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Abstract
Inference-time alignment enhances the perfor-
mance of large language models without re-
quiring additional training or fine-tuning but
presents challenges due to balancing computa-
tional efficiency with high-quality output. Best-
of-N (BoN) sampling, as a simple yet pow-
erful approach, generates multiple responses
and selects the best one, achieving improved
performance but with a high computational
cost. We propose TreeBoN, a novel frame-
work that integrates a speculative tree-search
strategy into Best-of-N (BoN) Sampling. Tree-
BoN maintains a set of parent nodes, iteratively
branching and pruning low-quality responses,
thereby reducing computational overhead while
maintaining high output quality. Our approach
also leverages token-level rewards from Di-
rect Preference Optimization (DPO) to guide
tree expansion and prune low-quality paths.
We evaluate TreeBoN using AlpacaFarm, HH-
RLHF, UltraFeedback, GSM8K, and TutorEval
datasets, demonstrating consistent improve-
ments. Specifically, TreeBoN achieves the
highest win rate of 65% on TutorEval and
around 60% win rates across other different
datasets, outperforming standard BoN with the
same computational cost and showcasing its
scalability and alignment efficacy.

1 Introduction

Aligning large language models (LLMs) with hu-
man values is essential for ensuring their outputs re-
flect human intentions and ethical standards. When
data on human preferences is available, a pretrained
LLM can be fine-tuned to align with these prefer-
ences. One popular approach for fine-tuning is
Reinforcement Learning from Human Feedback
(RLHF), where a reward model is trained on a
human-labeled preference dataset, followed by
reinforcement learning to fine-tune the LLM as
a policy model (Ouyang et al., 2022). Alterna-
tive methods such as Direct Preference Optimiza-
tion (Rafailov et al., 2024b) and its variants (Azar

et al., 2024a; Ethayarajh et al., 2024; Meng et al.,
2024) enable direct alignment via fine-tuning us-
ing a contrastive loss, eliminating the need for a
separate reward model.

This paper focuses on optimizing inference-time
alignment of large language models (LLMs). By
leveraging inference-time search, the capability
of LLMs is enhanced during the generation pro-
cess, improving real-time decision-making. Vari-
ous techniques, such as Monte Carlo Tree Search
(MCTS), have been effectively applied to rea-
soning, planning, and accelerated decoding tasks
(Zhao et al., 2024; Hao et al., 2023; Brandfonbrener
et al., 2024; Choi et al., 2023), demonstrating the
potential for better decoding outcomes (Liu et al.,
2024a). In this work, we aim to explore tree search
strategies to further capitalize on decoding-time
alignment. Our goal is to enhance the quality of
alignment while simultaneously reducing the com-
putational cost of inference, providing a more effi-
cient and aligned LLM experience.

A most simple, yet powerful inference-time
alignment method is the Best-of-N (BoN) method.
We start our discussion with BoN to motivate our
development of more efficient solutions. BoN
generates multiple sample responses and chooses
the best one based on a reward function r(y|x)
which characterizes how well-aligned a generated
response y is with respect to the given prompt
x. More formally, BoN aims to approximate the
solution to the following optimization problem:
maxy r(y|x) where the only access to y is through
auto-regressively sampling the next token yt from
the base policy πbase(·|x,y1:t−1), conditioned on
the previous tokens. BoN generates N samples
and selects the response from y1,y2, . . . ,yN that
achieves the highest reward model score. Due to its
simplicity and effectiveness, Best-of-N sampling
and its variants are widely studied to align LLM
outputs with human preferences (Wang et al., 2024;
Sessa et al., 2024; Gui et al., 2024; Khaki et al.,

20894

mailto:mengdiw@princeton.edu


2024; Jinnai et al., 2024; Liu et al., 2024b; Xiong
et al., 2024). Also, Best-of-N Sampling is com-
monly used in Expert Iteration and iterative fine-
tuning (Havrilla et al., 2024), which plays an im-
portant role in the alignment of Llama2 (Touvron
et al., 2023) and Llama3 (Dubey et al., 2024). In de-
tail, Llama2 (Touvron et al., 2023) combines rejec-
tion sampling with Proximal Policy Optimization
(PPO) in an iterative fine-tuning process to align
Llama 2 with human preferences. More recently,
Llama3 (Dubey et al., 2024) uses rejection sam-
pling to generate high-quality data for alignment in
an iterative process.

While Best-of-N sampling has proven effective,
it has a significant drawback: efficiency. Naively
implementing BoN requires generating N separate
responses and the total inference FLOPs scales lin-
early with N . This not only demands N times
more computation but also potentially leads to N
times longer latency. The computational overhead
can be prohibitively expensive for LLMs with bil-
lions of parameters, particularly when real-time or
low-latency responses are needed.

Some potential solutions involve more intelligent
sampling strategies such as pruning to improve effi-
ciency. Speculative Best-of-N (SBoN) (Zhang et al.,
2024) alleviates the problem by continuing the gen-
eration of high-quality responses and rejecting the
low-quality responses at an early stage of the gen-
eration. Cascade Reward Sampling(CARDS) (Li
et al., 2024) use rejection sampling to iteratively
generate small semantic segments to form such pre-
fixes, based on rewards computed using incomplete
sentences.

These accelerated methods are based on the hy-
pothesis that utterances receiving high/low rewards
early on in the generation process are likely to yield
high/low rewards in the final complete response.
However, this hypothesis is too good to be true.
In fact, off-the-shelf reward models are typically
trained on complete responses, and therefore the
score of partial completions by the reward model is
usually chaotic and doesn’t accurately predict the
final output’s quality, especially for long responses.
Our analysis confirmed that rewards of partial com-
pletions are not necessarily positively correlated
with the final reward (see our experiment results in
Section 4.2.4 and Appendix G).

To enable faster, efficient inference-time align-
ment, we propose to incorporate a tree search strat-
egy into BoN sampling, in order to improve the
alignment quality as well as reduce the overall in-

ference cost. Our TreeBoN method maintains an
active set of nodes, and actively grows a tree via
branching and pruning. In other words, TreeBoN
would sample more frequently from good parent
nodes but prunes nodes with low predicted rewards.
This tree search strategy makes it possible to effi-
ciently explore the search space.

Another design feature of TreeBoN is the use
of implicit reward from DPO-aligned models for
guidance of the tree research. DPO (Rafailov et al.,
2024b) states that the DPO policy model can pro-
vide an implicit reward. Rafailov et al. (2024a) fur-
ther points out that DPO training implicitly learns
a token-level reward function. Thus, we design
TreeBoN to be able to leverage any off-the-shelf
DPO model for inference-time decoding of the tar-
get model. Our extensive experiments show that
a weighted combination of implicit DPO rewards
would lead to superior, robust performance. Our
observation is consistent with the fact that one can
detect safety levels of the full response using the
first few tokens Qi et al. (2024).

Our experiments show that under the same com-
puting budget, TreeBoN achieves better perfor-
mance than BoN extensively and stably, with the
highest win-rates of 65% on TutorEval (Cheva-
lier et al., 2024), 63% on AlpacaFarm (Dubois
et al., 2024) with length 192 and 384, above 60%
across HH-RLHF (Bai et al., 2022) and UltraFeed-
back (Cui et al., 2024), and increased pass@1 solve
rate on GSM8K (Cobbe et al., 2021) as well. By
choosing a smaller N, TreeBoN could achieve bet-
ter performance and improve efficiency at the same
time. With only 6.3% of the compute, TreeBoN
still maintains a 55% win-rate against BoN. On
the other hand, SBoN can be viewed as a special
example of our method with a two-layer tree whose
children number is equal to one and BoN can be
viewed as a two-layer tree with the children num-
ber equal to N. TreeBoN has the potential to further
improve efficiency than expected by taking advan-
tage of the key-value cache which is especially
beneficial to the tree structure since the keys and
values of parent tokens can be cached and shared
by children.

The main contributions of this paper are as fol-
lows:

1. We incorporate the Speculative Tree-search
framework into Best-of-N Sampling to en-
hance efficiency and alignment performance
simultaneously.
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2. We apply weighted implicit reward from DPO
to provide the partial reward, which replaces
the traditional reward model. We also offer a
comprehensive analysis of traditional reward
models on partial responses.1

3. TreeBoN demonstrates robust improvements
in alignment quality and efficiency in compre-
hensive evaluations.

2 Preliminaries

2.1 Best-of-N sampling (BoN)
To approximate the optimization problem of maxi-
mizing the reward function r(y|x) which measures
how well a generated response y sampled from
the base policy πbase(·|x) aligns with respect to the
given prompt x, Best-of-N Sampling (BoN) selects
the response with the highest reward score from
N independent and identically distributed (i.i.d.)
responses generated by the language model πbase:

y⋆ = argmax
y∈{yk∼πbase(·|x)}Nk=1

r(y|x),

where the only access to y is through auto-
regressively sampling the next token yt from the
base policy πbase(·|x,y1:t−1), conditioned on the
previous tokens. The algorithm is listed in Ap-
pendix B.

2.2 Token-Level Markov Decision Process and
Soft Q-Learning

Rafailov et al. (2024b) demonstrated that under the
Max-Entropy reinforcement learning (RL) formula-
tion, the token-level log-ratio can be interpreted as
an implicit token-level reward or advantage func-
tion, which remains invariant under reward shap-
ing.

Below, we briefly restate the key setting and
results.

The token-level Markov Decision Pro-
cess (MDP) defines the state st =
(x1, x2, . . . , xm, y1, y2, . . . , yt) as the tokens
generated so far, and the action at = yt+1 as the
next token to be predicted. The auto-regressive
language model is thus a policy π(at|st). The tran-
sition dynamics are deterministic: st+1 = st|at,
simply appending the next token to the current
generated tokens to form a new sequence.

The RLHF formulation can be expressed as a
Max-Entropy RL problem:

1See Appendix G for our sentence-level and token-level
experiments and examples

Ex∼X ,y∼πθ(·|x)
[
r(y|x) + β log πref(y|x)

]

+ βEx∼X [H(πθ(·|x))] .
Or equivalently at the token level:

Es0∼X ,at∼πθ(·|st)
[ T∑

t=1

r′(st,at)
]

+ βEs0∼X [H(πθ(·|s0))] ,
with the token level reward function r′ for any
(st,at) defined as:

r′(st,at) :={
β log πref(at|st), if st+1 is not terminal,
r(y|x) + β log πref(at|st), if st+1 is terminal.

For simplicity, let us assume that the horizon is
fixed at T . The derivation of the Max-Entropy
RL formulation (Ziebart, 2010; Rafailov et al.,
2024a) utilizes the (soft) optimal value function
V ∗ and the (soft) optimal Q-function Q∗, as fol-
lows: V ∗(sT+1) = 0 when sT+1 is the termi-
nal state; Q∗(st,at) = r′(st,at) + V ∗(st+1),
V ∗(st) = log

∑
a exp(Q

∗(st,a)), when t ≤ T .
The optimal policy π∗ satisfies the following

equation: β log π∗(at|st) = Q∗(st,at) − V ∗(st),
which can be further rewritten when t < T :

β log
π∗(at|st)
πref(at|st)

= V ∗(st+1)− V ∗(st).

This suggests that we can use the partial sum of the
implicit reward from a DPO policy to characterize
the potential final reward given a prefix sequence
of length K:

K−1∑

t=0

β log
π∗(ak|sk)
πref(ak|sk)

= V ∗(sK)− V ∗(s0).

Since s0 = (x1, x2, . . . , xm) = x, V ∗(s0) is the
same for all responses.

3 Method

In this section, we introduce TreeBoN, a novel
inference-time algorithm that enhances alignment
quality and efficiency by incorporating a specula-
tive tree-search structure into the Best-of-N (BoN)
sampling framework. TreeBoN iteratively expands
high-reward partial responses, pruning low-quality
candidates at early stages. The algorithm leverages
a weighted implicit reward from a Direct Prefer-
ence Optimization (DPO) policy model to improve
the quality of partial response evaluation. Below,
we describe the key steps involved in TreeBoN.
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Prompt: Were unicorns easily caught in medieval times?

Best of N

TreeBoN

No. Unicorns are mythical creatures, not real animals, and …
Keep generating until all 
N responses are finished 

Yes, unicorns were considered a mythological creature and …

No. Unicorns are 
mythical creatures…

Yes, unicorns were 
considered a …

Stop generating low-quality 
response earlier and 
hierarchically expand on 
good ones

These creatures were 
typically described as …

These were real animals, 
such as  aurochs, which …

…

…

Figure 1: An illustration of different response generation strategies. Best-of-N completes all candidate generations,
while TreeBoN (our method) introduces early termination of low-quality responses using a DPO reward model and
hierarchically expands promising responses. See Table 17 for the detailed example.

3.1 Overview of TreeBoN Algorithm
TreeBoN operates by generating candidate re-
sponses layer-by-layer in a tree structure. The al-
gorithm begins with a set of initial root responses,
and at each subsequent layer, only high-reward re-
sponses are selected and expanded into multiple
children. This speculative search through the tree
space improves both the efficiency and the final
response quality. The overall structure of TreeBoN
is illustrated in Algorithm 1 and Figure 2.

The algorithm takes as input the prompt x,
a base policy πbase for generating candidate re-
sponses, a partial-reward function r, and key hyper-
parameters including the number of root samples
N , maximum response length lmax, branching fac-
tor(number of children per node) Nchildren, and the
number of tree layers Nlayer.

Furthermore, Ci denotes the candidate set con-
taining all partial responses generated in the i-th
layer. Pi denotes the i-th layer active set contain-
ing all promising partial responses for expansion
in the next layer. li is the max new token length for
generation in each layer, where li =

lmax
Nlayer

.

3.2 TreeBoN Generation Process
The generation process in TreeBoN consists of the
following key steps:

1. Initial Candidate Generation: TreeBoN be-
gins by generating N candidate responses
C1 = {y1,y2, . . . ,yN} with a length of l1 us-
ing the base policy πbase. The total maximum
response length lmax is split into segments
l1, l2, . . . , lNlayer evenly where li =

lmax
Nlayer

.

2. Partial Reward Scoring: At each layer i,
the reward model or partial-reward function

r(y|x) is used to compute the reward score
for each candidate response y ∈ Ci. This is
performed after generating partial responses
of length li.

3. Pruning and Selection: Based on the reward
scores, the top N

Nchildren
candidates from the cur-

rent layer are selected to form the active set
Pi. These high-reward parent responses are
used to generate child responses at the next
layer.

4. Response Expansion: For each parent re-
sponse y ∈ Pi, TreeBoN generates Nchildren
child responses by sampling from the base pol-
icy πbase with a maximum new token length
li+1. This process generates the next-layer
candidate set Ci+1. It is worth noting that the
set size of the candidate set is always N and
the set size of Pi is always N

Nchildren
to ensure an

equal number of total generated tokens with-
out requiring extra computing budget.

5. Final Selection: After generating candidates
for all layers, the reward model computes the
final rewards for the candidate responses in
the last layer CNlayer . The response y⋆ with the
highest reward is selected as the final output:

y⋆ = argmax
y∈CNlayer

r(y|x).

3.3 Weighted Implicit Reward As Guidance
One of the key contributions of TreeBoN is the use
of a weighted implicit reward function, inspired
by Rafailov et al. (2024b,a); Qi et al. (2024), to
evaluate partial responses. This approach allows

20897



0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 S
co

reA2 A3 A4 A5

B13B6 B8

C2 C7 C10 C16

B16

Figure 2: Visualization of speculative tree-search process for the prompt "Were unicorns easily caught in medieval
times?". Nodes represent partial responses, with color indicating normalized reward scores. We normalize the
reward values within each layer. Solid blue lines show the expansion of high-reward paths, while dotted lines
represent pruned low-reward branches. The solid blue line expansion path in this example shows the setting that
N = 8 initial candidate responses and Nchildren = 4 in Algorithm 1. In detail, labeled nodes A2 (Yes, unicorns were
considered a mythological creature and easily caught in medieval times) and A5 (Unicorns were believed to be
easily caught in medieval times) include hallucinations and therefore generating future responses from low-quality
prefixes makes it hard to get a high-quality result. Meanwhile, A3 (No. Unicorns are mythical creatures, not
real animals, and therefore could not have been caught in medieval times) and A4 (No, unicorns were not
easily caught in medieval times. In fact, unicorns were mythical creatures and did not exist in reality) are
high-reward prefixes that are more likely to produce high-quality complete responses in the future. More details of
labeled nodes are presented in Table 17.

Algorithm 1 TreeBoN Algorithm
1: Input: Prompt x, base policy πbase, partial-reward func-

tion r, number of root samples N , max length lmax, branch-
ing factor Nchildren, number of tree layers Nlayer.

2: Output: Response y⋆ with the highest reward using Tree-
BoN.

3: Initialization: Split the total max length lmax into seg-
ments l1, l2, . . . , lNlayer where li =

lmax
Nlayer

.
4: Generate N initial candidate responses for the first-layer

candidate set C1 = {y1,y2, . . . ,yN}, each with a length
of l1.

5: for i = 1 to Nlayer − 1 do
6: Query the reward model or partial reward function

r(y|x) to compute the reward scores for each candi-
date response y ∈ Ci.

7: Select the top N
Nchildren

candidates from Ci based on
reward scores to form the i-th layer active set Pi.

8: for each parent response y ∈ Pi do
9: For each parent y, continue generation by sampling

Nchildren child responses from the base policy πbase,
each with a max new token length li+1, to form the
next set of candidates Ci+1.

10: end for
11: end for
12: After all layers are generated, query the reward model for

the final set of responses CNlayer .
13: Find the response y⋆ with the highest reward:

y⋆ = argmax
y∈CNlayer

r(y|x).

14: Return the response y⋆.

TreeBoN to replace the traditional reward model
with a DPO policy model, which provides more
accurate rewards for incomplete responses. The
partial reward for a sequence y:K is computed as:

rpartial(y:K |x) =
K−1∑

k=0

wk log
π∗(yk|x,y:k)

π(yk|x,y:k)
,

where wk = 1
|y:k| acts as a weighting factor

to adjust the contribution of each token-level log-
likelihood ratio. This weighted reward helps prune
low-quality responses early and encourages the con-
tinuation of higher-quality candidates throughout
the tree expansion process. We also test several
different variants of partial reward modeling in Ap-
pendix F.

4 Experiments

4.1 Experiment Setting
We use a set of Llama models: LLaMA3-iterative-
DPO-final (Xiong et al., 2024; Dong et al., 2024)
as the DPO policy model (referred as the DPO
model in this section)2, with its SFT (supervised

2See model card https://huggingface.co/RLHFlow/
LLaMA3-iterative-DPO-final
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fine-tuning) checkpoint trained from Llama 3
8B (AI@Meta, 2024) and reward model FsfairX-
LLaMA3-RM-v0.1 (Dong et al., 2023; Xiong et al.,
2024) from Llama 3 8B Instruct (AI@Meta, 2024).
The SFT model was trained on a set of high-quality
instruction datasets for 1 epoch; the reward model
was formulated as a Bradley-Terry model optimiz-
ing the negative log-likelihood loss function on a
mixture of filtered datasets; and notably, the DPO
policy model was initialized from the SFT model
and updated on the online preference signals pro-
duced by the aforementioned reward model (as
a proxy of human feedback). We refer readers
to (Xiong et al., 2024) for the details of iterative
online RLHF and the training of these models. We
also use an additional DPO model Llama-3-8B-
SFR-Iterative-DPO-R3, referred as the SFR model
in this section. The baseline is the Best-of-N sam-
pling with N equal to 128 and the max token length
of responses varies from 192 to 768. For Tree-
based BoN with Weighted Implicit Reward, unless
otherwise specified, we set the number of tree lay-
ers as 4, the number of children per node 4. Con-
sidering the cost of the evaluation, we take 100
randomly selected samples from each dataset, fol-
lowing the same setting as SBoN (Zhang et al.,
2024). We evaluate the baseline and our meth-
ods and take the average of 3 runs of different
seeds on AlpacaFarm (Dubois et al., 2024), Ultra-
Feedback (Cui et al., 2024), GSM8K (Cobbe et al.,
2021), and HH-RLHF (Bai et al., 2022). For Tu-
torEval (Chevalier et al., 2024), we choose 100
closed-book questions.

4.1.1 Metrics

See a detailed explanation of below metrics in Ap-
pendix C.

4 Win-rate For all datasets except for GSM8k,
we conduct the standard GPT4 win-rate evaluations
of our proposed method against the baseline.

Pass@1 Solve Rate For GSM8k, we report the
zero-shot pass@1 solve rate (Cobbe et al., 2021).

FLOPs We consider FLOPs as a cost metric. We
can show that the computation costs of TreeBoN
and Best-of-N are the same and will only be con-
trolled by the number of root samples N and maxi-
mum generation length lmax as in Appendix C.3.

3This is the official release, trained with the
same SFT and reward model, see model card
for details https://huggingface.co/Salesforce/
LLaMA-3-8B-SFR-Iterative-DPO-R

4.2 Results

4.2.1 Improvement over Diverse Datasets

We evaluate the baseline and our methods by
answering 100 randomly selected prompts from
AlpacaFarm (Dubois et al., 2024), UltraFeed-
back (Cui et al., 2024), and HH-RLHF (Bai et al.,
2022). For TutorEval (Chevalier et al., 2024), we
choose 100 closed-book questions. TreeBoN con-
sistently outperforms the baseline across various
datasets when evaluated using GPT4 win-rate (Fig-
ure 3). The full numerical results of this section
can be found in Table 5, 6 and 7 of Appendix D.

Notably, with a maximum length of 192 tokens,
TreeBoN with the SFR model achieves a 65% win-
rate than Best-of-N sampling on TutorEval, a 64%
win-rate on AlpacaFarm, and at least 60% win-rate
on other datasets. TreeBoN with the DPO model
also achieves a 64%win-rate on AlpacaFarn, and
at least 60% on others. This demonstrates that
TreeBoN’s layered tree structure, combined with
the use of a weighted implicit reward function to
evaluate partial responses, enables better alignment
with human preferences.

For longer responses (max length 384 tokens),
TreeBoN with the SFR model maintains a signif-
icant performance lead, showing a 65% win-rate
over BoN on TutorEval, 63% on AlpacaFarm and
HH-RLHF. If using the DPO model, TreeBoN
achieves a 62% win-rate on AlpacaFarm as well.
Notably, for the SFR model, from length 384 to
length 768, the win-rates are steadily high. This
suggests that TreeBoN is also well-suited for han-
dling tasks that require generating more complex or
nuanced responses, where multiple layers of explo-
ration yield better results than repeated sampling.

In the same setting, we also evaluate TreeBoN
with the SFR model on the entire AlpacaFarm
dataset, which has 805 prompts. We obtain 65.67%
and 60.57% win-rates over BoN with max length
192 and 384 respectively, showing that TreeBoN’s
performance is generalizable.

In addition to general alignment improvements,
TreeBoN’s zero-shot performance on mathemati-
cal reasoning dataset GSM8K (Cobbe et al., 2021)
also sees a non-trivial boost. In Table 7, TreeBoN
with the DPO model outperformed BoN by an im-
pressive 9% margin of pass@1 solve rate at max-
imum response lengths of 576 tokens, indicating
that the hierarchical nature of TreeBoN allows it to
effectively manage challenging reasoning tasks that
require long CoT reasoning, making it adaptable
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Figure 3: GPT4 win-rate of TreeBoN against BoN on multiple datasets. The SFR model refers to using Llama-3-
8B-SFR-Iterative-DPO-R as the DPO model, and the DPO model refers to using LLaMA3-iterative-DPO-final. See
Table 5 and 6 for numerical results

across different domains.

4.2.2 Explore Different Tree Structures with
Same Computation

We further explored the effect of different tree struc-
tures by varying the number of layers and children
per node (Table 8 and 9) separately, while keep-
ing N = 128 and lmax the same, thus the over-
all computation is unchanged. We use the set of
Llama models: LLaMA3-iterative-DPO-final, its
SFT checkpoint, FsfairX-LLaMA3-RM-v0.1 on
AlpacaFarm, and compute the win-rate against
BoN. We can observe in Table 8 that increasing
the number of tree layers consistently improves
performance on AlpacaFarm, and in Table 9, the
optimal number of children nodes is different for
two maximum generation lengths. Above all, re-
gardless of the tree structure, our approach main-
tains a win-rate of around 60% against the baseline,
indicating its effectiveness and robustness under
different tree structures, and the potential to further
improve the performance in the future by exploring
more hyper-parameters tailored to different tasks.

4.2.3 Efficiency Evaluation
As shown previously, the computation costs mea-
sured by FLOPs of TreeBoN and BoN are only
determined by number of root nodes N and max
length lmax. In Table 4, we show the FLOPs used by
different configurations. We then compare the com-
putation cost of our TreeBoN and Best-of-N. We
use the same sets of Llama models on AlpacaFarm
with a max length of 384. As observed in Table 10,
with increasing computation budget, the win-rate of
TreeBoN against BoN is also increasing. Thus, our

proposed method is more scalable than the baseline
and can utilize the additional computation budget
more efficiently. In Table 11, TreeBoN of increas-
ing N are compared to BoN with N = 128. We
can see that even with a very small N = 8 (6.3% of
FLOPs), TreeBoN can still outperform BoN with
a much greater computation budget at a win-rate
of 55%, and the quality is monotonic increasing on
N .

4.2.4 Comparison over Other Baselines under
Same Compute

We compare TreeBoN to other baselines (Li et al.,
2024; Zhang et al., 2024) by the win-rates against
BoN in Table ??, with the same set of Llama
models introduced earlier for all methods for max
length 384 and 192.

To ensure a fair comparison, we constrain the
total number of tokens generated during infer-
ence. However, for CARDS (Li et al., 2024), the
rejection-based sampling with semantic segmen-
tation mechanism introduces uncertainty in token
acceptance, leading to variations in the number of
generated tokens and requiring random numbers of
completions per step. As a result, the total token
count remains dynamic and context-dependent.

We adopt the hyperparameters from Li et al.
(2024) for LLaMA 7B, as they are the most similar
to our setup. We then compute the average number
of tokens generated per prompt in the AlpacaFarm
dataset, which amounts to 3002.3 tokens for a max
length of 192 and 5867.3 tokens for 384.

For both BoN and TreeBoN, the total number of
generated tokens follows the relation: Total Tokens

20900



= lmax × N. Thus, we set N = 16 for BoN and
TreeBoN, resulting in total token counts of 3072
and 6144 for the respective cases, aligning closely
with the results of CARDS.

For SBoN, we adopt the hyperparameters
from Zhang et al. (2024) for their case of LLaMA3-
8B as the language model and LLaMA3-8B-RM
as the reward model, given their similarity to our
setup. We apply a rejection rate of α = 30%. To en-
sure comparable computations, we set NSBoN = 19
for SBoN, where the total token count is computed
as lmax ×

(
1− α

2

)
× NSBoN. This results in total

token counts of 3101 and 6202 for two max lengths.
The comparison results are presented in Table ??.

Under the same compute constraints, TreeBoN con-
sistently outperforms other methods, achieving the
highest GPT4 win-rates against BoN across both
evaluated sequence lengths.

At max length 192, TreeBoN significantly sur-
passes both SBoN and CARDS, achieving a win-
rate of 63.21%, compared to 51.01% for CARDS
and 49.66% for SBoN. At max length 384, Tree-
BoN still maintains its superior performance with
a win-rate of 55.18%.

Max Length Methods GPT4 Win Rates (%)

192
SBoN 49.66± 2.90

CARDS 51.01± 2.90
TreeBoN 63.21± 2.79

384
SBoN 48.83± 2.90

CARDS 49.66± 2.90
TreeBoN 55.18± 2.88

Table 1: Comparison of different methods with baseline
models in terms of total tokens and GPT4 win rates.

4.2.5 Ablation Study
We also experiment with different implicit rewards
in Appendix F, and ablate the two components of
TreeBoN: the tree-search process, and weighted
implicit reward in Appendix E. We conclude that
our weighted implicit reward fits best with the tree-
search setting compared to other implicit rewards,
and both speculative tree-search and weighted im-
plicit reward are needed for substantial improve-
ment.

5 Analysis of TreeBoN Performance in
LLM Reasoning

5.1 TreeBoN with PRM Experiment Methods
We continue to use similar set of Llama mod-
els: LLaMA3-iterative-DPO-final and Llama-3-

8B-SFR-Iterative-DPO-R4 which still referred as
the DPO model and the SFR model respectively
throughout this section. The TreeBoN implemen-
tation follows the methodology described in Sec-
tion 3. For the evaluation of the reward for the pro-
cess, we take the average of each reward for each
step as the final reward (Lightman et al., 2023)
and follow the Qwen2.5-Math-PRM-7B 5 (Zhang
et al., 2025) official model card which is the PRM
we choose. During inference, we specify a prompt
template that instructs the LLM to output the fi-
nal answer after a designated marker (i.e., ####
<final_answer>, as shown in the GSM8K dataset)
(Cobbe et al., 2021). We then extract only the
numerical value that follows this marker as the
predicted answer. To evaluate performance, we
randomly sample 100 questions from the GSM8K
dataset and repeat the evaluation multiple times
to compute the mean and standard deviation of
Pass@1 solve rate. We experiment with different
maximum token lengths, number of candidates, and
generative models, applying both BoN and Tree-
BoN approaches. The complete results are reported
in Table 2 and Table 3.

Method / Length 192 384
BoN w/ DPO 43.67± 2.08 97.33± 2.52
BoN w/ SFR 24.67± 2.08 91.33± 2.31

TreeBoN w/ DPO 51.00± 1.73 95.67± 3.06
TreeBoN w/ SFR 25.67± 2.52 90.00± 1.41

Table 2: Pass@1 Solve Rate (%) on GSM8K using PRM
Qwen2.5-Math-PRM-7B with N = 128.

Method / Length 192 384
BoN w/ DPO 45.67± 2.08 96.33± 3.21
BoN w/ SFR 26.67± 1.53 91.67± 0.58

TreeBoN w/ DPO 50.33± 3.06 95.33± 2.08
TreeBoN w/ SFR 26.33± 1.53 89.00± 4.24

Table 3: Pass@1 Solve Rate (%) on GSM8K using PRM
Qwen2.5-Math-PRM-7B with N = 32.

5.2 TreeBoN Also Work on Reasoning Task

With both N = 32 and N = 128 configurations,
we find that TreeBoN improves Pass@1 solve rate
over BoN when using the Process Reward Model
(PRM) (Lightman et al., 2023) with a maximum
token length of 192. In Table 3, TreeBoN with
DPO modle and Qwen2.5-Math-PRM-7B process

4https://huggingface.co/Salesforce/
LLaMA-3-8B-SFR-Iterative-DPO-R

5https://huggingface.co/Qwen/Qwen2.
5-Math-PRM-7B
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reward model achieves 50.33%, exceeding BoN’s
45.67% by +4.66%. Moreover, in Table 2, this
improvement continues with larger number of can-
didates (N ): TreeBoN with DPO model + PRM im-
proves from BoN’s 43.67% to 51.00%, a +7.33%
gain. This result validates that TreeBoN better
exploit the reward information under a restricted
token length.

For a maximum token length of 384, the per-
formance of TreeBoN and BoN methods is similar
across all experimental settings. This is because the
long token length of 384 already provides sufficient
capacity for the model to complete most reason-
ing tasks effectively. Even with a relatively small
number of candidates (e.g., N = 32), the gener-
ation quality reaches a performance ceiling, leav-
ing limited room for TreeBoN to further improve
over BoN sampling. As a result, the structural ad-
vantage of TreeBoN becomes less obvious when
the generative model already produces high-quality
completions within the given token length.

These results highlight TreeBoN’s strength in
leveraging early-stage completions. When decod-
ing is limited, like 192 tokens, BoN sampling strat-
egy sometimes fails to reach informative states,
particularly when using the DPO policy model. In
contrast, TreeBoN incrementally expands promis-
ing candidates via its tree structure and early prunes
low-reward children, making more efficient use of
PRM’s fine-grained supervision within the same
limited token length. This ability to prioritize and
extend promising partial completions is crucial
when the available token length is insufficient for
complete full task reasoning, as it increases the
chance of discovering better outputs.

In this way, TreeBoN not only improves perfor-
mance but also unlocks more of the underlying po-
tential of large language models under constrained
generation settings.

6 Additional Results Compared to Beam
Search

We also compare TreeBoN with simple beam
search. Under the same compute, TreeBoN, us-
ing the SFT model to decode and a DPO-aligned
model to provide partial reward, outperforms naive
beam search that uses the own probabilities to
guide decoding of the same DPO-aligned model
in TreeBoN. We conduct an additional experiment
that compare TreeBoN using the SFR model with
N = 64 against beam search using the same SFR

model with width 128 for fair comparison. The
win-rate is 55.33± 2.88% on max length 192, and
58.00± 2.85% on 384.

7 Conclusion

TreeBoN is a novel framework that combines the
speculative tree-search strategy with Best-of-N
(BoN) Sampling and token-level reward guidance
modified from DPO implicit reward. Through ex-
tensive experiments, we show that TreeBoN not
only has robust alignment improvements but also
maintains efficiency, which provides a potential
solution for efficient inference and alignment of
LLMs.
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Limitations

While TreeBoN achieves robust improvements, it
greatly relies on the high quality of the reward
model on incomplete responses to accelerate the
inference without losing performance by itera-
tive expansion and pruning, which is also key to
SBoN (Zhang et al., 2024). Though implicit reward
from the DPO model provides a candidate solution
for the token-level reward guidance, it can only
compare responses with the same length. Also,
the poorly trained DPO model and its SFT check-
points would fail to provide good partial rewards.
Therefore, the accurate reward modeling of partial
responses is still an open question. Reinforcement
learning may provide better solutions for partial
reward modeling but suffers from the difficulty of
training.
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A Related Works

A.1 Best-of-N Sampling for Alignment

Best-of-N (BoN) sampling is a commonly used
strategy for aligning large language models with
human preferences by selecting the best sample out
of N candidates. At training time, (Amini et al.,
2024) fine-tunes models by minimizing the KL
divergence to approximate the BoN distribution,
improving value alignment using variational BoN,
which reduces the computational cost during infer-
ence. (Sessa et al., 2024; Gui et al., 2024) further
enhance alignment by distilling the BoN sampling
behavior directly into the model during training,
aiming to replicate the BoN distribution with a sin-
gle sample at inference time. At inference time,
(Zhang et al., 2024) speeds up BoN by stopping the
generation of unlikely candidates, and (Khaki et al.,
2024) combines rejection sampling with preference
optimization to improve efficiency without sacri-
ficing alignment performance. From a theoretical
perspective, an initial estimate for the KL diver-
gence between the BoN output policy and the base
model was provided for small values of N (Coste
et al., 2024), (Gao et al., 2023), (Go et al., 2024),
and this estimate was later improved to cover all
values of N (Beirami et al., 2024). It has also been
shown that BoN and KL-regularized reinforcement
learning methods achieve similar asymptotic ex-
pected rewards, with minimal KL deviation be-
tween them (Yang et al., 2024a). Compared with
the works mentioned above, our work utilizes a
tree-structured search scheme / segment-wise beam
search to accelerate best-of-N sampling by pruning
the low-reward branches early. To terminate low-
reward branches early, we utilize the implicit value
function from a DPO policy.

A.2 Tree-Search/MCTS For Language Model

MCTS has been employed in large language model
tasks recently (Kocsis and Szepesvári, 2006). Zhao
et al. (2024) and Hao et al. (2023) integrates MCTS
into planning and logical reasoning tasks. VerM-
CTS (Brandfonbrener et al., 2024) utilizes a logi-
cal verifier to guide a modified Monte Carlo Tree
Search (MCTS) for code generation. KCTS (Choi
et al., 2023) guides the language model to generate
text aligned with the reference knowledge at each
decoding step by combining a knowledge classifier
score and MCTS. PPO-MCTS(Liu et al., 2024a)
combines MCTS and PPO value network for de-
coding.

Speculative Decoding is introduced to acceler-
ate LLM inference while keeping the distribution
of LLM’s output distribution unchanged by using
a much smaller draft model to predict the LLM
outputs which are verified later in parallel by the
LLM (Chen et al., 2023; Leviathan et al., 2023).
SpecDec++ (Huang et al., 2024b) adaptively se-
lects candidate token lengths using a trained accep-
tance prediction head, achieving substantial infer-
ence speedups on large language models by reduc-
ing verification costs without sacrificing accuracy.
SpecInfer and SpecTr extend the sequence to a to-
ken tree, increasing the number of accepted tokens
by the target model (Sun et al., 2024; Miao et al.,
2024). SEQUOIA further proposes the method for
constructing the optimal tree structure for the spec-
ulated tokens by introducing a dynamic program-
ming algorithm (Chen et al., 2024b). Medusa (Cai
et al., 2024) is designed to accelerate large language
model (LLM) inference by using multiple parallel
decoding heads to predict multiple tokens simulta-
neously, reducing decoding steps without requiring
a separate draft model, thus improving efficiency
and speed while maintaining output quality.

While our tree-structured search framework
bears resemblance with MCTS or tree-based spec-
ulative decoding, they are fundamentally different:
most MCTS algorithms are designed for planning
and logical reasoning tasks with a clear reward sig-
nal in the end, while our work focuses on using tree
search to accelerate best-of-N sampling and LLM
alignment and the signal is obtained throughout
the search process. Tree-based speculative decod-
ing is used to accelerate sampling from the target
distribution, while ours is used to accelerate sam-
pling for the best of the N responses. PPO-MCTS
doesn’t consider the efficiency, instead, it focuses
on token-level tree expansion involving the backup
stage which takes more time. Also, the guidance
of PPO-MCTS is a value network from PPO which
differs from ours.

A.3 Reward Modeling
Full-sequence reward modeling. RLHF uses the
Bradley-terry model to learn a reward function
for full-sequence (Christiano et al., 2017; Stien-
non et al., 2020). DPO (Rafailov et al., 2024b)
implicitly solves the KL-regularized RLHF prob-
lem by representing the reward with a language
model.SimPO (Meng et al., 2024) considers a dif-
ferent BT model based on the average (length-
normalized) reward rather than the sum of rewards.
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It is worth noting that alignment can go beyond a
reward model due to the inconsistency in human
preference. To this end (Azar et al., 2024b; Ros-
set et al., 2024; Wu et al., 2024), also optimize
LLM’s log-ratio according to different criteria, and
the log-ratio can serve as sequence-level reward
indicator.

Partial/Token-level reward modeling. Not ev-
ery token contributes to human preference equally.
A token-level reward signal is thus desirable so
that we can do credit assignments to each token.
Reward grounding (Yang et al., 2024b) attempts
to learn a token-level reward via Maximum Like-
lihood Estimation (MLE). They define a specific
aggregation function so that token rewards can be
transformed into sequence rewards, which can then
be learned via MLE under the BT model. Reward
reshaping can also be used to obtain token-level
rewards. For instance, Chan et al. (2024) uses at-
tention weights to redistribute the sequence reward
to each token. Mudgal et al. (2024) and Han et al.
(2024) propose learning a value function to guide
token-level sampling in controlled decoding tasks.

Inverse Q preference learning: DPO reward
is a token-level reward model More recent works
go beyond reward modeling by treating the problem
as inverse Q-learning. Rafailov et al. (2024a) shows
that the DPO loss can be interpreted as implicitly
learning a token-level Q∗ function, represented by
the LLM’s logits. Similarly, Contrastive Preference
Learning (CPL) (Hejna et al., 2024) assumes that
human preferences follow a Bradley-Terry model
based on the sum of Q values rather than the sum
of rewards, and proposes to learn the Q function
directly. Zeng et al. (2024) similarly expand on
this idea, presenting token-level direct preference
optimization based on the Q value function.

In this work, we examine the effectiveness of
these reward modeling approaches by incorporat-
ing these signals with our tree-search BoN frame-
work. Additionally, we propose a new design: the
weighted sum of implicit DPO rewards that turns
out highly effective.

A.4 Decoding-Time Alignment
DeAL views decoding as a heuristic-guided search
process and integrates alignment to decoding us-
ing a wide range of alignment objectives (Huang
et al., 2024a). RAD (Deng and Raffel, 2023)
uses a unidirectional reward model and ARGS de-
signs a weighted scoring function involving the
reward model (Khanov et al., 2024) to do the

reward-guided search for decoding-time alignment.
URIAL (Lin et al., 2023) and RAIN (Li et al.,
2023b) use in-context learning by prompting the
LLMs to do the self-alignment without SFT or
RLHF. Controlled decoding (Mudgal et al., 2024)
trains a value function from the reward model
for better token-level scoring. RLMEC (Chen
et al., 2024a) trains a generative token-level re-
ward model for alignment. Cascade Reward Sam-
pling(CARDS) (Li et al., 2024) uses a reward
model on semantically complete segments to ac-
celerate the decoding. Shi et al. (2024) extends
decoding-time alignment to multiple objectives by
generating the next token from a linear combina-
tion of predictions of all base models.

Cascade Reward Sampling(CARDS) (Li et al.,
2024) use rejection sampling to iteratively gener-
ate small semantically complete segments, based
on rewards computed on incomplete responses
by a reward model. The assumption is that
semantically-complete high-reward prefixes induce
high-reward complete text. However, as shown
in Appendix G.3, for responses that are longer
than 128 which are not included by CARDS, we
show that in our tree search setting where partial
responses are 1/3 of the length, the partial reward
of a reward model, even on semantically complete
segments, has little correlation to the reward on the
full response, thus unsuitable to be combined with
Tree-Search.

B Algorithm of BoN

Algorithm 2 Best-of-N Sampling (BoN)

1: Input: Prompt x, base policy πbase, reward
model r, number of samples N , max length
lmax

2: Output: Response y⋆ with the highest reward
using BoN

3: Initialization: Generate N responses
{y1,y2, . . . ,yN}, each with maximum length
lmax

4: Query the reward model to compute the reward
scores r(y|x) for each generated response y ∈
{y1,y2, . . . ,yN}

5: Find the response y⋆ with the highest reward:

y⋆ = argmax
y∈{y1,y2,...,yN}

r(y|x)

6: Return the response y⋆
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B.1 Comparison to Baseline Methods
TreeBoN builds upon and extends earlier sampling
strategies, such as Accelerating Best-of-N via Spec-
ulative Rejection (SBoN) (Zhang et al., 2024), by
integrating a speculative tree-search framework and
partial reward function. SBoN relies on the assump-
tion that partial-reward scores are positively corre-
lated with full-response rewards. However, this as-
sumption often leads to suboptimal performance in
alignment tasks due to the inaccurate scoring of par-
tial responses by reward models which are typically
trained on complete responses. TreeBoN addresses
this limitation by utilizing a more precise implicit
reward signal derived from the Direct Preference
Optimization (DPO) policy model, which signif-
icantly enhances the reliability of partial-reward
approximation.

Moreover, TreeBoN leverages a hierarchical tree
structure to explore the response space more com-
prehensively, balancing both alignment quality and
computational efficiency. This tree-based approach
allows for more flexible and effective pruning of
low-quality responses while expanding promising
candidates over multiple layers. As a result, Tree-
BoN can be seen as a generalization of SBoN,
where setting Nchildren = 1 and Nlayer = 2 reduces
TreeBoN to the two-layered structure of SBoN.

Compared to traditional Best-of-N (BoN) sam-
pling, which explores candidate responses with-
out any hierarchical structure, TreeBoN employs a
more structured exploration strategy. By generat-
ing and refining responses layer by layer, TreeBoN
achieves a more efficient search of the response
space using fewer overall samples. This leads to
improvements in both speed and performance, as
the tree-based generation effectively balances the
trade-off between exploration and exploitation.

TreeBoN can be further accelerated while main-
taining high alignment quality by taking advantage
of key-value caching mechanisms, particularly ben-
eficial in the tree structure, where the keys and
values of parent tokens can be reused by their chil-
dren.

C Metrics

C.1 GPT4 Win-rate
Given the same prompt, a response from the base-
line and a response from the compared method
are fed to an automatic evaluator of AlpacaE-
val (Li et al., 2023a) with randomized positions,
which then formats them into a prompt, and asks

GPT4 (Achiam et al., 2023) to rank both re-
sponses.6

C.2 Pass@1 Solve Rate

Pass@k measures the rate of successfully passing
the test (answering the math question correctly)
from the k responses that the algorithm generates.
Thus, pass@1 means that the algorithm only out-
puts one response per question.7 We first split the
response by space into words and numbers, and
then count it to be correctly solved if the answer is
in any of the numbers. We extract the number after
"answer is " as the final answer.

C.3 FLOPs

The cost of LLMs mainly arises from the number of
generated tokens and the matrix multiplications for
dense transformers like Llama 3, considering the
practical implementations of KV Cache that enable
keys and values of parent tokens to be reusable
(for the reward model and DPO model as well), we
can approximate inference FLOPs with the same
formula as in (Brown et al., 2024):

FLOPs per token ≈ 2 ∗ (num parameters + 2∗
num layers ∗ token dim ∗ context length)

= 2 ∗
(
8 ∗ 109 + 2 ∗ 32 ∗ 4096 ∗ 8192

)

≈ 2 ∗ 1010
total inference FLOPs for BoN ≈ 2∗
(num prompt tokens ∗ FLOPs per token

+ lmax ∗N ∗ FLOPs per token)

total inference FLOPs for TreeBoN ≈ 2∗

(num prompt tokens ∗ FLOPs per token +
lmax

Nlayer

∗N ∗ FLOPs per token + (Nlayer − 1) ∗ lmax

Nlayer
∗

Nchildren ∗
N

Nchildren
∗ FLOPs per token)

= total inference FLOPs for BoN.

The extra multiplication of a factor of 2 is due to
the cost of running a reward model for BoN and a
DPO model for TreeBoN. We can see that in our

6We use the default alpaca_eval_gpt4 automatic evalu-
ator. See https://github.com/tatsu-lab/alpaca_eval
for the prompt and other details.

7Though both BoN and TreeBoN generate multiple re-
sponses, only the final response picked by the algorithm is
considered the output and evaluated.
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setup, the computation cost of TreeBoN and Best-
of-N will only be controlled by the number of root
samples N and maximum generation length lmax.
The estimated FLOPs are listed in Table 4.

N / Max Length 192 384
8 6.26 ∗ 1013 1.24 ∗ 1014

16 1.24 ∗ 1014 2.47 ∗ 1014
32 2.47 ∗ 1014 4.93 ∗ 1014
64 4.93 ∗ 1014 9.84 ∗ 1014
128 9.84 ∗ 1014 1.97 ∗ 1015
256 1.97 ∗ 1015 3.93 ∗ 1015

Table 4: FLOPs of Both BoN and TreeBoN with differ-
ent number of roots and lengths

D Detailed Results

This section lists the full numerical re-
sults produced under all lengths, in Ta-
ble 5, 6, 7, 8, 9, 10, 11, 12, and 13.

E Ablation Study

We verify the effectiveness of both key compo-
nents of our proposed method: the weighted im-
plicit reward from a DPO model as a guidance,
and generating a tree structure instead of BoN. We
ablate them on AlpacaFarm, with the same tree
structure: 128 root examples, 4 layers, and 4 chil-
dren per node. Recall that BoN generates N sam-
ples in parallel, and uses the score from a reward
model to pick a sample with the highest score as
the final response, and TreeBoN generates samples
layer-by-layer in a tree structure, and uses our pro-
posed weighted implicit reward from a DPO model
as a partial-reward function to select the children
nodes with higher score to kept and then expanded
for each layer. We refer to using the score of the
reward model instead of our weighted implicit re-
ward with the same tree structure as TreeBoN with
Reward Model, and using our weighted implicit
reward instead of the reward model at the end of
BoN as BoN with Weighted Implicit Reward.
In addition, we also use the vanilla DPO implicit
reward at the end of BoN as BoN with Implicit
Reward.

As shown in Figure 4 (and Table 12), TreeBoN
with Reward Model (replacing the weighted im-
plicit reward based on a DPO model) only have
very slight advantage over traditional BoN, attribut-
ing to the fact that reward models are not trained
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Figure 4: GPT4 win-rate of TreeBoN with Re-
ward Model, BoN with Implicit Reward, BoN with
Weighted Implicit Reward, and TreeBoN against BoN
with N = 128 on AlpacaFarm. TreeBoN with Reward
Model uses the reward model as the partial-reward func-
tion, BoN with Weighted Implicit Reward uses our
weighted implicit reward as the reward function, and
BoN with Implicit Reward uses vanilla DPO implicit
reward as the reward function. The results of two max
lengths 192 and 384 are shown.

to score partial responses and confirming the im-
portance of using our proposed weighted implicit
reward. Using the DPO model, for BoN with Im-
plicit Reward (applying the vanilla DPO implicit
reward function to the traditional BoN), we observe
that this variant only outperforms BoN at shorter
lengths (192 tokens). At longer lengths (384 to-
kens), this variant’s performance degraded severely.
BoN with Weighted Implicit Reward (applying
the weighted implicit reward function to the tradi-
tional BoN) has a similar performance as well. The
trend on the SFR model (Table 13) is even more
obvious: TreeBoN outperforms all other variants
at all lengths. Thus, we can conclude that only our
proposed TreeBoN is able to keep large margins
compared to the baseline at most lengths, reinforc-
ing that the combination of TreeBoN’s hierarchical
search structure and weighted implicit reward func-
tion is necessary for sustained improvements.

F Explore Different Implicit Rewards

We also experiment with different implicit rewards:
DPO Implicit Reward
The vanilla implicit reward derived in (Rafailov

et al., 2024b) with β = 1

rpartial(y:K |x) =
K−1∑

k=0

log
π∗(yk|x,y:k)

π(yk|x,y:k)
.
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Dataset/Max Length 192 384 576 768
TutorEval 65.00± 2.76 65.10± 2.77 61.28± 2.83 55.89± 2.89

AlpacaFarm 63.67± 2.78 62.54± 2.80 60.61± 2.84 58.19± 2.86
HH RLHF 63.14± 2.82 62.84± 2.81 60.74± 2.83 57.58± 2.87

UltraFeedBack 60.74± 2.83 59.73± 2.85 55.00± 2.88 54.67± 2.88

Table 5: GPT4 win-rate of TreeBoN with the SFR model against BoN on multiple datasets.

Dataset/Max Length 192 384 576 768
TutorEval 62.67± 2.80 53.67± 2.88 48.48± 2.90 46.64± 2.89

AlpacaFarm 63.55± 2.79 62.21± 2.81 58.19± 2.86 51.33± 2.89
HH RLHF 61.90± 2.84 53.87± 2.90 46.96± 2.91 51.85± 2.90

UltraFeedBack 60.94± 2.84 56.67± 2.87 56.52± 2.87 48.67± 2.89

Table 6: GPT4 win-rate of TreeBoN with the DPO model against BoN on multiple datasets.

Method/Max Length 96 192 384 576 768
BoN 20 58 62 64 65

TreeBoN with the DPO model 20 60 65 73 67
TreeBoN with the SFR model 9 51 69 67 63

Table 7: Test Solve Rate of TreeBoN and BoN on
GSM8K

Number of Layers/Length 192 384
3 63.00± 2.79 58.53± 2.85
4 63.55± 2.79 62.21± 2.81
5 64.43± 2.78 62.54± 2.80

Table 8: GPT4 win-rate of TreeBoN (the DPO model)
against BoN on AlpacaFarm with different number of
tree layers.

Weighted DPO Implicit Reward
Our proposed reward that weights each token

rpartial(y:K |x) =
K−1∑

k=0

wk log
π∗(yk|x,y:k)

π(yk|x,y:k)
,

where wk = 1
|yk| .

Weighted DPO Implicit Reward with Expo-
nential Decay

Similar to Weighted Implicit Reward, but us-
ing an exponential decay term as the weight

rpartial(y:K |x) =
K−1∑

k=0

wk log
π∗(yk|x,y:k)

π(yk|x,y:k)
,

where wk = λk, λ = 0.95
Length Normalized DPO Implicit Reward
Normalizing DPO Implicit Reward by the re-

sponse length

rpartial(y:K |x) = 1

K

K−1∑

k=0

log
π∗(yk|x,y:k)

π(yk|x,y:k)
.

Number of Children/Length 192 384
2 60.33± 2.83 60.40± 2.84
4 63.55± 2.79 62.21± 2.81
8 68.33± 2.69 58.86± 2.85

Table 9: GPT4 win-rate of TreeBoN (the DPO model)
against BoN on AlpacaFarm with different branching
factors.

N for Both Methods /Length 384
8 56.38± 2.88

16 55.18± 2.88
32 59.00± 2.84
64 58.53± 2.85
128 62.21± 2.81
256 63.00± 2.79

Table 10: GPT4 win-rate of TreeBoN (the DPO model)
against BoN on AlpacaFarm with same number of root
samples, thus same computation.

DPO Policy Log Probability Sum
Only using the log-likelihood of the DPO model

rpartial(y:K |x) =
K−1∑

k=0

log π∗(yk|x,y:k).

SimPO Reward
Normalizing DPO Policy Log Probability Sum

by the response length, as proposed in (Meng et al.,
2024)

rpartial(y:K |x) = 1

K

K−1∑

k=0

log π∗(yk|x,y:k).

We report the results of the default configuration
of TreeBoN with different implicit rewards using
the Llama models on AlpacaFarm in Table 14, and
our proposed Weighted Implicit Reward fits best
with the tree search setting, achieving the highest
GPT4 win-rate.
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N for TreeBoN only 384
8 54.52± 2.88
16 54.70± 2.89
32 56.00± 2.87
64 56.33± 2.87

128 62.21± 2.81

Table 11: GPT4 win-rate of TreeBoN (the DPO model)
with different number of root samples against BoN with
N = 128 on AlpacaFarm. The computation of TreeBoN
is gradually increased and eventually matches that of
BoN at the end of the table.

G Reward Model Analysis

G.1 Sentence-level Reward Analysis
The sentence-level reward analysis focuses on un-
derstanding how the reward model assigns values
to partial responses in Llama3-8B paired with the
FsfairX-LLaMA3-RM-v0.1 reward model (Dong
et al., 2023; Xiong et al., 2024). By examin-
ing 100 randomly selected prompts from Alpaca-
Farm(Dubois et al., 2024), we can track how the
reward changes sentence by sentence. We show
two examples of the sentence-level reward change
on best responses using BoN Sampling in Figure 5.

SBoN (Zhang et al., 2024) claims to speed up
the process while only sacrificing minimal perfor-
mance on reward compared to the Best-of-N. One
important assumption is that the reward scores of
partial completions are positively correlated to the
reward scores of full completions. However, RMs
are typically trained on complete responses, and
therefore the score of partial completions by the re-
ward model is chaotic and not accurate. As shown
in Table 15 and Table 16, the partial rewards are
very fluctuating and due to the fluctuation, a low
partial reward may still have the potential to have
a very high final reward. The reward prediction of
incomplete responses from the traditional reward
model remains a challenge as demonstrated.

In Table 15

• Sentence 11 (+3.05): Significant increase for
trying to introduce an example, which en-
hances understanding.

• Sentence 13 (-2.57): Decrease possibly due
to presenting code without context or explana-
tion.

• Sentence 18 (+3.71): Large increase for con-
cisely defining a set, contrasting with the pre-
vious explanation of lists.

In Table 16

• Sentence 5 (-6.13): Sharp drop, likely due
to abruptly introducing the formula without
proper setup.

• Sentence 7 (+4.12): Significant increase for
beginning to explain the components of the
formula.

• Sentence 11 (+3.41): Large increase for pro-
viding a clear explanation of what the formula
calculates.

• Sentence 13 (+3.26): Substantial increase for
introducing a concrete example to illustrate
the concept.

• Sentence 15 (+4.47): High reward for starting
to walk through the calculation process.

G.2 Analysis of Example Responses for
Speculative Tree-search Process

As shown in Table 17 high score nodes (A3, A4,
B6, B8, C2, C7) consistently provide accurate in-
formation about unicorns being mythical creatures,
not real animals that could be caught. For instance,
node A3 states, "No. Unicorns are mythical crea-
tures, not real animals, and therefore could not have
been caught in medieval times." This response is
factual and directly addresses the question. The
high-score nodes also tend to provide additional,
relevant historical context. For example, node C7
mentions the aurochs, a real animal sometimes mis-
taken for a unicorn: "The aurochs was a type of
wild cattle that once roamed Europe and Asia. It
was believed to have been the ancestor of modern
cattle breeds."

In contrast, low-score nodes (A2, A5, B13, B16,
C10, C16) often perpetuate myths or provide mis-
leading information. Node A2, for instance, in-
correctly asserts, "Yes, unicorns were considered
a mythological creature and easily caught in me-
dieval times." This response contradicts itself by ac-
knowledging unicorns as mythological while claim-
ing they were easily caught. Similarly, nodes B13
and C10 propagate the myth of unicorns being at-
tracted to virgins, which, while a part of medieval
folklore, is presented without the crucial context
that unicorns are not real.

As seen in Figure 2, the highest-reward nodes in
the first layer (A3 and A4) lead to the generation of
better children (B6 and B8), which in turn produce
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Method/Length 192 384 576 768
RM TreeBoN 50.51± 2.91 51.68± 2.90 51.33± 2.89 53.00± 2.89

Implicit Reward BoN 64.88± 2.77 51.33± 2.89 43.14± 2.87 39.26± 2.83
Weighted Implicit Reward BoN 58.53± 2.85 52.19± 2.90 57.53± 2.86 53.18± 2.89

TreeBoN 63.55± 2.79 62.21± 2.81 58.19± 2.86 51.33± 2.89

Table 12: GPT4 win-rate of ablation study using the DPO model.

Method/Length 192 384 576 768
RM TreeBoN 50.51± 2.91 51.68± 2.90 51.33± 2.89 53.00± 2.89

Implicit Reward BoN 61.62± 2.83 56.00± 2.87 56.33± 2.87 54.88± 2.89
Weighted Implicit Reward BoN 60.07± 2.84 56.86± 2.87 58.25± 2.87 54.85± 2.88

TreeBoN 63.67± 2.78 62.54± 2.80 60.61± 2.84 58.19± 2.86

Table 13: GPT4 win-rate of ablation study using the SFR model.

Implicit Reward/Length 384
DPO Implicit Reward 61.54± 2.82

Weighted Implicit Reward 62.08± 2.82
Weighted Implicit Reward with Exponential Decay 57.00± 2.86

Length Normalized DPO Implicit Reward 59.06± 2.85
DPO Policy Log Probability Sum 21.74± 2.39

SimPO Reward 22.00± 2.40

Table 14: GPT4 Winrate of TreeBoN with different
implicit rewards on AlpacaFarm

high-quality grandchildren (C2 and C7). This illus-
trates how generating from partial responses with
high rewards tends to yield children nodes with
similarly high rewards.

G.3 Token-Level Reward Analysis
In this section, we provide rationales to apply im-
plicit reward from DPO instead of a trained re-
ward model and analyze partial reward at token
level, including using the concept of the seman-
tically complete segment from Cascade Reward
Sampling (CARDS)(Li et al., 2024). We follow
the setting in (Li et al., 2024), use llama-7b-rm-
float328 as the reward model, the entropy of LLM
logits at each token as predictive uncertainty, and
uncertainty threshold as 3, meaning that if a token
has entropy greater than 3, we determine that it is
at the end of a semantically complete segment. To
verify the usability under our tree search setting.
we then analyze different responses generated by
BoN given one prompt from AlpacaFarm (Dubois
et al., 2024). In Figure 6, partial rewards of pre-
fixes of exactly 1/3 of the length, and prefixes be-
fore 1/3 that end with semantic complete segments,
are plotted against the reward of the full response.
Standard linear regressions are performed for both

8https://huggingface.co/argsearch/llama-7b-rm-float32

scatter plots. The reward and partial rewards are
computed by the reward model on the responses
generated by BoN with a max new length of 192.
From the linear regression, we can see that though
partial rewards of semantic complete prefixes have
a slightly higher coefficient of correlation, the cor-
relation is still very weak, and we can conclude
that there is barely any correlation between par-
tial rewards of prefixes and the rewards of full re-
sponses. thus we conclude that the assumption
in SBON (Zhang et al., 2024) does not hold. In
Figure 7, token-level rewards at each token index
are plotted for two responses generated by BoN
with a max new length of 192. Token-level rewards
are computed by the reward model on all prefixes
created from the first token until every token po-
sition. The entropy, which serves as a measure of
predictive uncertainty, is also plotted, along with
3 being the threshold. The green crosses note the
reward of a prefix that ends with the semantically
complete segment. We can see that the token-level
rewards fluctuate rapidly, and the partial rewards
at the end of the semantically complete segment
are not showing any better trend either. Thus, we
demonstrate that the reward model is not capable of
generating scores on short prefixes that align well
with the reward for the whole response, as it is only
trained on complete sequences.

H Computing Requirement

All experiments can be performed on a single
NVIDIA H100. Depending on the specific tree
configurations, one run could take from 1 hour to
24 hours.
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# Sentence Text ∆ Reward

1 Explain the difference between sets and lists in Python. 3.70
2 How would you use them in a real-world scenario? -2.66
3 In Python, sets and lists are two fundamental data structures used

to store collections of items.
1.52

4 While they share some similarities, they have distinct differences
in terms of their functionality, behavior, and use cases.

1.04

5 **Lists (Mutable, Ordered, Indexed)** -1.57
6 A list is a collection of items that can be of any data type, including

strings, integers, floats, and other lists.
0.20

7 Lists are: 1.07
8 1. **Mutable**: Lists can be modified after creation by adding,

removing, or changing elements.
1.33

9 2. **Ordered**: Lists maintain the order in which elements were
added.

0.71

10 3. **Indexed**: Lists are indexed, meaning you can access spe-
cific elements using their index (zero-based).

-0.69

11 Example: 3.05
12 “‘python 1.70
13 my_list = [1, 2, 3, 4, 5] -2.57
14 print ( my_list [0]) # Output: 1 1.16
15 my_list .append(6) # Add an element to the end -1.40
16 print ( my_list ) # Output: [1, 2, 3, 4, 5, 6] 1.46
17 “‘ **Sets (Immutable, Unordered, Unindexed)** -0.73
18 A set is an unordered collection 3.71

Table 15: # 0003 Response Text Detail from Llama3-8B model
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# Sentence Text ∆ Reward

1 Can you help me understand how I can estimate the variance of a
variable? I’m having trouble understanding the concept of variance
and how it is used in statistics.

3.97

2 Variance is a measure of how spread out a set of data is from its
mean value.

2.12

3 In other words, it measures how much the data points deviate from
the average value.

-0.18

4 A high variance indicates that the data points are spread out over a
wide range, while a low variance indicates that the data points are
clustered around the mean.

0.32

5 To estimate the variance of a variable, you can use the following
formula:

-6.13

6 Variance =
∑

(xi − µ)2/(n− 1) 0.56
7 Where: * xi is each data point 4.12
8 * µ is the mean of the data -1.71
9 * n is the number of data points -1.93
10 *

∑
is the summation symbol, which means "sum of" 0.73

11 This formula calculates the sum of the squared differences between
each data point and the mean, and then divides that sum by the
number of data points minus one.

3.41

12 This gives you an estimate of the variance. -1.56
13 For example, let’s say you have the following data points: 1, 2, 3,

4, 5.
3.26

14 The mean of this data is 3. -1.24
15 The sum of the squared differences 4.47

Table 16: # 0019 Response Text Detail from Llama3-8B Model
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Node ID Response Content

A2 Yes, unicorns were considered a mythological creature and easily caught in medieval times.
What was the main purpose of the unicorn in medieval times? The unicorn was

A3 No. Unicorns are mythical creatures, not real animals, and therefore could not have been
caught in medieval times. However, during medieval times, there were

A4 How were they hunted? No, unicorns were not easily caught in medieval times. In fact,
unicorns were mythical creatures and did not exist in reality.

A5 Why? Unicorns were believed to be easily caught in medieval times because they were often
depicted as gentle and trusting creatures. According to legends, unicorns could

B6 No. Unicorns are mythical creatures, not real animals, and therefore could not have been
caught in medieval times. However, during medieval times, there were some creatures that
were considered unicorns or similar mythical creatures. These creatures were typically
described as having a single horn on their forehead and were often associated with purity
and

B8 No. Unicorns are mythical creatures, not real animals, and therefore could not have been caught
in medieval times. However, during medieval times, there were creatures that were considered
unicorns. These were real animals, such as the aurochs, which were large, powerful, and
majestic. The aurochs

B13 Why? Unicorns were believed to be easily caught in medieval times because they were often
depicted as gentle and trusting creatures. According to legends, unicorns could be caught by a
virgin maiden, as their horn was said to be attracted to the purity of a virgin. They were
also believed to be attracted to the color

B16 Why? Unicorns were believed to be easily caught in medieval times because they were often
depicted as gentle and trusting creatures. According to legends, unicorns could be captured
by luring them with a virgin maiden or a beautiful woman. The unicorn was said to be so
fascinated by the maiden’s beauty that it would approach

C2 No. Unicorns are mythical creatures, not real animals, and therefore could not have been
caught in medieval times. However, during medieval times, there were some creatures that were
considered unicorns or similar mythical creatures. These creatures were typically described as
having a single horn on their forehead and were often associated with purity and strength. Some
of these creatures include the ünicorn of the sea(̈which was actually a narwhal), the ünicorn
of the woods(̈which

C7 No. Unicorns are mythical creatures, not real animals, and therefore could not have been caught
in medieval times. However, during medieval times, there were creatures that were considered
unicorns. These were real animals, such as the aurochs, which were large, powerful, and majestic.
The aurochs was a type of wild cattle that once roamed Europe and Asia. It was believed to
have been the ancestor of modern cattle breeds. The aurochs had

C10 Why? Unicorns were believed to be easily caught in medieval times because they were often
depicted as gentle and trusting creatures. According to legends, unicorns could be caught by a
virgin maiden, as their horn was said to be attracted to the purity of a virgin. They were also
believed to be attracted to the color white, which is why they were often depicted with a white
horn. Additionally, they were thought to be shy and elusive creatures, which made them
easier to catch

C16 Why? Unicorns were believed to be easily caught in medieval times because they were often
depicted as gentle and trusting creatures. According to legends, unicorns could be captured by
luring them with a virgin maiden or a beautiful woman. The unicorn was said to be so fascinated
by the maiden’s beauty that it would approach her, allowing the hunters to catch it. However,
this myth was likely created to serve as a cautionary tale against the dangers of trust and
innocence. In

Table 17: Detailed responses for selected nodes in Figure 2. The table shows the content of partial responses at
different layers of the tree (A: first layer, B: second layer, C: third layer). Children nodes share the same response
prefix with their parent node, demonstrating the expansion process of TreeBoN. The new content generated at each
node is bold. The prompt for this example is "Were unicorns easily caught in medieval times?".
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Figure 5: Reward vs # Sentence plot for Llama3-8B Model. It shows the reward change as the response is generated.

Figure 6: Partial rewards of prefixes of exactly 1/3 of the length, and prefixes before 1/3 that end with semantic
complete segments against the reward of the full response with linear regressions.

Figure 7: Token-level rewards at each token index for two responses generated by BoN with max new length 192,
with the entropy along with the threshold. The green crosses note the reward of a prefix that ends with semantically
complete segment.
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