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Abstract

While powerful, large language models (LLMs)
present significant fine-tuning challenges due
to their size. Parameter-efficient fine-tuning
(PEFT) methods like LoRA provide solutions,
yet suffer from critical optimizer inefficiencies;
notably basis redundancy in LoRA’s B matrix
when using AdamW, which fundamentally lim-
its performance. We address this by optimizing
the B matrix on the Stiefel manifold, imposing
explicit orthogonality constraints that achieve
near-perfect orthogonality and full effective
rank. This geometric approach dramatically
enhances parameter efficiency and representa-
tional capacity. Our Stiefel optimizer consis-
tently outperforms AdamW across benchmarks
with both LoRA and DoRA, demonstrating that
geometric constraints are the key to unlocking
LoRA’s full potential for effective LLM fine-
tuning.

1 Introduction

Large Language Models (LLMs) have recently
led to significant progress in the field of Natu-
ral Language Processing (NLP), achieving near
or superhuman performance across diverse tasks
(Brown et al., 2020; Touvron et al., 2023). How-
ever, the substantial computational overhead and
memory footprint associated with LLMs, which
possess parameters numbering hundreds of bil-
lions, cause serious restrictions on their wide
adoption and efficient fine-tuning (Kaplan et al.,
2020). To solve these real-world problems and
effectively adapt LLMs for various downstream
tasks, Parameter-efficient fine-tuning (PEFT) tech-
niques have emerged, which involve fine-tuning
only a minimal subset of the original model weights
(Lialin et al., 2023; Lester et al., 2021; Li and Liang,

*Equal Contribute
†Corresponding Author
‡{jyoung.park, mjae.kang, sbae.lee, hgang.lee,

swan.kim, jaeho.lee}@opt-ai.kr

2021). Notably, Low-Rank Adaptation (LoRA)
(Hu et al., 2022) represents the weight update∇W
as the product of two low-rank matrices, A ∈ Rr×k

and B ∈ Rd×r (i.e.,∇W = BA), thereby drasti-
cally reducing the total number of trainable pa-
rameters. This approach efficiently achieves per-
formance analogous or competitive to full model
fine-tuning, establishing LoRA as one of the most
adopted PEFT methodologies at present.

Despite the success of LoRA, a fundamental
question arises: Are we truly leveraging this con-
strained resource r, in the most effective way?
Common LoRA approaches mostly train the up-
date matrices A and B within a standard Euclidean
space using conventional gradient descent-based
optimization algorithms, for example, AdamW,
without imposing explicit structural constraints
(Loshchilov and Hutter, 2017). While this ap-
proach offers straightforward implementation, it
may overlook potential inefficiencies stemming
from the inherent low-dimensional structure. For
instance, during the training process, the column
vectors of matrix B, which are the basis direc-
tions of the update, may exhibit increased simi-
larity, leading to redundancy. Alternatively, the up-
date directions might manifest unstable dynamics.
Such phenomena can result in an underutilization
of the representational capacity afforded by the
fixed rank r. This, in turn, can cause slower conver-
gence, suboptimal final performance, or require a
higher rank r, and consequently more parameters,
to achieve satisfactory performance levels (Kala-
jdzievski, 2023).

However, in other fields of deep learning re-
search, using appropriate geometric structures, es-
pecially orthogonality or unitarity constraints, on
learnable parameter matrices has been consistently
reported to be highly effective in enhancing model
performance and training stability. For example, in
Convolutional Neural Networks (CNNs), enforc-
ing orthogonality constraints on weight matrices
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Figure 1: Visualization of the effective rank of LoRA weights with and without the Stiefel manifold constraint,
illustrated for the case of r=16. (A) When the LoRA matrix B ∈ Rd×r is optimized on the Stiefel manifold, its
columns remain orthogonal. This ensures linear independence and allows them to fully span an r-dimensional
subspace, resulting in an effective rank equal to the nominal rank r. (B) Without this orthogonal structure (e.g.,
when trained in Euclidean space with AdamW), the columns of B can become correlated or redundant, leading to an
effective rank lower than the nominal rank r.

has been demonstrated to bolster the orthogonal-
ity of feature representations, thereby enriching
their expressiveness and consequently improving
the model’s generalization capabilities and train-
ing stability (Bansal et al., 2018; Huang et al.,
2018; Wang et al., 2020). In Recurrent Neural
Networks (RNNs), the application of unitary ma-
trix constraints, which are orthogonal matrices in
complex space, has proven effective in mitigating
the vanishing and exploding gradient problems en-
countered during the learning of long-term depen-
dencies (Arjovsky et al., 2016; Vorontsov et al.,
2017). These diverse success stories strongly sug-
gest that introducing suitable geometric structural
constraints into the model parameter space, aligned
with the characteristics of the data or the learning
objectives, can exert a positive influence on the
model’s representational power, learning dynamics,
and ultimate performance.

This raise an important question: Could such
geometric constraints be effectively applied to the
low-rank update matrices in LoRA, the cornerstone
of PEFT techniques, to overcome the aforemen-
tioned limitations and unlock latent performance
capabilities? This research aims to solve this key
question. We propose Stiefel-LoRA, a novel fine-
tuning framework that explicitly imposes orthog-
onality constraints on the update matrix B, a core
component of LoRA. Specifically, we constrain
the column vectors of matrix B to be orthonormal,
which is equivalent to B residing on the Stiefel
manifold St(d, r) = B ∈ Rd×r : B⊤B = Ir (Ab-

sil et al., 2009; Edelman et al., 1998). Under this
constraint, the LoRA update ∇W = BA can be
interpreted as a linear transformation within the
space spanned by the orthonormal column vectors
of matrix B. We anticipate that the orthogonality
constraint imposed in Stiefel-LoRA will maximize
the representational efficiency of the LoRA update,
eliminate unnecessary redundancies, and stabilize
learning dynamics, thereby eliciting the maximum
potential performance of LoRA under a given pa-
rameter budget (rank r). This will ultimately lead
to achieving comparable or superior performance
with fewer parameters (r), or attaining faster con-
vergence and higher final performance with the
same number of parameters.

This paper describes the theoretical foundation
of the Stiefel-LoRA framework and provides an in-
depth analysis of how the proposed geometric con-
straint contributes to improving the inherent limi-
tations of standard LoRA, particularly concerning
parameter efficiency and training stability. Further-
more, through extensive experimentation across
diverse LLMs fine-tuning benchmarks, we success-
fully demonstrate that Stiefel-LoRA consistently
achieves superior performance, significantly faster
convergence rates, and enhanced parameter effi-
ciency compared to standard LoRA. In conclusion,
this research introduces a novel perspective of ge-
ometric optimization to parameter-efficient fine-
tuning techniques, thereby paving new avenues
for optimizing the efficiency and performance of
LLMs fine-tuning and is anticipated to contribute

20972



to the advancement of related research.

2 Related Works

2.1 PEFT and LoRA

Fine-tuning entire large-scale models demands sub-
stantial computational resources and memory. To
address these challenges, PEFT methodologies aim
to achieve performance comparable to full fine-
tuning by optimizing only a small number of param-
eters while keeping the majority of the pre-trained
model weights frozen (Lester et al., 2021; Li and
Liang, 2021). LoRA stands as a prominent PEFT
methodology, which fine-tunes by adding low-rank
adapters to the weight matrices of a pre-trained
model.

Research on LoRA has concentrated on enhanc-
ing training stability, conducting comparative anal-
yses with full fine-tuning, and developing various
derivative models to address the issue of catas-
trophic forgetting. For instance, rsLoRA (Kala-
jdzievski, 2023) (Rank-Stabilized LoRA) modifies
the scaling factor of conventional LoRA to resolve
the gradient collapse problem at high ranks, thereby
improving training stability. This allows the model
to effectively leverage higher ranks to enhance per-
formance.

Comparative studies between LoRA and Full
fine-tuning (FFT) have elucidated structural and be-
havioral distinctions between the two approaches.
LoRA generally exhibits a reduced tendency to
forget pre-learned knowledge compared to FFT.
(Biderman et al., 2024) However, a performance
gap may be observed in certain complex domains
(Tian et al., 2024; Liu et al.). Furthermore, a
novel phenomenon termed "intruder dimensions"
has been observed in LoRA-tuned models, which
are not present in FFT and may affect robustness
during continual learning. (Reece Shuttleworth
et al., 2024)

To overcome these limitations and mitigate catas-
trophic forgetting, variant models such as DoRA
(Liu et al., 2024) (Weight-Decomposed Low-Rank
Adaptation), LoRA-Null (Tang et al., 2025), and
LoRAX (Sullivan-Pao et al., 2025) (LoRA eXpand-
able Networks) have been proposed. DoRA decom-
poses pre-trained weights into magnitude and direc-
tion, then applies LoRA to update the directional
component, aiming to emulate the learning capacity
of full fine-tuning. LoRA-Null aims for knowledge
preservation by initializing LoRA adapters in the
null space of pre-trained knowledge activation. Lo-

RAX balances stability and plasticity in continual
learning environments by adding new LoRA mod-
ules for each task.

Close to our work, Büyükakyüz (2024) opti-
mizes learning through orthogonality via QR De-
composition. However, the primary goal of that
study is convergence speed, rather than perfor-
mance optimization. Furthermore, our research
differs in that it utilizes Riemannian optimization,
leveraging the advantages of the Stiefel manifold.

2.2 Riemannian Geometric Optimization
In deep learning model training, conventional opti-
mization methodologies predicated on Euclidean
space exhibit limitations in fully harnessing the
complex geometric structures inherent in param-
eter spaces (Martens, 2020; Fei et al., 2025). As
an alternative, Riemannian geometry-based opti-
mization methodologies are garnering attention, as
they can leverage the intrinsic geometric informa-
tion of data or model parameters to enhance learn-
ing dynamics and deepen theoretical understanding
(Zhang and Sra, 2016; Absil et al., 2009).

Riemannian Stochastic Gradient Descent
(RSGD) extends Stochastic Gradient Descent
(SGD) to Riemannian manifolds (Bonnabel, 2013).
Research indicates that RSGD can achieve faster
convergence rates when employing increasing
batch sizes alongside gradually decreasing learning
rates, a trend analogous to findings in Euclidean
SGD (Goyal et al., 2017; Smith et al., 2017).
Riemannian optimization can facilitate conver-
gence by transforming constrained optimization
problems into unconstrained problems on a
manifold, sometimes attaining higher accuracy
than Euclidean methods (Huang and Van Gool,
2017). Riemannian Bilevel Optimization (RieBO,
RieSBO) algorithms have been shown to achieve
gradient complexity and oracle call counts similar
to their Euclidean counterparts (Li and Ma, 2025).

Although LoRA and Riemannian optimization
originate from different perspectives, they share a
common objective of achieving efficient learning
in high-dimensional, complex spaces. LoRA con-
tributes to this goal by streamlining the learning
process itself (Hu et al., 2022), while Riemannian
optimization does so by enabling a more efficient
exploration of the parameter space through the uti-
lization of its geometric properties (Absil et al.,
2009). Currently, the optimization of LoRA pa-
rameters is predominantly performed in Euclidean
space. However, if LoRA parameters themselves
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reside on a manifold satisfying specific constraints,
or if their update process could benefit from geo-
metric considerations, applying Riemannian opti-
mization techniques to LoRA parameter optimiza-
tion could represent a promising research direc-
tion.

3 Methodology

This chapter explains the core concepts of the pro-
posed Stiefel-LoRA methodology. The basic con-
cepts of LoRA, the Stiefel manifold, and Rieman-
nian optimization are described in Appendix C.1.
Then, Algorithm 1 presents the core mechanism
and the overall algorithm for efficiently applying
the Stiefel manifold constraint to LoRA updates.

3.1 Proposed Method

Stiefel-LoRA aims to enhance the LoRA fine-
tuning methodology by explicitly imposing an or-
thogonality constraint on one of the factor matrices
composing the low-rank approximation of a weight
matrix, thereby augmenting parameter efficiency
and improving model performance. The core of
this approach lies in performing optimization on
the Stiefel manifold, which helps to overcome po-
tential limitations in the expressive power of con-
ventional LoRA methods and fosters a more stable
learning process.

The optimization problem for Stiefel-LoRA is
formulated as follows for a given fine-tuning loss
function f :

min
A,B

f(W0 +BA) subject to B ∈ St(n, p) (1)

Here, W0 ∈ Rd×k represents the pre-trained
weight matrix, which remains fixed throughout
the fine-tuning process. The matrix A ∈ Rr×k,
one of the optimization targets, is searched within
the standard Euclidean space without any addi-
tional constraints. Conversely, the other target
matrix, B ∈ Rd×r, is optimized on the Stiefel
manifold St(d, r). In this context, the constraint
B ∈ St(d, r) (implying B⊤B = Ir, where Ir is
the r × r identity matrix) enforces that the column
vectors of B are orthonormal.

The initial step in the optimization process in-
volves computing the Euclidean gradients of the
loss function f with respect to A and B, denoted
as∇Af and∇Bf , respectively, using the standard
backpropagation algorithm. The gradient∇Af for
matrix A, which is optimized in Euclidean space, is

directly used to update A in the conventional man-
ner. However, for matrix B, which must satisfy the
Stiefel manifold constraint, the Euclidean gradient
∇Bf is not directly used for updates. Instead, it (or
a momentum-updated version thereof) undergoes
a projection onto the tangent space at the current
point Bk on the manifold to form a tangent vector
ξk. This tangent vector ξk, scaled by a learning rate
α, is then utilized in a retraction operation to move
from Bk to the next point Bk+1 that satisfies the
manifold constraint.

For the retraction operation, which maps a
point Bk ∈ St(d, r) and a tangent vector ξk ∈
TBk

St(d, r) to a new point Bk+1 ∈ St(d, r), we
employ a method based on QR decomposition.
This common retraction, often referred to as pro-
jection via QR decomposition, is performed in two
steps;

1. An ‘optimistic’ step is taken in the ambient
Euclidean space Rd×r along the tangent direc-
tion: Y ′

k = Bk + αξk

2. The resulting matrix Y ′
k generally does not

lie on the Stiefel manifold (i.e., its columns
may not be orthonormal). It is projected back
to St(d, r) by performing its QR decompo-
sition. If Y ′

k = QkRk is the QR decomposi-
tion of Y ′

k(where Qk ∈ Rd×r has orthonormal
columns and Rk ∈ Rr×r is upper triangular),
the new point is taken as Bk+1 = Qk

To ensure uniqueness and desirable properties for
Qk(such as forming a valid retraction), variants of
QR decomposition can be used where the diagonal
elements of Rk are constrained to be positive. This
QR-based retraction robustly ensures that Bk+1

satisfies the orthonormality constraint. The update
can be summarized as:

Y ′k = Bk + αξk

Bk+1 = qf(Y ′
k)

(the Q factor from QR decomposition)

(2)

Here, α is the step size (learning rate) and ξk is the
tangent vector at Bk(derived from the gradient and
potentially momentum). While QR decomposition
can be computationally more intensive than some
other approximations for very large matrices, it
provides a numerically stable and well-established
method for retraction onto the Stiefel manifold.

Furthermore, to effectively apply momentum-
based optimizers, such as Adam, for the optimiza-
tion of B on the Stiefel manifold, Stiefel-LoRA
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Model Method Optimizer BoolQ PIQA SIQA HellaSwag ARC-e ARC-c OBQA Avg.

LLaMA3.2-1B
LoRA

Stiefel 75.2 70.9 65.3 29.2 70.5 44.2 63.2 59.7
AdamW 63.2 53.4 50.1 25.4 58.8 35.7 46.6 47.6

DoRA
Stiefel 77.5 71.4 66.8 30.5 71.2 37.6 64.7 59.9

AdamW 67.6 65.2 61.4 26.9 60.5 36.4 48.1 52.3

LLaMA3.2-3B
LoRA

Stiefel 84.7 85.1 82.5 90.3 85.4 68.6 80.4 82.4
AdamW 81.1 80.5 78.9 87.1 83.4 65.1 76.2 78.9

DoRA
Stiefel 86.5 87.1 84.4 92.5 87.9 70.8 82.7 84.5

AdamW 83.8 82.2 80.6 89.7 85.2 67.7 78.5 81.1

LLaMA3-8B
LoRA

Stiefel 86.2 87.9 82.8 91.5 87.2 72.1 81.9 84.2
AdamW 83.3 81.5 78.8 88.3 85.4 68.2 77.7 80.4

DoRA
Stiefel 88.7 89.5 85.1 94.2 89.4 74.6 84.9 86.6

AdamW 85.9 83.8 81.1 90.9 87.2 71.2 80.3 82.9

Table 1: Accuracy comparison on seven commonsense reasoning datasets with various PEFT(r = 16) method and
optimizer applied.

adopts a standard strategy. Momentum-related
computations (e.g., updates to first and second
moments in Adam) are first performed in the am-
bient Euclidean space using the Euclidean gradi-
ent ∇Bf . This yields a momentum-updated Eu-
clidean direction, let’s call it M

′
k+1. This direction

M ′
k+1 is then projected onto the subsequently used

in the QR-based retraction of momentum as de-
scribed in Equation (2). This approach allows the
incorporation of momentum from optimizers like
Adam while rigorously maintaining the manifold
constraint through projection and retraction.

4 Experiments

4.1 Performance Analysis
In this section, we present a comprehensive analy-
sis of the performance improvements achieved by
applying Stiefel manifold optimization compared
to traditional AdamW optimization for LoRA fine-
tuning. The experiments are conducted across key
NLP benchmark domains: Commonsense Reason-
ing, Reading Comprehension, and Mathematics.
For each category, we evaluated several benchmark
datasets using three model scales LLaMA-3.2-
1B, LLaMA-3.2-3B, and LLaMA3-8B (Grattafiori
et al., 2024) with both standard LoRA and DoRA
adaptation methods. Additionally, we analyze and
discuss how the geometric constraints of the Stiefel
manifold influence model training efficiency and
representational capacity.

Commonsense Reasoning Before examining the
results, we referenced the experimental setup from
Hu et al. (2022). As shown in Table 1, Stiefel man-

ifold optimization consistently demonstrates supe-
rior performance compared to AdamW across all
commonsense reasoning benchmarks. The perfor-
mance improvements are particularly pronounced
in complex reasoning tasks that require deeper in-
ferential capabilities, such as ARC-c (Clark et al.,
2018) and HellaSwag (Zellers et al., 2019).

These findings suggest that commonsense rea-
soning demands efficient learning of various forms
of implicit knowledge and causal relationships.
LoRA adapters trained with conventional AdamW
optimization appear to have either insufficiently
captured these relationships or exhibited redun-
dancy in their representations. In contrast, the
Stiefel-LoRA imparts orthogonality to the LoRA
adapters, particularly to the B matrix, guiding each
basis vector to function as an independent informa-
tion channel.

This approach enables effective representation
of diverse types of information and facilitates bal-
anced reasoning. Consequently, our optimization
methodology significantly enhances commonsense
reasoning capabilities that leverage contextual un-
derstanding across various knowledge domains.

Furthermore, when combined with DoRA, the
Stiefel-LoRA achieves optimal performance across
all model scales. This indicates a complementary
effect between DoRA’s decomposed low-rank adap-
tation and the geometric constraints imposed by the
Stiefel-LoRA.

Reading Comprehension The results for Read-
ing Comprehension tasks further validate the ef-
fectiveness of our optimization approach. Mod-
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Model Method Optimizer SQuAD(F1/EM) QuAC(F1)

LLaMA3.2-1B LoRA
Stiefel 67.9/55.7 50.4

AdamW 64.1/51.5 45.9

LLaMA3.2-3B LoRA
Stiefel 80.3/72.1 61.8

AdamW 78.6/67.4 57.5

LLaMA3-8B LoRA
Stiefel 88.1/79.7 69.7

AdamW 84.3/74.6 65.8

Table 2: Accuracy comparison of reading comprehen-
sion using each optimizers on the SQuAD and QuAC
datasets.

els optimized using our method demonstrate su-
perior performance compared to those optimized
with AdamW on both the SQuAD (Rajpurkar et al.,
2016) and QuAC (Choi et al., 2018) datasets.

Reading Comprehension tasks demand the abil-
ity to efficiently process complex sentence struc-
tures and contextual information while performing
multi-step reasoning. The QuAC dataset, which
features conversational question answering requir-
ing contextual understanding across multiple turns,
suggests that models fine-tuned with our approach
enhance the model’s capacity to maintain consis-
tent representations, resulting in improved contex-
tual understanding.

For the SQuAD dataset, the performance gap be-
tween our optimization approach and AdamW in-
creases as the model size grows, indicating that our
approach scales well with larger models in extrac-
tive question answering tasks. This pattern differs
from what was observed in commonsense reason-
ing tasks, where smaller models showed greater
relative improvements.

AdamW-based models may experience interfer-
ence between processing layers due to basis vectors
that are not clearly differentiated. In contrast, our
optimization approach uses orthogonality to enable
each vector to function as an independent informa-
tion processing module. This effectively separates
reading comprehension sub-tasks such as key infor-
mation extraction, allowing for more sophisticated
learning.

Math Mathematical reasoning represents per-
haps the most challenging category in our evalua-
tion, requiring precise logical thinking and step-by-
step problem solving. Our results demonstrate that
Stiefel manifold optimization provides substantial
improvements for these mathematically intensive
tasks.

Performance on GSM8K (Cobbe et al., 2021),
which focuses on elementary-level word problems,

Model Method Optimizer GSM8K MATH

LLaMA3.2-1B LoRA
Stiefel 35.4 26.5

AdamW 20.5 21.4

LLaMA3.2-3B LoRA
Stiefel 43.4 33.5

AdamW 29.1 27.7

LLaMA3-8B LoRA
Stiefel 58.8 22.5

AdamW 54.7 19.3

Table 3: Accuracy comparison on mathematics bench-
marks using each optimizers on the GSM8K and MATH
datasets.

shows consistent improvement with Stiefel opti-
mization across all model sizes. This suggests that
our approach helps models better capture the fun-
damental mathematical relationships and reason-
ing patterns necessary for solving arithmetic word
problems.

For the more challenging MATH (Hendrycks
et al., 2021) dataset, which includes advanced prob-
lems from mathematics competitions, the benefits
of Stiefel optimization are even more pronounced.
This is particularly true for the larger LLaMA-3-
8B model, where our approach provides significant
gains over AdamW optimization. This indicates
that the constraints imposed by the Stiefel mani-
fold on parameter updates are especially beneficial
for preserving and enhancing the complex mathe-
matical reasoning capabilities of larger pre-trained
models.

As with other task categories, the combination
of DoRA adaptation and Stiefel optimization con-
sistently achieves the best performance across both
mathematical reasoning benchmarks and all model
sizes.

4.2 Parameter Space Properties Analysis

To better understand the success factors of our
Stiefel manifold optimization approach, we con-
ducted an analysis of parameter space properties,
focusing on orthogonality and parameter efficiency.

Cosine Similarity of Matrix B To investigate
the effect of orthogonality constraints in Stiefel
manifold optimization, we calculated the cosine
similarity between columns of LoRA adapter matri-
ces across different layers. Figure 2 visualizes the
cosine similarity distribution for both AdamW and
Stiefel optimization after fine-tuning the LLaMA-
3.2-1B model.

As expected, the Stiefel manifold optimization
approach maintains perfect orthogonality, with co-
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Figure 2: Comparison of mean Cosine Similarity of
LoRA B matrix across layers for each optimizers.

sine similarity values consistently maintained at
zero across all layers due to the orthogonality con-
straints explicitly imposed during the optimization
process. In contrast, AdamW exhibits varied cosine
similarity values. While the mean value appears
close to zero at approximately 0.003, the average
standard deviation is quite large at 0.5143. This
indicates that linear independence of the low-rank
adaptation matrices is not guaranteed.

This analysis suggests that AdamW is an insuf-
ficient optimization method for achieving the core
objective of LoRA, which is adaptation in a low-
dimensional rank. The Stiefel manifold optimiza-
tion approach successfully maintains orthogonal
structure throughout the training process, preserv-
ing the geometric properties of the parameter space
and preventing redundancy in the learned represen-
tations.

Effective Rank Analysis A critical question in
LoRA fine-tuning is whether the specified rank is
fully utilized during training. To investigate this,
we calculated the effective rank of LoRA adapters
trained with AdamW and Stiefel manifold opti-
mization.

Figure 3 shows the effective rank achieved by
each optimization approach across layers. The re-
sults reveal notable differences. The visualization
shows results for the LLaMA-3.2-1B model with
a specified rank of 16. Stiefel optimization con-
sistently utilizes all 16 dimensions fully, while
AdamW effectively uses only 12 dimensions on
average, failing to fully utilize the available rank
space. This pattern is consistent across various rank
settings, including 4, 8, 32, and 64 (See Table 9).
This inefficiency in rank utilization helps explain
the performance gap between the two optimization

Figure 3: Layer-wise effective rank of LoRA updated
matrix (∇W ) for each optimizers

approaches. By ensuring that all dimensions of the
low-rank adaptation are effectively utilized, Stiefel
optimization maximizes representational learning
from limited parameters in LoRA fine-tuning.

4.3 Stiefel-LoRA with a Static Matrix A

Given that Stiefel-LoRA exclusively applies its or-
thogonality constraint to Matrix B, we investigated
the scenario where matrix A is initialized randomly
and then fixed, while only matrix B is trained.
This experimental setup was inspired by findings
such as those in the Zhu et al. (2024), which sug-
gests that when the parameter budget is constrained,
fine-tuning Matrix B yields more significant per-
formance improvements than fine-tuning matrix
A. Considering the consistent performance gains
demonstrated by Stiefel-LoRA over AdamW-based
LoRA (as shown in previous sections), we initially
anticipated similar results in this fixed-A configu-
ration. However, the results presented in Table 4
indicate that Stiefel-LoRA does not uniformly out-
perform AdamW under these specific conditions.

Our analysis suggests this outcome stems from
the distinct, yet complementary, roles of matrix
A and matrix B in learning task-specific features.
While both matrices contribute, we can conceptu-
alize matrix A as primarily responsible for learn-
ing a broad set of representations relevant to the
task. Matrix B, then, can be viewed as a special-
ized feature extractor that selects and refines the
information learned by matrix A, tailoring it to
the immediate input context. This nuanced view
aligns with the idea that LoRA matrices act as "fea-
ture amplifiers" (Hu et al., 2022), with matrix B
potentially playing a more selective role, akin to
mechanisms described in works like Kopiczko et al.
(2023), which also explore efficient adapter de-
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Model Method Optimizer BoolQ PIQA ARC-e ARC-c OBQA Avg.

LLaMA3.2-1B LoRA
Stiefel 68.8 52.1 46.1 23.9 59.4 50.1

AdamW 64.5 68.3 63.3 38.5 50.7 57.1

Table 4: Performance comparison of LoRA with only matrix B fine-tuned using each optimizers.

signs.
The critical issue arises when Matrix A is a ran-

domly initialized fixed matrix. If matrix A fails to
capture any meaningful or task-relevant features
in its random projection, Stiefel-LoRA, applied to
matrix B, cannot leverage its primary advantage.
The orthogonality enforced by Stiefel-LoRA is de-
signed to ensure that matrix B learns to extract
diverse, independent, and thereby highly informa-
tive features. However, if the input from matrix
A (i.e., Ax) is essentially noise or lacks learnable
structure, the orthogonal basis of Stiefel-LoRA B
matrix has no meaningful signal to deconstruct and
refine efficiently. Its constraint towards learning
distinct features becomes less effective when there
are no distinct, useful features to begin with.

In contrast, AdamW, with its greater flexibility
and lack of explicit orthogonality constraints on
B, might still identify and exploit spurious correla-
tions or any marginal statistical regularities present
in the output of the fixed random matrix A. This
could lead to comparable or even slightly better per-
formance in some specific instances, not because
AdamW is inherently superior, but because it can
adapt to the unstructured nature of the input from a
fixed, random A.

While this behavior could be perceived as a limi-
tation of Stiefel-LoRA, it also underscores a funda-
mental requirement for its optimal operation: the
presence of meaningful input features from ma-
trix A. As demonstrated by our comprehensive
experiments where both A and B are trained, when
Matrix A is able to learn and provide relevant in-
formation, Stiefel-LoRA constrained optimization
on matrix B consistently leads to superior perfor-
mance by ensuring a more efficient and robust ex-
traction and utilization of those learned features.
This highlights the importance of co-adaptation of
both LoRA matrices for Stiefel-LoRA to achieve
its full potential.

5 Conclusion

This study introduced Stiefel-LoRA, a novel op-
timization approach for LoRA that leverages geo-

metric constraints by optimizing its B matrix on
the Stiefel manifold. This explicit orthogonality
enforcement aimed to enhance representational ef-
ficiency and overcome limitations of standard Eu-
clidean optimization. Extensive experiments across
diverse benchmarks and LLMs scale demonstrated
that Stiefel-LoRA consistently outperformed con-
ventional LoRA trained with AdamW.

Key contributions include the proposal and ex-
perimental validation of Stiefel-LoRA, and an anal-
ysis of internal metrics (orthogonality, effective
rank) revealing the mechanism of improved repre-
sentation efficiency. These findings highlight the
importance of geometric constraints in PEFT de-
sign and suggest Stiefel manifold optimization as a
potent method to significantly enhance PEFT per-
formance.

Limitations

Our study’s primary limitations include the exclu-
sive use of LLaMA series base models, thereby
omitting experiments on instruction-tuned (In-
struct) models prevalent in practical LLMs appli-
cations (Touvron et al., 2023), and the consequent
lack of qualitative analysis of generated text. Fu-
ture work will aim to address these experimental
gaps, further investigate the influence of the result-
ing independent basis vectors, and explore adap-
tive rank allocation methodologies, similar to ap-
proaches like Zhang et al. (2023).
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A LoRA Evaluation at Rank r = 32 on Seven Commonsense Reasoning Benchmarks

Model Method Optimizer BoolQ PIQA SIQA HellaSwag ARC-e ARC-c OBQA Avg.

LLaMA3.2-1B
LoRA

Stiefel 77.9 72.9 68.4 33.6 72.9 48.7 65.6 62.86
AdamW 65.3 59.3 58.1 26.5 61.8 37.1 50.0 51.16

DoRA
Stiefel 80.5 73.9 68.2 33.3 73.7 40.5 67.8 62.56

AdamW 70.4 67.5 62.1 29.5 63.8 38.1 50.0 54.49

LLaMA3.2-3B
LoRA

Stiefel 86.5 87.1 83.5 91.5 87.4 70.7 82.5 84.17
AdamW 83.5 82.7 79.6 88.1 85.4 67.7 78.9 80.84

DoRA
Stiefel 88.5 89.4 85.4 93.7 89.2 72.6 84.3 86.16

AdamW 85.3 84.7 81.2 90.4 87.3 69.5 80.7 82.73

LLaMA3-8B
LoRA

Stiefel 90.5 92.3 88.4 95.7 92.5 76.2 87.0 88.94
AdamW 88.2 87.9 84.2 93.6 90.1 72.4 83.7 85.73

DoRA
Stiefel 92.5 93.8 89.6 97.7 93.1 76.5 88.5 90.24

AdamW 89.4 88.3 85.9 94.4 91.5 73.6 84.8 86.84

Table 5: Accuracy comparison on seven commonsense reasoning datasets with various PEFT(r = 32) method and
optimizer applied.

B Hyperparameters of LLM Benchmarks

Hyperparameters LLaMA-3.2-1B LLaMA-3.2-3B LLaMA3-8B

Rank r 16 32 16 32 16 32
α 32 64 32 64 32 64

Dropout 0.05
Optimizer AdamW

LR 1e-4
LR Scheduler Linear

Batch size 16
Warmup Steps 100

Epochs 10
Where Q,K,V,O,Up,Down

Hyperparameters LLaMA-3.2-1B LLaMA-3.2-3B LLaMA3-8B

Rank r 16 32 16 32 16 32
α 32 64 32 64 32 64

Dropout 0.05
Optimizer Stiefel Manifold

LR 0.3 0.2 0.3 0.2 0.3 0.2
LR Scheduler Linear

Batch size 16
Epochs 10
Where Q,K,V,O,Up,Down

Table 6: Hyperparameter settings of LoRA(top) & DoRA(bottom) for LLaMA-3.2-1B, LLaMA-3.2-3B and
LLaMA3-8B on the commonsense reasoning tasks.
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Hyperparameters LLaMA-3.2-1B LLaMA-3.2-3B LLaMA3-8B

Rank r 16 32 16 32 16 32
α 32 64 32 64 32 64

Dropout 0.05
Optimizer & LR AdamW & 1e-4 Stiefel & 0.3

LR Scheduler Linear
Batch size 16

Warmup Steps 100 for AdamW
Epochs 10
Where Q,K,V,O,Up,Down

Table 7: Hyperparameter settings of LoRA for LLaMA-3.2-1B, LLaMA-3.2-3B and LLaMA3-8B on the reading
comprehension tasks.

Hyperparameters LLaMA-3.2-1B LLaMA-3.2-3B LLaMA3-8B

Rank r 16 32 16 32 16 32
α 32 64 32 64 32 64

Dropout 0.05
Optimizer & LR AdamW & 1e-4 Stiefel & 0.1

LR Scheduler Linear
Batch size 16

Warmup Steps 100 for AdamW
Epochs 10
Where Q,K,V,O,Up,Down

Table 8: Hyperparameter settings of LoRA for LLaMA-3.2-1B, LLaMA-3.2-3B and LLaMA3-8B on the mathemat-
ics tasks.

C Algorithms

C.1 Preliminaries for Stiefel Manifold Optimization

Definition 1. Low-Rank Adaptation: Let W0 ∈ Rd×k be a pre-trained weight matrix. Low-Rank
Adaptation (LoRA) performs fine-tuning by freezing W0 and adding a low-rank matrix product BA to
it, where B ∈ Rd×r and A ∈ Rr×k. The rank r is chosen such that r ≪ min(d, k). The updated weight
matrix W is thus defined as:

W = W0 +BA (3)

In standard LoRA, only the matrices A and B are trainable parameters. These parameters are typically
updated using standard first-order optimization algorithms, such as Adam, in Euclidean space without
explicit constraints on A or B.

Definition 2. Stiefel Manifold: The Stiefel manifold St(n, p), for integers n ≥ p, is defined as the set of
all n× p real matrices with orthonormal columns. Formally:

St(n, p) = {X ∈ Rn×p | XTX = Ip} (4)

where Ip is the p× p identity matrix. The Stiefel manifold is a smooth differentiable manifold. In this
work, we impose the constraint that the LoRA matrix B ∈ Rd×r lies on the Stiefel manifold.

Definition 3. Concepts in Riemannian Optimization: Riemannian optimization refers to the process of
optimizing functions defined on Riemannian manifolds. Key concepts include:

(a) Tangent Space: For a point X on a manifold M , the tangent space TXM is a vector space consisting
of all possible directions (tangent vectors) one can move from X while staying on M .

(b) Riemannian Gradient: Given a differentiable function f : M → R on a Riemannian manifold M ,
the Riemannian gradient gradf(X) at a point X ∈ M is an element of the tangent space TXM .
If M is embedded in a Euclidean space, the Euclidean gradient ∇f(X) (gradient in the ambient
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space) generally does not belong to TXM . The Riemannian gradient is then obtained by projecting
the Euclidean gradient onto the tangent space:

gradf(X) = projTXM (∇f(X)) (5)

where projTXM (·) (or πTXM (·) as in the provided text) denotes the orthogonal projection onto
TXM .

(c) Retraction: A retraction RX : TXM → M is a mapping from the tangent space TXM to the
manifold M . For a tangent vector ηX ∈ TXM , RX(ηX) provides a new point on the manifold M
by moving from X in the direction ηX . This serves as an update step in an optimization algorithm on
M . A retraction must satisfy RX(0X) = X (where 0X is the zero vector in TXM ) and the derivative
of RX at 0X , DRX(0X), must be the identity map on TXM .

(d) Vector Transport: Vector transport TηX (ξX) is a process that moves a tangent vector ξX ∈ TXM
along a direction ηX ∈ TXM to the tangent space TRX(ηX)M at the point RX(ηX) on the manifold.
This is essential for adapting information from previous optimization steps, such as momentum, to
the current step’s tangent space.

It is noted that standard geometric operations such as the exponential map, parallel transport, and
SVD-based projections can be computationally expensive, posing challenges for direct application to
large-scale deep learning models.
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C.2 Update Parameters of Stiefel Manifold Optimization

Algorithm 1 Stiefel-LoRA Parameter Update using QR-Retraction

1: Input:
2: Pre-trained weights W0

3: Initial LoRA matrices A0 ∈ Rr×k, B0 ∈ St(d, r) (i.e., B⊤
0 B0 = Ir)

4: Learning rate for A: ηA > 0
5: Step size (learning rate) for B on manifold: αB > 0
6: Adam hyperparameters for A: β1A, β2A ∈ [0, 1), ϵA > 0
7: Adam hyperparameters for B (Euclidean part): β1B, β2B ∈ [0, 1), ϵB > 0
8: Number of training iterations: Tmax

9: Initialize:
10: A← A0, B ← B0

11: Adam first moments for A: mA ← 0, for B: mB ← 0
12: Adam second moments for A: vA ← 0, for B: vB ← 0
13: Iteration counter t← 0
14: while t < Tmax do
15: t← t+ 1
16: Compute loss Lt = f(W0 +BA)
17: Compute Euclidean gradients: gA ← ∇ALt, gB ← ∇BLt

18: ▷ Update matrix A (Standard Adam)
19: mA ← β1AmA + (1− β1A)gA
20: vA ← β2AvA + (1− β2A)g

2
A

21: m̂A ← mA/(1− βt
1A)

22: v̂A ← vA/(1− βt
2A)

23: A← A− ηAm̂A/(
√
v̂A + ϵA)

24: ▷ Update matrix B (Stiefel Manifold Optimization with QR-Retraction)
25: ▷ 1. Compute Euclidean Adam preconditioned gradient direction M ′

B

26: mB ← β1BmB + (1− β1B)gB
27: vB ← β2BvB + (1− β2B)g

2
B

28: m̂B ← mB/(1− βt
1B)

29: v̂B ← vB/(1− βt
2B)

30: M ′
B ← m̂B/(

√
v̂B + ϵB) ▷ Euclidean preconditioned gradient

31: ▷ 2. Project M ′
B onto the tangent space at B to get tangent vector ξ

32: sym(X) ≜ (X +XT )/2
33: ξ ←M ′

B −B · sym(BTM ′
B) ▷ Project M ′

B to TBSt(d, r)
34: ▷ 3. Perform retraction step using QR decomposition
35: Y ′ ← B − αBξ ▷ Step in the tangent direction (descent)
36: B ← qf(Y ′) ▷ Update B with the Q factor of QR decomposition of Y ′

37: end while
38: Output: Optimized LoRA matrix A,B
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C.3 Effective Rank Calculation Algorithm

Algorithm 2 Effective Rank Calculation based on Shannon Entropy

1: Input: Matrix M ∈ Rm×n

2: (Optional) Small constant ϵ > 0 for numerical stability (e.g., 10−9)
3: Output: Effective Rank Reff (M)
4: ▷ Step 1: Perform Singular Value Decomposition (SVD)
5: Compute SVD of M : M = UΣV T

6: Let S = {σ1, σ2, . . . , σp} be the set of singular values from Σ, where p = min(m,n).
7: Ensure singular values are non-negative: σi ≥ 0.
8: ▷ Step 2: Filter and normalize positive singular values
9: Let S+ = {σi ∈ S | σi > ϵ} be the set of positive singular values significantly greater than zero.

10: Let k = |S+| be the number of such positive singular values.
11: if k = 0 then
12: Reff (M)← 0 ▷ Matrix is effectively a zero matrix or rank is negligible
13: else
14: Calculate the sum of positive singular values: Σσ =

∑
σj∈S+ σj .

15: if Σσ < ϵ then ▷ Sum is too small, treat as zero rank
16: Reff (M)← 0
17: else
18: Normalize the positive singular values to form a probability distribution P = (p1, p2, . . . , pk):
19: pj ← σj

Σσ
for each σj ∈ S+.

20: ▷ Step 3: Calculate Shannon Entropy
21: H(P )← −∑k

j=1 pj ln(pj)
22: ▷ Convention: 0 ln 0 = 0.
23: ▷ Step 4: Calculate Effective Rank
24: Reff (M)← exp(H(P ))
25: end if
26: end if
27: return Reff (M)

D Average Effective Rank for Each Rank

Table 9: Hyperparameter settings of LoRA & DoRA for LLaMA-3.2-1B, LLaMA-3.2-3B and LLaMA3-8B on the
commonsense reasoning tasks.

Model 4 8 16 32 64
Stiefel AdamW Stiefel AdamW Stiefel AdamW Stiefel AdamW Stiefel AdamW

LLaMA-3.2-1B 4 2.8 7.9 5.4 16 12.1 31.8 23.8 64 49.7
LLaMA-3.2-3B 4 3.4 8 6.2 16 13.5 32 28.6 64 55.1
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