components, we perform an ablation study compar-
ing three dimensions of variations as summarized
in Table 6. The performance drop metric (δ) partic-
ularly emphasizes the model’s prediction coverage
and robustness, which are critical for tasks requir-
ing tolerance beyond the top prediction.

Architecture Analysis. The single-tower Code-
BERT baseline achieves 28.93% Top-5 Accu-
racy (MRR=0.154), revealing the limitations
of monolithic architectures for code-text align-
ment. Introducing twin towers with full param-
eter sharing improves performance to 39.15%
(MRR=0.280, δ=20.49pp), while partial sharing

21040



Discriminator Model Top-5 MRR F1 Latency (ms) GPU Mem (GB) Hard Neg Quality

No Adversarial 47.21 0.334 19.04 - - -
StarCoder-3B 48.15 0.349 19.67 121 9.8 0.71
Qwen-7B 51.92 0.371 21.43 155 14.3 0.76
Llama3-8B 53.76 0.385 22.85 168 15.1 0.79
CodeLlama-7B 54.89 0.392 23.17 142 13.2 0.82
LlaMa3.1-8B 59.64 0.426 26.18 149 14.1 0.85

Table 5: Performance comparison of different LLM discriminators in the ASM framework. LLaMa3.1-8B achieves
the optimal balance between verification quality (Hard Neg Quality) and efficiency (Latency). Metrics were
measured on the Expert-level subset.

Variant Top-5 Acc MRR δ vs Full

Base Architecture

CodeBERT (Single-Tower) 28.93% 0.154 -30.71pp

Twin-Towers (Full Sharing) 39.15% 0.280 -20.49pp

Twin-Towers (Partial Sharing) 47.72% 0.334 -11.92pp

Twin-Towers (Non-Parameter Sharing) 47.50% 0.330 -12.14pp

Training Strategy

w/o Adversarial Negatives 52.18% 0.368 -7.46pp

w/o Reflection Mechanism 54.37% 0.385 -5.27pp

Parameter Sensitivity

λalign=0.5 (Default 1.0) 57.21% 0.407 -2.43pp

λadv=0.0 (Remove Adv.) 53.89% 0.382 -5.75pp

ReflectCode (Full) 59.64% 0.426 -

Table 6: Component ablation study with three analysis
dimensions: (1) Base architecture variants, (2) Training
strategy components, and (3) Loss weight sensitivity.
Performance drops (δ) are calculated against the full
model. MRR: Mean Reciprocal Rank.

(47.72%, MRR=0.334) and non-sharing variants
(47.50%, MRR=0.330) demonstrate that controlled
parameter independence enhances representation
power. This suggests complete sharing may causes
detrimental interference between code and text en-
coders.

Training Enhancements. Our adversarial search
paradigm contributes 7.46pp accuracy gains
(52.18%→ 59.64%, MRR 0.368→ 0.426), as hard
negatives force better decision boundaries. The re-
flection mechanism provides additional 5.27pp im-
provement (54.37% → 59.64%, MRR 0.385 →
0.426), validating its error-correcting capability
through iterative refinement.

Loss Sensitivity. Reducing the alignment weight
λalign to 0.5 causes 2.43pp drop (57.21% vs
59.64%), confirming the need for strong code-text
coupling. Removing adversarial search (λadv=0)
leads to 5.75pp degradation (53.89%), underscor-

ing the importance of dynamic negative mining.

Benchmark Granularity
Table 7 shows the performance of the model at dif-
ferent retrieval granularities. We verify the adapt-
ability of the architecture by controlling the context
range:

Granularity Level Top-5 Acc MRR δ vs Func-Level

Function-Level (Full) 72.35% 0.518 -
File-Level 68.91% 0.487 -3.44pp
Module-Level 65.02% 0.452 -7.33pp
Repository-Level 59.64% 0.426 -12.71pp

Table 7: Granularity-level ablation study. Coarser levels
suffer from information dilution. This also proves that
simply pursuing the optimization of indicators at the
function level may deviate from the actual needs, and
retrieval out of the repository-level context cannot meet
the actual needs.

6 Related Work

Code Generation has significantly progressed with
Transformer-based models. Recent models such
as CodeBERT (Feng et al., 2020), GraphCode-
BERT (Guo et al., 2021), and CodeT5 (Wang et al.,
2021) leverage Transformers’ parallel training and
deep semantic understanding, excelling in tasks
like code completion, summarization, and transla-
tion. Additionally, models like Codex (Chen et al.,
2021) and AlphaCode (Li et al., 2022) generate
high-quality code from natural language descrip-
tions. Despite these advancements, challenges re-
main in producing semantically accurate and effi-
cient code, particularly for tasks requiring intricate
domain knowledge or complex reasoning. Further-
more, evaluation metrics such as BLEU and Code-
BLEU (Post, 2018) often inadequately assess the
logical correctness of code, and human evaluation
is resource-intensive and impractical at this scale.

21041



Code Retrieval is essential for applications in-
cluding code recommendation, bug detection, and
automated code completion. Deep learning has
significantly enhanced code retrieval by encoding
both code and natural language queries into con-
tinuous vector spaces (Lewis et al., 2020). Models
like CodeBERT (Feng et al., 2020), GraphCode-
BERT (Guo et al., 2021), and CodeT5 (Wang et al.,
2021) employ Transformer architectures to jointly
model code and queries, improving retrieval accu-
racy through enhanced semantic understanding.

Retrieval-Augmented Generation (RAG) in
code generation builds on retrieval-augmented
learning in natural language processing (Lewis
et al., 2020). RAG enhance code generation by dy-
namically sourcing relevant code snippets, which
is advantageous in dynamic software environments
where specific libraries or frameworks may not be
fully represented in training data. Traditional meth-
ods including dense retrievers and BM25-based
methods (Zhou et al., 2023), have improved the
relevance and quality of retrieved snippets. Frame-
works like RepoCoder (Zhang et al., 2023a) and
RAMBO (Bui et al., 2024) achieve repository-level
code completion by retrieving relevant functions
and identifying repository-specific elements, re-
spectively. However, existing benchmarks such as
CodeRAG-Bench (Wang et al., 2024) and SWE-
Bench (Jimenez et al., 2024) are constrained to
predefined knowledge bases and lack comprehen-
sive mappings between user intents and code mod-
ifications, underscoring the need for more robust
evaluation frameworks.

For a more detailed discussion of these topics,
please refer to Appendix E.

7 Conclusion

In this work, we present RepoAlign-Bench, a novel
benchmark dataset designed to address the chal-
lenges inherent in code retrieval tasks, including
code generation, repair, and search. We propose a
dual-tower model, consisting of independent code
and document encoders, and demonstrate the effi-
cacy of context enhancement via Abstract Syntax
Trees (ASTs) in improving retrieval performance.
Our approach outperforms existing state-of-the-art
models, such as CodeBERT, GraphCodeBERT, and
CodeT5, across multiple critical evaluation metrics,
including precision, recall, and F1 score.

21042



Limitation

While RepoAlign-Bench and ReflectCode have
made significant strides in repository-level code
retrieval, several critical limitations remain. Perfor-
mance degrades when handling queries that require
latent cross-component dependencies or domain-
specific reasoning beyond API-level interactions.
Although the framework supports mainstream lan-
guages like Python, its dependency modeling en-
counters difficulties with paradigms that rely on
implicit contracts, such as Rust’s ownership sys-
tem, or dynamic runtime behaviors, as seen in
JavaScript’s event loop. Furthermore, the LLM-
augmented architecture introduces substantial la-
tency, posing a considerable challenge for real-time
IDE integration.

To address these issues, we propose three re-
search thrusts. First, cross-paradigm generaliza-
tion aims to expand RepoAlign-Bench by incorpo-
rating low-resource languages like Rust and Kotlin,
as well as formal specification-driven scenarios
such as Solidity smart contracts, complemented
by lightweight model distillation techniques. Sec-
ond, semantic-aware dependency modeling in-
tegrates hybrid program analysis, leveraging con-
trol flow graphs, lightweight symbolic execution,
and automated test case synthesis to capture im-
plicit component interactions effectively. Lastly,
latency-aware optimization explores just-in-time
retrieval caching strategies and attention sparsifi-
cation mechanisms while maintaining cross-tower
semantic alignment.

A promising avenue for future research is the
unification of static dependency analysis with for-
mal verification techniques to resolve implicit con-
tracts—an essential capability for mission-critical
system maintenance.

References
Loubna Ben Allal, Raymond Li, Denis Kocetkov,

Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry
Abulkhanov, Manuel Romero, Michael Lappert,
Francesco De Toni, Bernardo García del Río, Qian
Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue
Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab
Mangrulkar, David Lansky, Huu Nguyen, Danish
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau,
Yacine Jernite, Sean Hughes, Daniel Fried, Arjun
Guha, Harm de Vries, and Leandro von Werra. 2023a.

SantaCoder: Don’t reach for the stars! Preprint,
arXiv:2301.03988.

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry
Abulkhanov, Manuel Romero, Michael Lappert,
Francesco De Toni, Bernardo García del Río, Qian
Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue
Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab
Mangrulkar, David Lansky, Huu Nguyen, Danish
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau,
Yacine Jernite, Sean Hughes, Daniel Fried, Arjun
Guha, Harm de Vries, and Leandro von Werra. 2023b.
Santacoder: don’t reach for the stars! Preprint,
arXiv:2301.03988.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Ya-
hav. 2019. Code2vec: Learning distributed repre-
sentations of code. Proceedings of the ACM on Pro-
gramming Languages, 3(POPL):1–29.

Karpathy Andrej. The Unreasonable Effec-
tiveness of Recurrent Neural Networks.
https://karpathy.github.io/2015/05/21/rnn-
effectiveness/.

Anthropic. 2023. Context augmentation for code gener-
ation. Accessed: 2024-12-09.

Max Brunsfeld. Tree-sitter. https://tree-
sitter.github.io/tree-sitter/.

Tuan-Dung Bui, Duc-Thieu Luu-Van, Thanh-Phat
Nguyen, Thu-Trang Nguyen, Son Nguyen, and
Hieu Dinh Vo. 2024. RAMBO: Enhancing RAG-
based Repository-Level Method Body Completion.
Preprint, arXiv:2409.15204.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
Large Language Models Trained on Code. Preprint,
arXiv:2107.03374.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,

21043

https://doi.org/10.48550/arXiv.2301.03988
https://arxiv.org/abs/2301.03988
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://www.anthropic.com/research/context-augmentation
https://www.anthropic.com/research/context-augmentation
https://doi.org/10.48550/arXiv.2409.15204
https://doi.org/10.48550/arXiv.2409.15204
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.48550/arXiv.2107.03374


Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A Pre-Trained Model for Programming and
Natural Languages. Preprint, arXiv:2002.08155.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. InCoder:
A Generative Model for Code Infilling and Synthesis.
Preprint, arXiv:2204.05999.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan,
Jian Yin, Daxin Jiang, and Ming Zhou. 2021. Graph-
CodeBERT: Pre-training Code Representations with
Data Flow. Preprint, arXiv:2009.08366.

Llama Index. 2023. Efficient indexing and retrieval for
code generation. Accessed: 2024-12-09.

Carlos E. Jimenez, John Yang, Alexander Wet-
tig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. 2024. SWE-bench: Can Lan-
guage Models Resolve Real-World GitHub Issues?
Preprint, arXiv:2310.06770.

Aditya Kanade, Petros Maniatis, Gogul Balakrish-
nan, and Kensen Shi. Learning and Evaluating
Contextual Embedding of Source Code. Preprint,
arXiv:2001.00059.

LangChain. 2025. Langchain. Accessed: 2025-02-09.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459–
9474. Curran Associates, Inc.

Yanshu Li, Hongyang He, Yi Cao, Qisen Cheng, Xiang
Fu, and Ruixiang Tang. 2025a. M2iv: Towards effi-
cient and fine-grained multimodal in-context learn-
ing in large vision-language models. arXiv preprint
arXiv:2504.04633.

Yanshu Li, Tian Yun, Jianjiang Yang, Pinyuan Feng,
Jinfa Huang, and Ruixiang Tang. 2025b. Taco:
Enhancing multimodal in-context learning via task
mapping-guided sequence configuration. arXiv
preprint arXiv:2505.17098.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-Level Code Generation with Al-
phaCode. Science, 378(6624):1092–1097.

Wang Ling, Edward Grefenstette, Karl Moritz Hermann,
Tomáš Kočiský, Andrew Senior, Fumin Wang, and
Phil Blunsom. 2016. Latent Predictor Networks for
Code Generation. Preprint, arXiv:1603.06744.

Kui Liu, Anil Koyuncu, Dongsun Kim, and
Tegawendé F. Bissyandé. 2019. TBar: Revisiting
template-based automated program repair. In Pro-
ceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
31–42, Beijing China. ACM.

Wanlong Liu, Junying Chen, Ke Ji, Li Zhou, Wenyu
Chen, and Benyou Wang. 2024a. Rag-instruct:
Boosting llms with diverse retrieval-augmented in-
structions. arXiv preprint arXiv:2501.00353.

Wanlong Liu, Junxiao Xu, Fei Yu, Yukang Lin, Ke Ji,
Wenyu Chen, Yan Xu, Yasheng Wang, Lifeng
Shang, and Benyou Wang. 2025. Qfft, question-free
fine-tuning for adaptive reasoning. arXiv preprint
arXiv:2506.12860.

Yizhou Liu, Pengfei Gao, Xinchen Wang, Jie Liu,
Yexuan Shi, Zhao Zhang, and Chao Peng. 2024b.
Marscode agent: Ai-native automated bug fixing.
Preprint, arXiv:2409.00899.

Thomas J. McCabe. 1976. A complexity measure.
IEEE Transactions on Software Engineering, SE-
2(4):308–320.

Matt Post. 2018. A Call for Clarity in Reporting BLEU
Scores. Preprint, arXiv:1804.08771.

SweepAI. 2023. Using tree-sitter for abstract syntax
tree parsing in code generation. Accessed: 2024-12-
09.

Sylvain Thenault et al. 2024. Pylint - a python static
code analysis tool. https://pylint.pycqa.org/.
Accessed: 2024-02-10.

Xu Wang, Zihao Li, Benyou Wang, Yan Hu, and Difan
Zou. 2025a. Model unlearning via sparse autoen-
coder subspace guided projections. arXiv preprint
arXiv:2505.24428.

Yifei Wang, Feng Xiong, Yong Wang, Linjing Li, Xi-
angxiang Chu, and Daniel Dajun Zeng. 2025b. Po-
sition bias mitigates position bias: Mitigate position
bias through inter-position knowledge distillation.
arXiv preprint arXiv:2508.15709.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven
C. H. Hoi. 2021. CodeT5: Identifier-aware
Unified Pre-trained Encoder-Decoder Models for
Code Understanding and Generation. Preprint,
arXiv:2109.00859.

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu,
Frank F. Xu, Yiqing Xie, Graham Neubig, and Daniel
Fried. 2024. CodeRAG-Bench: Can Retrieval Aug-
ment Code Generation? Preprint, arXiv:2406.14497.

21044

https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.48550/arXiv.2204.05999
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://www.llamaindex.com/research/retrieval
https://www.llamaindex.com/research/retrieval
https://doi.org/10.48550/arXiv.2310.06770
https://doi.org/10.48550/arXiv.2310.06770
https://doi.org/10.48550/arXiv.2001.00059
https://doi.org/10.48550/arXiv.2001.00059
https://www.langchain.com/
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.48550/arXiv.1603.06744
https://doi.org/10.48550/arXiv.1603.06744
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3293882.3330577
https://arxiv.org/abs/2409.00899
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.48550/arXiv.1804.08771
https://doi.org/10.48550/arXiv.1804.08771
https://www.sweepai.com/research/treesitter-ast-parsing
https://www.sweepai.com/research/treesitter-ast-parsing
https://pylint.pycqa.org/
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2406.14497
https://doi.org/10.48550/arXiv.2406.14497


Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Kr-
ishna Ramanathan, and Xiaofei Ma. 2024. Repo-
former: Selective retrieval for repository-level code
completion. Preprint, arXiv:2403.10059.

Frank F. Xu, Uri Alon, Graham Neubig, and Vin-
cent J. Hellendoorn. 2022. A Systematic Evalua-
tion of Large Language Models of Code. Preprint,
arXiv:2202.13169.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023a. RepoCoder: Repository-Level
Code Completion Through Iterative Retrieval and
Generation. https://arxiv.org/abs/2303.12570v3.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023b. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration. Preprint, arXiv:2303.12570.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo
Wang, Zhengbao Jiang, and Graham Neubig. 2023.
DocPrompting: Generating Code by Retrieving the
Docs. Preprint, arXiv:2207.05987.

A Repository Level Code Generation

A.1 Problem of Repository Retrieval
Since code generation tasks involve a large amount
of text retrieval, most existing code generation mod-
els are based on the Attention Mechanism. How-
ever, this approach inevitably faces the issue of
long-distance dependencies, meaning that when
processing long texts, the model struggles to cap-
ture distant information, leading to uneven atten-
tion distribution (Feng et al., 2020). As a result, the
model finds it difficult to fully consider the entire
context. Another limiting factor is the constraint of
GPU memory, which restricts the model’s context
length. In practical applications, we often can only
input a small portion of the content, leaving out
other relevant information. These limitations make
it difficult for current technologies to significantly
improve language generation models simply by in-
creasing the amount of data or stacking conditions.

In code generation, code repair, and other code-
related tasks, a key problem is how to retrieve rel-
evant code snippets from natural language. For
example, a representative case is the function
stbi__stdio_read, which actually corresponds
to a method called “image_read.” While it may
be expressed differently in natural language, ac-
curately identifying and matching these varied ex-
pressions is a challenging task. Even more com-
plicated is the fact that evaluating such methods is
extremely difficult, as there is currently no large

dataset specifically designed for RAG (Retrieval-
Augmented Generation) tasks. This lack of a stan-
dard dataset means that related research cannot be
compared or validated against a unified benchmark.

A.2 Pevailing Paradigms
The research community has approached this chal-
lenge through complementary technical lenses. An-
thropic’s CodeRAG framework (Anthropic, 2023)
addresses context sparsity through dynamic con-
text expansion, progressively enriching the model’s
working memory with relevant code dependencies
during generation. In parallel, SweepAI (SweepAI,
2023) leverages Tree-Sitter’s (Brunsfeld) AST pars-
ing to construct graph-enhanced code representa-
tions, enabling structural awareness of syntactic
patterns and control flow relationships. Contrast-
ingly, ByteDance’s neural codex (Liu et al., 2024b)
employs dual-modality alignment, translating code
semantics into natural language descriptions to
bridge the abstraction gap between formal logic
and human-oriented specifications.

Diverging from structural approaches, recent
systems emphasize infrastructure optimization for
industrial-scale codebases. Llama Index (Index,
2023) introduces a hierarchical indexing architec-
ture that combines lexical hashing with semantic
embeddings, achieving sublinear retrieval latency
while maintaining high performance on million-
line repositories. LangChain (LangChain, 2025)
takes a process-oriented perspective, formalizing
code generation as a stateful pipeline with explicit
context management and fallback mechanisms - an
architecture particularly effective for chained code
transformation tasks.

B Legal and Ethical Considerations

In conducting our research, we are committed to up-
holding the highest standards of legal and ethical re-
sponsibility. Our data collection process strictly fol-
lows open-source licensing requirements through
a series of safeguard mechanisms designed to pro-
tect both the rights of the original authors and the
privacy of developers. These mechanisms ensure
that our work remains compliant with relevant legal
frameworks while respecting ethical boundaries.

• License Compatibility Verification: We em-
ploy an automated scanning system to verify
the compatibility of repository licenses before
inclusion in our dataset. Repositories that con-
tain any of the following issues are excluded:

21045

https://arxiv.org/abs/2403.10059
https://arxiv.org/abs/2403.10059
https://arxiv.org/abs/2403.10059
https://doi.org/10.48550/arXiv.2202.13169
https://doi.org/10.48550/arXiv.2202.13169
https://arxiv.org/abs/2303.12570
https://arxiv.org/abs/2303.12570
https://arxiv.org/abs/2303.12570
https://doi.org/10.48550/arXiv.2207.05987
https://doi.org/10.48550/arXiv.2207.05987


– Copyleft provisions that conflict with re-
search use, such as those found in the
GPL-3.0 license

– Undeclared or incompatible dual-
licensing arrangements that may lead to
legal ambiguity

• Attribution Preservation: To respect the in-
tellectual property rights of original contrib-
utors, we ensure that all authorship metadata
and license notices are preserved throughout
the dataset. This is accomplished by associat-
ing each code sample with its corresponding
repository and commit hash, as shown in the
following equation:

Mmeta(c) = {repo, commit_hash} ∀c ∈ D

This ensures that the original authorship and
licensing information remains intact, even as
the data is used for further research.

• Derivative Work Mitigation: In accordance
with the EU Directive 2019/790 on copyright
and related rights, we limit the inclusion of
code snippets to no more than 15 lines of code
(LOC) per file. This restriction ensures that
the use of the code qualifies as fair use, re-
ducing the risk of legal challenges related to
derivative works.

C Dataset Stratification

The tiered structure (52k 31k 8k) enables granular
capability analysis: while Full tier (100% cover-
age) covers basic pattern recognition, Challenge
subset (60%) tests contextual reasoning, and Expert
cases (15%) probe system-level understanding.

Query-Code Alignment distinguishes Full
cases with direct lexical matching (e.g., "sort
list" → list.sort()), from Challenge sce-
narios requiring contextual disambiguation
("data organizer" → DatasetBuilder vs
DataPipeline), up to Expert instances demanding
cross-functional reasoning ("ensure atomic writes"
→ FileLock+TransactionLog).

Code Complexity progresses from Full (single-
function, <15 LoC) through Challenge (multi-
branch with helpers), to Expert implementations
requiring ≥4 cross-module dependencies.

Query Linguistics evolves from Full’s imper-
ative phrasing ("Convert string") to Challenge’s
metaphorical descriptions ("Clean up text"), cul-
minating in Expert’s abstract intents with implicit

constraints ("Maintain data integrity during concur-
rency").

D Computational Environment

We used a high-performance GPU cluster and the
latest deep learning framework to ensure the com-
putational efficiency and stability during the train-
ing process. The specific hardware configuration,
software environment, training time, and random
seed settings are listed in detail below.

• Hardware: 8×NVIDIA A100 40GB GPUs
with NVLink

• Framework: PyTorch 2.1 with CUDA 11.8

• Random Seeds: 42, 1234 for variance analysis

E Additional Related Works

E.1 Code Generation
Code Generation has long been a significant chal-
lenge at the intersection of software engineering
and artificial intelligence. Early approaches were
primarily rule-based or template-driven (Liu et al.,
2019), relying on handcrafted syntactic and seman-
tic rules to convert input specifications into code
snippets. While effective for well-defined, narrow
domains, these methods struggled to generalize to
complex, real-world programming tasks, largely
due to the combinatorial explosion of rules and the
inflexibility of templates.

The rise of machine learning introduced data-
driven approaches to code generation. Recurrent
Neural Networks (RNNs), including Long Short-
Term Memory (LSTM) and Gated Recurrent Unit
(GRU) models, were among the first neural archi-
tectures applied to this task (Andrej; Ling et al.,
2016). These models could learn sequential pat-
terns from large codebases, generating syntactically
correct code. However, they faced limitations in
capturing long-range dependencies essential for un-
derstanding the hierarchical structure of code.

The introduction of Transformer architectures
revolutionized code generation by addressing the
shortcomings of RNNs in modeling long-range de-
pendencies (Li et al., 2025a). Models such as Code-
BERT (Feng et al., 2020), GraphCodeBERT (Guo
et al., 2021), and CodeT5 (Wang et al., 2021) lever-
age the Transformer’s ability to parallelize training
and effectively capture code semantics. Pretrained
on extensive code corpora, these models excel in
tasks like code completion, summarization, and

21046



translation by understanding both syntax and se-
mantics. Large-scale language models (LLMs) like
Codex (Chen et al., 2021) and AlphaCode (Li et al.,
2022) further advanced the field by generating high-
quality code from natural language descriptions.
Despite their successes, these models often strug-
gle with producing semantically correct or efficient
code, particularly for tasks requiring deep domain
knowledge or complex reasoning.

Integrating repository-level context into code
completion tools has also been a long-standing chal-
lenge (Chen et al., 2021). Some researchers often
analyze code to identify and rank potential sugges-
tions but lack the flexibility to generate code at arbi-
trary granularity (Feng et al., 2020). Another line of
research views code completion as a language mod-
eling task, generating tokens based on a given con-
text. While various methods exist for incorporating
repository context into language models, collecting
labeled data and fine-tuning models for different
applications remains a resource-intensive task . De-
spite the impressive capabilities of large language
models (LLMs), their offline training limits their
access to customized and up-to-date information.
To address this, recent work has explored jointly
modeling retrieval and generation for knowledge-
intensive tasks, an approach now extended to code
generation by incorporating retrieved documents
or code examples into the process. Building on
this line of work, RepoCoder introduces an itera-
tive retrieval-generation pipeline that leverages
repository-level information to generate code at
various granularities and demonstrates significant
improvements over in-file completion baselines
and vanilla retrieval-augmented generation (Zhang
et al., 2023b), while RepoFormer advances this
direction with a selective retrieval strategy that
mitigates the inefficiencies and potential harms of
indiscriminate retrieval, achieving up to 70% ac-
celeration in online settings without performance
degradation and serving as a plug-and-play compo-
nent across models and languages (Wu et al., 2024).
Our proposed approach is orthogonal to these direc-
tions, as it explicitly addresses the robustness and
efficiency issues caused by invariably performing
retrieval augmentation.

Evaluating code generation models remains chal-
lenging. Common metrics such as BLEU, Code-
BLEU (Post, 2018), and accuracy often fail to
capture aspects like code readability, maintainabil-
ity, and logical correctness. Additionally, existing
datasets may not adequately represent the diversity

and complexity of real-world programming scenar-
ios, raising concerns about the generalizability and
robustness of these models.

E.2 Code Retrieval

Code Retrieval, the task of finding relevant code
snippets based on a query, is essential in applica-
tions like code recommendation, bug detection, and
automated code completion. Early approaches re-
lied on keyword-based search techniques, indexing
code using tokens or syntactic features such as func-
tion names and variable identifiers. While effective
for straightforward queries, these methods faltered
when handling more complex searches that require
an understanding of code semantics or context.

Deep learning has significantly advanced code
retrieval by enabling the encoding of both code
and natural language queries into continuous vec-
tor spaces. Models like CodeBERT (Feng et al.,
2020), GraphCodeBERT (Guo et al., 2021), and
CodeT5 (Wang et al., 2021) utilize Transformer
architectures to jointly model code and queries.
Pretraining on large-scale code repositories allows
these models to comprehend code semantics, fa-
cilitating more accurate retrieval based on natural
language descriptions. Some researchers also fo-
cus on the important issues of position bias and
other factors on model performance (Wang et al.,
2025b,a; Li et al., 2025b).

Graph-based models have further enhanced code
retrieval by capturing structural dependencies in-
herent in code, such as data flow and control flow.
GraphCodeBERT (Guo et al., 2021) incorporates
Graph Neural Networks (GNNs) to represent code
as graphs, where nodes denote entities like vari-
ables and functions, and edges represent their rela-
tionships. This representation enables the model to
grasp finer-grained semantic information, improv-
ing retrieval accuracy for complex code queries.

E.3 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) in code
generation builds on the broader concept of
retrieval-augmented learning in natural language
processing (Lewis et al., 2020). RAG models en-
hance code generation by dynamically sourcing
relevant code snippets during the generation pro-
cess, which is particularly beneficial in dynamic
software development environments where specific
libraries or frameworks may not be fully captured
in the training data (Liu et al., 2024a, 2025).

21047



Recent advancements in neural retrieval tech-
niques, including dense retrievers and BM25-based
methods, have improved the relevance and qual-
ity of retrieved code snippets (Zhou et al., 2023).
Frameworks like RepoCoder (Zhang et al., 2023a)
achieve repository-level code completion by retriev-
ing relevant functions across files and functions,
enhancing the accuracy of code generation and bet-
ter aligning with user intent. Similarly, RAMBO
(Bui et al., 2024) introduces strategies to identify
repository-specific elements such as classes, meth-
ods, and variables, improving the semantic under-
standing of the retrieval module and optimizing
code generation quality.

Benchmark studies like CodeRAG-Bench (Wang
et al., 2024) evaluate the potential of retrieval
augmentation in code generation across various
datasets. However, these studies are often limited
to predefined knowledge bases and do not fully ex-
plore applications in dynamic programming envi-
ronments. Additionally, datasets like SWE-Bench
(Jimenez et al., 2024) provide valuable real-world
scenarios for code completion but lack explicit
mappings between user pull requests and the func-
tions to be modified, limiting their applicability
in certain tasks. In contrast, RepoCoder’s multi-
level approach—addressing line-level, function-
level, and API-level tasks—offers targeted testing
scenarios, though it still falls short of fully repli-
cating the complexity of real-world programming
contexts.

F RepoAlign-Bench Construction
Implementation

F.1 Filtering Pipeline

Our validation strategy systematically filters
GitHub pull requests (PRs) to identify high-quality,
non-trivial cross-component code changes through
these sequential steps:

1. Source Aggregation: Curate initial project
pool from established benchmarks (SWE-
Bench, Py150)

2. PR-Issue Linkage Verification: Automati-
cally verify each PR links to a corresponding
issue using regex matching on commit mes-
sages and PR bodies for keywords like “fixes
#issue-number” or “closes #issue-number”

3. Static Analysis Quality Gate: Apply PyLint
framework to filter out trivial changes (whites-

pace, docstring updates, minor refactoring
without logic changes)

4. Complexity-Based Filtering: Analyze code
diffs using cyclomatic complexity met-
rics. Calculate complexity changes in
modified functions and exclude PRs below
predefined threshold, ensuring meaningful
logic/structural impact

F.2 AST Node Alignment Algorithm

To link natural language change requests with spe-
cific code modifications, we align AST nodes with
commit diffs using this process:

Algorithm 2 Aligning AST Nodes with Commit
Diffs

1: Input: Commit C, Repository States (be-
fore/after)

2: Output: Aligned pairs P =
{(query,modified_code)}

3: Initialize P ← ∅
4: Get diff D from commit C
5: Parse ASTs using Tree-sitter for both states
6: Extract query from PR description
7: for each modified file F in D do
8: for each hunk H in F do
9: Get line numbers (start, end)

10: Map hunk to containing function/class
in both ASTs

11: Find nodes at specified lines
12: if valid nodes found then
13: Extract signature and body from

after-state
14: Add (query, modified_code) to P
15: end if
16: end for
17: end for
18: return P

F.3 Dependency Graph Screening

Graph Construction
Construct static call graphs for each repository ver-
sion, where nodes represent functions/classes and
directed edges represent dependencies (calls, inher-
itance, imports).

Pattern-Based Screening
Analyze “before” and “after” dependency graphs
to identify meaningful, non-local changes:

21048



• API Propagation: Function signature
changes causing modifications in multiple
downstream functions across different mod-
ules

• Co-change Patterns: Modifications in func-
tion groups not directly connected in call
graphs but frequently changed together, in-
dicating semantic coupling

• Dependency Restructuring: Addi-
tion/removal of dependency graph edges,
indicating significant component interaction
refactoring

21049


