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Abstract

Although transformer architectures have
achieved state-of-the-art performance across
diverse domains, their quadratic computational
complexity with respect to sequence length
remains a significant bottleneck, particularly
for latency-sensitive long-context applications.
While recent linear-complexity alternatives
are increasingly powerful, effectively training
them from scratch is still resource-intensive.
To overcome these limitations, we propose
LAWCAT (Linear Attention with Convolution
Across Time), a novel linearization framework
designed to efficiently transfer the capabilities
of pre-trained transformers into a performant
linear attention architecture. LAWCAT
integrates causal ConvlD layers to enhance
local dependency modeling and employs
normalized gated linear attention to improve
generalization across varying context lengths.
Our comprehensive evaluations demonstrate
that, distilling Mistral-7B with only 1K-length
sequences yields over 90% passkey retrieval
accuracy up to 22K tokens, significantly ex-
tending its effective context window. Similarly,
Llama3.2-1B  LAWCAT variant achieves
competitive performance on S-NIAH 1&2&3
tasks (1K-8K context length) and BABILong
benchmark (QA2&QA3, OK-16K context
length), requiring less than 0.1% pre-training
tokens compared with pre-training models.
Furthermore, LAWCAT exhibits faster prefill
speeds than FlashAttention-2 for sequences
exceeding 8K tokens. LAWCAT thus provides
an efficient pathway to high-performance,
long-context linear models suitable for edge
deployment, reducing reliance on extensive
long-sequence training data and computational
resources.

1 Introduction

The widespread adoption and significant success
of transformer-based architectures have driven
remarkable advancements across various natural

language processing (NLP) (DeepSeek-Al, 2025;
Grattafiori et al., 2024; Team, 2024), reasoning
(Chen et al., 2025), and computer vision (CV)
tasks (Yao et al., 2024; Ramachandran et al.,
2025). Transformers leverage self-attention mech-
anisms to effectively model long-range depen-
dencies, achieving state-of-the-art (SOTA) per-
formance on diverse benchmarks (Fourrier et al.,
2024). However, their quadratic computational
complexity with respect to sequence length remains
a critical bottleneck, limiting their applicability to
latency-sensitive edge based applications that are
constrained in terms of training data and cost.

To address this limitation, modern recurrent
models have emerged as efficient alternatives, ap-
proximating or reformulating attention mecha-
nisms to achieve linear complexity. Recent stud-
ies, such as Mamba-2 (Dao and Gu, 2024), Gated
linear attention (GLA) (Yang et al., 2023), and
Hierarchically gated linear RNN2 (HGRN2) (Qin
et al., 2024), demonstrate the feasibility of state
update mechanisms that substantially reduce com-
putational costs while maintaining competitive per-
formance. Despite these advances, training these
models from scratch often requires substantial com-
putational resources and extensive data, hindering
rapid development and experimentation.

On the other hand, knowledge distillation, a pow-
erful technique for transferring knowledge from a
large, pretrained teacher model to a smaller and
more efficient student model, offers an effective
strategy to alleviate these challenges. Recently,
some research like MambalnlLlama (Wang et al.,
2024) and LoLCAT's (Zhang et al., 2025) directly
distill transformer models into recurrent architec-
tures. However, Mambalnllama still requires ex-
tensive training data (~20B tokens) and retains
50% self-attention layers to achieve strong perfor-
mance up to 38K tokens, and LoLCATSs exhibits
limited generalization to sequences significantly
longer than those seen during distillation.
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To address this problem, we introduce LAWCAT
(Linear Attention with Convolution Across Time),
a novel distillation framework that efficiently trans-
fers and enhances the rich representational capabil-
ities of pre-trained transformer models into modern
linear attention models. LAWCAT is particularly
well-suited for edge applications that require long-
context modeling under tight computational con-
straints with limited training data. LAWCAT inte-
grates a depth-separable convolution module, con-
sisting of a depth-wise convolution layer followed
by a linear layer (similar to MobileNet (Howard,
2017), but we use causal Conv1D across tokens),
and a gated linear attention with normalization to
effectively bridge the gap between quadratic and
linear attention mechanisms. The main contribu-
tions of this paper are summarized as follows:

* We proposed the integration of a causal
Conv1D layer to enhance the capacity of lin-
ear attention mechanisms to model local de-
pendencies and introduce the normalization
for the gated linear attention to improve gen-
eralization to long contexts.

* We present LAWCAT, a framework leveraging
these components to efficiently distill high-
performing linear attention models. Specifi-
cally, we show that our Mistral v0.1 7B LAW-
CAT variant achieves over 90% accuracy on
the passkey retrieval task with context lengths
up to 22K tokens, significantly exceeding
the original model’s 8K limit. In addition,
our Llama3.2 1B model LAWCAT variant
achieves comparable performance on more
complex retrieval tasks (NIAH1-3) and rea-
soning tasks (QA2&3 from BABILong bench-
mark) across various sequence lengths.

* We demonstrate the efficiency of our distil-
lation approach, requiring significantly less
data (less than 0.1% of the original pre-
training tokens, and less than 1/3 of the orig-
inal sequence length) to adapt a pretrained
transformer into a high-performing linear at-
tention model. Additionally, we show that
the resulting LAWCAT model exhibits faster
prefill-stage processing speeds compared to
FlashAttention-2 for input sequences longer
than 8K tokens.

2 Background and Related Work

Self-Attention The majority of the powerful LLM
models like Llama 3 (Grattafiori et al., 2024), Mis-

tral (Jiang et al., 2023), and Phi 4 (Abdin et al.,
2024) adopt the multi-head scaled dot-product soft-
max attention (SDPA). Given a query q; € R%,
keys {k;}!_; € R%, and values {v;}!_, € R%
(t < N), a single-head SDPA computes output o;
as (omitting the scaling factor v/d for simplicity):

i exp (qtkiT>
i—1 Z;Zl exp (thjr>

This can be equivalently expressed as o; =
Zle wy; Vi, where wy; denotes the attention
weight assigned to value v; at output position t.
The softmax in the numerator/denominator ensures
context-dependent normalization — each weight wy;
depends not only on the query—key similarity q;k?
but also on all other similarities {qthT }j<¢. This
coupling gives softmax attention a powerful ability
to focus on a few relevant tokens while normal-
izing out less relevant ones, but also yields the
O(N?) computation complexity with respect to the
sequence length V.

Kernel-Based Linear Attention To mitigate this
quadratic computation complexity, many linear at-
tention methods aim to find a kernel function whose
structure approximates attention scores through in-
ner products of transformed query and key repre-
sentations. Assuming the kernel « is positive semi-
definite (PSD), then there exists a feature mapping
¢ satistying: k(q,k) = ¢(q)¢(k)T Thus, the at-
tention output at position ¢ can be computed as:

v; (D

O =

Yo(ky)T
B ; J 1 ¢(Qt)¢<kj)

_ o(qr) Zi:l o(ki)" v
¢(ar) Doy o(k)T

Similar to the Eq. 1, we can simplify is as oy =
2521 wWy; Vi, and wy; can be regarded as the atten-
tion weights of the linear attention. This is analo-
gous to softmax attention but uses ¢(q)p(k)” to
approxiamte exp(qk”) for all queries/keys, at least
in expectation. If ¢ can perfectly realize exp as an
inner product in a higher-dimensional feature space,
then the linear attention exactly equals softmax at-
tention. In practice, ¢ might be a simple nonlinear
function such as 1 + ELU (Katharopoulos et al.,
2020), or a positive random feature map as in the
Performer (Choromanski et al., 2020) that aims to
fit the exponential. Such linear attention schemes
run in O(N) time, but still suffer a noticeable per-
formance gap between transformer models.

(@)
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Recent Modern Linear Attention Recent linear
attention variants dispense with softmax normal-
ization and utilize identity feature maps ¢(z) = x,
yielding the formulation o, = q;S;, where the KV
state o; = 25:1 kiTvZ- is computed recursively as
S; = S;_1 + kfvt. Instead of directly approxi-
mating softmax function, these models focus on
enriching the state update process itself. Most mod-
els propose state transitions that take the form

St = g(Si—1,%¢) + f(ki Vi, xt) 3)

The function g¢(,) often implements input-
dependent gating or forgetting, controlling the in-
fluence of the historical state S;_; (Yang et al.,
2023; Peng et al., 2024). The function f(, ) defines
how the current key-value outer product contributes
to the state update (Dao and Gu, 2024; Yang et al.,
2024; Azizi et al., 2025; Ye et al., 2025). Both
functions can accept the input x; to make them
input-dependent. These approaches leverage the
efficiency of linear recurrence while introducing
sophisticated mechanisms for state evolution and
information flow, resulting in increasingly pow-
erful sequence modeling capabilities. However,
pre-training demands significant computational re-
sources hindering widespread adoption.
Linearization of Attention To reduce the train-
ing costs, recent efforts try to leverage pre-trained
transformer-based LLMs to obtain computationally
efficient models with linear complexity. Hedge-
hog (Zhang et al., 2024) introduced a learned
linear feature mapping (¢) to approximate soft-
max attention. Expanding on this approach, LoL-
CATs (Zhang et al., 2025) integrated sliding-
window attention to improve performance further.
However, these methods still struggle to maintain
strong performance on tasks involving significantly
longer contexts than seen during distillation.
Another approach, MambalnL.lama (Wang et al.,
2024), applied progressive distillation along with
supervised fine-tuning (Kim and Rush, 2016; Ro
et al., 2025) and directed preference optimiza-
tion (Rafailov et al., 2023) to distill Mamba models
from Llama3 models. Despite achieving strong per-
formance at extended lengths up to 38K tokens, it
still retains 50% of self-attention and requires sub-
stantial training data (~20B tokens). SUPRA (Mer-
cat et al., 2024) pursued a different strategy, modi-
fying LLaMA3 models into architectures similar to
RetNet (Sun et al., 2023), but still required exten-
sive additional training (~100B tokens) to extend

effective context handling to 32K tokens. Thus,
SUPRA does not fully resolve the substantial over-
head associated with long-context model training.

3 Algorithmic Motivation

A fundamental distinction between softmax at-
tention and its linear approximations lies in the
normalization mechanism and the role of the ex-
ponential function. Softmax attention weights,
{wy; o exp(q:kl)}, are normalized by a sum
over all keys for a given query. This inherently
creates a competitive dynamic: the exp function
sharply amplifies scores for keys highly similar to
the query relative to others, effectively focusing at-
tention mass on the most relevant tokens (Vaswani
et al., 2023). Although self-attention is renowned
for modeling global dependencies, much of its ef-
fectiveness also stems from capturing local context
(e.g., adjacent words or neighboring pixels). The
softmax mechanism excels here as its exponen-
tial weighting amplifies locally coherent patterns
(like increasing the relevance of "New York" when
queried with "York"), effectively capturing corre-
lations abundant in natural sequences. Empirical
evidence (Han et al., 2024), including the dispropor-
tionate performance drop observed when masking
local versus random tokens, further demonstrates
that softmax models leverage local context more
effectively than typical linear variants.

In contrast, linear attention often employs
feature maps ¢ applied independently to
queries and keys, yielding attention weights
Wy o< ¢(qr)p(k;)T. The normalization term
> ¢(ar)p(k;)" simply aggregates transformed
key features without the strong competitive effect
of the softmax denominator. This can lead to limi-
tations such as attention dilution or oversmoothing,
where attention distributions become less peaked
(Qin et al., 2022). More critically, this formulation
struggles to replicate the strong local modeling
capabilities inherent in softmax attention (Han
et al., 2024). This weaker local modeling is a key
drawback of naive linear attention. Meanwhile,
the potentially low-rank nature of the ¢(Q)¢(K)”
kernel can make it insensitive to crucial local
variations and contextual nuances. Two distinct
queries ¢ and ¢/, even if originating from different
local contexts, might yield similar ¢(q) ~ ¢(q')
and thus nearly identical attention patterns, a
failure mode less likely in softmax due to its
context-sensitive normalization.
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4 Proposed Method
4.1 Integration of Causal ConvlD Layer

To address this deficiency in capturing local struc-
ture, we propose to integrate Conv1D layers to
make the function ¢ more context-sensitive. In
particular, as shown in Fig. 1, our LAWCAT adds
a causal depthwise convolution layer with kernel
size of r + 1 (In practice, we set kernel size as 4)
for the query and key, respectively, to introduce
an inductive bias for locality into the attention ap-
proximation. Since this convolution layer is causal,
it only uses the tokens before the current token to
calculate the convolution. Similar to the KV cache
mechanism, we can cache the query and key from
the previous tokens, but the size of the cache is
limited by the kernel size. After the Conv1D layer,
similar to the LOLCAT's (Zhang et al., 2025), we
use a linear layer with nonlinearity to project the
query and key but we make the query and key to
share the same linear projection, which makes the
approximation align with the Eq. 2 which use the
same function ¢ for the query and value.

A causal ConvlD with kernel size of r +
1 will compute each transformed query q; =
fg([qt,r, ...,qt,]) as a function of a local win-
dow of the original queries (and similarly k; from
neighboring keys). The convolution is linear (a
depthwise 1D convolution is essentially a weighted
moving average of the inputs in a local window)
and we do not include nonlinearities between this
Conv1D layer and the subsequent linear layer. In
the simplest case, let @; = Y 5_,wsq;—s With
some learnable weights wq,_ , (and similarly l~{i).
This operation mixes local token information into
the queries and keys before they interact. Intu-
itively, the convolution can be seen as smoothing
and enriching the representations of () and K with
their neighbors’ features. As a result, the kernel
function ¢ (now applied on q; and k;) is no longer
a purely pointwise function — it has implicit aware-
ness of nearby tokens.

The similarity between q; and l~<i in the conv-
augmented space includes contributions from keys
in the neighborhood of ¢ as well. In effect, a key k;
will receive a high weight w;; not only if it aligns
with the query, but also if its previous neighbors
k;_1,k;_o,... align with the query. This property
can help the linear attention mimic what softmax
does: softmax will give a group of similar, adja-
cent keys a collectively high weight if the query
matches that group. The Conv1D introduces an
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Figure 1: The overall structure of LAWCAT. We use
Casual Conv1D with a kernel size of r 4 1 for visualiza-
tion, and use x; to represent the ¢-th token of input x.

implicit group-aware effect as neighboring keys
support each other’s relevance. Conversely, if a
key k; is an outlier among irrelevant neighbors, k;
may be diluted by its neighbors (lowering ¢ (k;)’s
dot with ¢(q;)), which is analogous to how an iso-
lated token might not stand out as strongly under
softmax normalization if its similarity is not much
larger than others. In summary, the convolution
provides a localized smoothing and sharpening of
attention scores: smoothing because it aggregates
local information mitigating random fluctuations,
and sharpening because a coherent local pattern
(several similar tokens in a window) will amplify
each token’s effective feature.

The advantages of the Conv1lD layer over the
sliding window attention On the other hand, LoL-
CATs (Zhang et al., 2025) proposed to use a slid-
ing window attention to improve the overall perfor-
mance. Specifically, for the tokens within the win-
dow, they will calculate the softmax attention score,
and for the tokens outside the window, they will
use the linear attention score, and use the weighted
sum as the final attention score. However, this strat-
egy does not attempt to improve the linear attention
component’s handling of local interactions, so re-
trieving information located far beyond the window
relies solely on the capabilities of the linear atten-
tion component. If the linear attention part fails to
accurately capture these long-range dependencies
or lacks the necessary precision, the model’s ability
to retrieve distant information will be significantly
impaired, leading to performance degradation as
the distance to the target information increases.

In contrast, our LAWCAT produces one cohesive
attention output that naturally balances local and
global information which gets rid of the difficulties
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of balancing the linear and softmax attention. Addi-
tionally, by blending neighboring tokens’ features,
LAWCAT can reduce the risk of query confusion
(non-injectivity) and increase the effective rank of
the attention, leading to a better approximation of
full attention (Fan et al., 2024). Moreover, LAW-
CAT encodes a prior that nearby tokens are related,
which can improve generalization on sequences
with local structure helping combat the tendency
of full attention to overfit noise.

4.2 GLA with Normalization

Another key design choice in our architecture is the
adoption of Gated Linear Attention (GLA), which
adds additional linear layers followed by a sigmoid
activation to enable input-dependent gating. Un-
like Yang et al. (2023), who omit the normalization
term in Eq. 2, we find that retaining this normaliza-
tion is critical for both training stability and final
performance, particularly in the context of distilla-
tion from a standard Transformer model.

Let G denote the forget gate and S; represent
the key-value (KV) state of the linear attention
mechanism at time step ¢. For notational simplicity,
we denote the projected query and key of the ¢-th
token, after Conv1D and linear projection, as ¢§;
and k;, respectively. Then, the KV state update
equation in GLA can be described as:

Si=G;©Si—1 + RtTVt “4)

where © is the Hadamard product. Letting the
So = 0, we can rewrite the above equation as:

- £[(§e) )] -

and we use J;; to denote the consecutive
Hadamard products when ¢ + 1 < ¢:

t
Jis= () G.:=G10G 100G (6)
z=1+1

otherwise, we set J;; = 1. Finally, we get the
expression of the KV state as Eq. 7 and the attention
output as Eq. 8:

&—i@ﬂ%%ﬂ @)
=1
A D [Ji,t © (R?Vz‘)}

@ Yo |90 0 (1)

®)

Oy =

mean(1)

Note, since G; € R%*d  we also have Ji: €
R%*dv byt k; € R4 it makes it not straight-
forward to calculate the normalization of the GLA.
To address this, we let the kiT times 1;gq, first,
which actually repeat the k! for d,, times along the
second dimension, then follow the normal GLA
operation. Before the multiplication with q;, we
take the mean value of the J; 11 +® (kiTl) along the
second dimension to reduce the shape from dj, x d,,
to dy, x 1. In this way, we normalize the GLA with
a similar definition as in Eq. 2.

5 Experimental Results

5.1 Setup

Our training followed the two-stage methodology
of LoLCATSs (Zhang et al., 2025): an initial distil-
lation stage employing only layer-wise MSE loss,
followed by LoRA fine-tuning (Hu et al., 2022).
In total, for Passkey Retrieval (Mohtashami and
Jaggi, 2023), S-NIAH (Hsieh et al., 2024), and BA-
BlLong (Kuratov et al., 2024) tasks, we use 93M,
31M, and 103M tokens, respectively, with maxi-
mum input lengths of 1162, 1223, and 1300 tokens.
More details regarding training datasets and train-
ing configurations are provided in Appendix A.1
and A.2. Standard pre-trained models typically
leverage over 100B tokens to attain competitive
performance. Compared with them, our approach
requires less than 0.1% of such pre-training tokens.

5.2 Results on Passkey Retrieval Task

As shown in Fig. 2, the pre-trained LLaMA3
8B (Grattafiori et al., 2024) maintains perfect ac-
curacy from 1K to 8K tokens, but drops to zero
beyond 9K, exceeding its training context length.
In contrast, our method extends the effective con-
text window: even when distilled and fine-tuned
solely on 1K-length sequences, the resulting model
retains competitive performance up to 12K tokens.
Similarly, for the pre-trained LLaMA3.2 1B model,
which performs reliably up to 32K tokens, our ap-
proach preserves strong retrieval accuracy up to 7K
tokens. Compared to the LoLCATSs method, whose
effectiveness is limited to 1K for LLaMA3 8B and
1-2K for LLaMA3.2 1B, our method demonstrates
substantially superior preservation of long-context
retrieval capabilities.

We also evaluate our approach on the Mistral
v0.1 and v0.3 7B models (Jiang et al., 2023), which
fail to achieve 100% accuracy even within 8K,
likely due to their limited optimization for retrieval
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Figure 2: The comparison between the pre-trained transformer model and our converted linear attention model.

S-NIAH-1 S-NIAH-2 S-NIAH-3
(pass-key retrieval) (number in haystack) (uuid in haystack)
\ 1K 2K 4K 8K \ 1K 2K 4K 8K \ 1K 2K 4K
Llama3.2 1B Instruct | 100 100 100 100 100 100 96 100 100 100 100
DeltaNet-1.3B 974 968 99.0 988 | 984 456 18.6 144 | 852 470 224
Mamba2-1.3B 99.2 988 654 304|994 988 562 17.0 | 644 476 4.6
Gated DeltaNet-1.3B | 984 884 914 91.8 | 100 99.8 922 29.6 | 86.6 842 27.6
Distilled Model Pre-trained Model: Llama3.2-1B-Instruct
LoLCATs 100 84 0 0 84 44 0 0 72 24 0
Ours 100 100 100 80 100 96 88 48 56 44 24
Pre-trained Model: Llama3-8B-Instruct
LoLCATs 100 4 0 0 92 4 0 0 84 24 0
Ours 100 100 96 80 100 92 84 32 80 88 60
Pre-trained Model: Mistral v0.1 7B
LoLCATs 100 100 100 100 \ 100 96 64 0 \ 72 72 16
Pre-trained Model: Mistral v0.3 7B
LoLCATs 100 100 100 100 \ 100 88 60 16 \ 68 24 12

Table 1: Performance comparison across different models on S-NIAH 1, 2, and 3 tasks.

tasks. Despite this, our linearized Mistral v0.3 7B
model retains good accuracy up to 15K tokens, and
the linearized Mistral v0.1 7B model extends this
further, achieving over 90% accuracy up to 22K
tokens. In contrast, the LoLCATs-distilled Mis-
tral models reach peak performance at only 1K to-
kens and rapidly degrade to zero beyond 2K tokens.
These results highlight the robustness and general-
izability of our method in preserving long-context
capabilities across various model architectures.

5.3 Results on S-NTAH Benchmark

Beyond the Passkey Retrieval task, we evaluate our
method on the more challenging S-NIAH 1-3 task
from the RULER benchmark (Hsieh et al., 2024).
For a comprehensive comparison, we include re-
sults from several SOTA pre-trained recurrent mod-
els, DeltaNet (Yang et al., 2024), Mamba2 (Dao
and Gu, 2024), and Gated DeltaNet (Yang et al.,
2025). All pre-trained models are trained on 100B
tokens, and the training length is 4K. And the re-
sults are sourced from Yang et al. (2025).

As shown in Table 1, on the S-NIAH 1 task,

our model achieves 100% accuracy from 1K to 4K
tokens, surpassing all listed SOTA recurrent mod-
els. Even at 8K, it remains competitive, despite
being trained on sequences more than 3x shorter
(1223 vs. 4000 tokens) and using only 0.03% of
the data (31M vs. 100B tokens). On the S-NIAH 2
task, LAWCAT achieves comparable performance
up to 4K and maintains a strong 48% accuracy
at 8K—substantially outperforming other models
and demonstrating robust generalization to longer
contexts. While performance on the more com-
plex S-NIAH 3 task lags slightly behind others, we
hypothesize this is due to the limited diversity in
our training data. LoLCATSs only maintain good
results around 1K for all S-NIAH tasks, which is
consistent with the results on the Passkey Retrieval
task.

The results related to the Llama3 8B and Mis-
tral series models demonstrate similar trends; our
model demonstrates superior robustness to increas-
ing input lengths, with notably smaller perfor-
mance drop compared to LoLCATs and other
SOTA pre-trained recurrent models.
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Figure 3: Comparison of accuracy on QA2&3 from
BABILong benchmark between Llama 3.2 1B (top),
LoLCATSs (middle), and LAWCAT (bottom).

5.4 Results on BABILong benchmark

Besides retrieval capabilities, we assessed LAW-
CAT’s performance on complex reasoning tasks
using the BABILong benchmark (Kuratov et al.,
2024), specifically focusing on multi-hop reason-
ing tasks, QA2 (two supporting facts) and QA3
(three supporting facts). The results, presented in
Figure 3, demonstrate a significant advantage for
our distilled and fine-tuned LAWCAT variant com-
pared with the original Llama3.2 1B model. Across
the evaluated context lengths (OK to 32K tokens),
LAWCAT consistently maintains accuracy levels
more than double those of the baseline Llama3.2
1B model for both QA2 and QA3 tasks.

This notable enhancement in multi-hop reason-
ing performance underscores the robustness of
the LAWCAT framework, particularly highlighting
its capability to overcome inherent limitations ob-
served in the foundational pretrained model. More-
over, compared with LoLCATSs, which failed in this
task, the results demonstrate LAWCAT’s capacity
not merely for transferring existing knowledge but
also for significantly enhancing complex reasoning
skills within extensive contexts. We also evaluate
the Llama3 8B and Mistral series models on the
BABILong benchmark, more details are shown in
Appendix A.5.

5.5 Efficiency Comparison

To evaluate computational performance, we bench-
marked the pre-fill latency of our Llama3.2 1B
LAWCAT model against a Llama3.2 1B model in-
corporating FlashAttention-2 (FA2) (Dao, 2024)
and the LoLCATS variant, using one NVIDIA RTX
A6000 GPU. For a comprehensive comparison, we
also include results from SOTA recurrent models,
specifically GLA 1.3B and Mamba 1 1.3B.

As illustrated in Fig. 4, LAWCAT incurs slightly
higher prefill latency than LLaMA3.2 1B with FA2
for sequences shorter than 8K tokens. Beyond this
point, however, LAWCAT achieves significantly
lower latency, with the gap widening as sequence
length increases. In contrast, the naive implementa-
tion of LoLCATsS (i.e., LoOLCATs without the Thun-
derKittens kernel (HazyResearch, 2024)) exhibits
substantially higher latency and greater GPU mem-
ory consumption.

When compared to the GLA 1.3B model, LAW-
CAT’s inclusion of a Conv1D and linear layer, and
GLA normalization contributes to a slightly higher
latency. Notably, LAWCAT consistently outper-
forms the Mamba 1 1.3B model, which also in-
corporates a Conv1D layer, across all evaluated
sequence lengths.

Latency vs. Sequence Length

—=— GLA1.3B
Mamba 1.3B
1.2 +— Llama3.2 1B Flash Attention 2
0 —*— Llama3.2 1B LoLCATs
—— Llama3.2 1B LAWCAT

1k 2k 4k 8k 16k 32k
Sequence Length (tokens)

Figure 4: Comparison of prefill-stage latency among 5
different models. Note, LOLCATS runs out of memory
for sequence lengths exceeding 8K tokens.

5.6 Ablation Study and Discussion

We conducted a comprehensive ablation study to
systematically evaluate the contribution of each
component in the proposed LAWCAT framework
and discuss the effect of prevalent techniques
such as Rotary Position Embeddings (RoPE)
and Stochastic Weight Averaging (SWA). Unless
otherwise specified, all experiments are based
on models distilled and fine-tuned from the
pre-trained LLaMA3.2-1B using training data with
a sequence length of ~1K tokens. The ablation
analysis is structured around the following key
questions:

Do we need the GLA normalization and ConvlD
across tokens? To assess the contribution of key
components within our proposed LAWCAT frame-
work, we conduct an ablation study focusing on the
GLA normalization and Conv1D Ilayer.
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IK 2K~6K 7K 8K 9K 10K 11K

NN 09 0 0 0 0 0 0
NC 1.0 1.0 1.0 08 09 09 0.4
(6] 1.0 1.0 09 09 08 05 0.2

Table 2: Accuracy on the passkey retrieval task from 1K
to 11K. "NN" means removing the GLA normalization
from LAWCAT, "NC" means removing the ConvlD
layer, and "O" means the complete LAWCAT model.

As presented in Table 2, removing GLA nor-
malization significantly degrades performance on
passkey retrieval tasks involving longer contexts,
although the model maintains reasonable accuracy
at the 1K-length scale. This finding supports our
hypothesis that normalization is crucial for general-
ization. By constraining the GLA attention output
to remain a normalized weighted sum of the values
(v;) during layer-wise distillation (via MSE loss
minimization against self-attention outputs), the
normalization term mitigates overfitting to shorter
sequence lengths and enhances the model’s abil-
ity to preserve performance as context length in-
creases.

On the other hand, the results in Table 2 suggest
that the Conv1D layer offers limited benefit for the
relatively simpler passkey retrieval task. We at-
tribute this to the nature of the task, where much of
the context contains redundant or useless informa-
tion; applying Conv1D over such sequences does
not necessarily facilitate the extraction of more
salient features for identifying and memorizing the
passkey. However, its importance becomes evident
in more complex scenarios. Table 3 reveals a sub-
stantial performance gap on the NIAH task between
the full LAWCAT model and its variant without the
Conv1D layer. Notably, without ConvlD, LAW-
CAT fails to retrieve the correct UUID in all tested
cases. This stark difference underscores the critical
role of the Conv1D layer in capturing dependencies
and memorizing information across tokens, particu-
larly when dealing with longer sequences and more
intricate information retrieval demands.

| S-NIAH-1 | S-NIAH-2 | S-NIAH-3
| 1K 2K 4K 8K| 1K 2K 4K 8K|IK 2K 4K

NC| 9% 9 9 8|8 8 80 360 0 O
O | 100 100 100 80 |100 96 88 48|56 44 24

Table 3: Accuracy on S-NIAH 1&2&3 tasks. "NC"
means removing the Conv1D layer from LAWCAT, and
"O" means the complete LAWCAT model.

Do we need the RoPE and SWA? The necessity
of explicit positional encodings like RoPE in linear
attention is an open question, with varied adoption
across models. Our ablation study (Table 5 in Ap-
pendix A.3) on LoOLCATs and LAWCAT models
addresses this. For LOLCATSs, removing RoPE de-
creased performance on shorter contexts (1K-3K
tokens) but slightly improved it on longer ones (4K-
8K). This effect was more stark for our LAWCAT:
the variant without RoPE maintained high accu-
racy up to 8K tokens, whereas the RoPE-equipped
variant’s performance collapsed beyond 3K tokens.
These findings suggest that RoPE, while poten-
tially aiding short-sequence modeling, introduces
biases detrimental to long-context generalization,
supporting the idea that recurrent formulations can
inherently capture sequence order.

We also investigated the role of SWA (Table 7 in
Appendix A.3). On long-context passkey retrieval,
removing SWA significantly impaired LoLCATs,
confirming its reliance on this mechanism. Con-
versely, LAWCAT performed better without SWA,
especially at longer contexts; we hypothesize this
is due to the difficulty in balancing contributions
from the GLA and SWA, particularly when gen-
eralizing from shorter training to longer evalua-
tion sequences. Additional results and analysis
on the impact of SWA on standard short-context
benchmarks (LM Eval, Table 7) are presented in
Appendix A.3.

6 Conclusions

We introduced LAWCAT (Linear Attention with
Convolution Across Time), a novel and efficient
distillation framework that strategically integrates
a causal Conv1D layer to bolster local dependency
modeling and employs a normalized gated lin-
ear attention mechanism for robust generalization
across varying sequence lengths. Our compre-
hensive experiments validate the effectiveness of
LAWCAT. Distilling models like Mistral v0.1 7B
and Llama3.2 1B yielded linear attention variants
capable of remarkable long-context performance,
achieving over 90% accuracy on passkey retrieval
tasks up to 22K tokens and matching SOTA re-
current models on NIAH benchmarks, all while
using minimal training data and shorter sequence
lengths during distillation. Furthermore, the re-
sulting LAWCAT models demonstrate practical
efficiency gains, exhibiting faster prefill latency
than highly optimized FlashAttention-2 implemen-
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tations for sequences exceeding 8K tokens.

LAWCAT offers a practical and resource-
efficient pathway for developing and deploying
long-context models by leveraging existing pre-
trained transformers. This approach helps democra-
tize access to moderately long-sequence modeling
capabilities, particularly beneficial for resource-
constrained edge environments or rapid prototyp-
ing. Furthermore, due to its causal and linear na-
ture, LAWCAT is particularly attractive for stream-
ing inference, opening new opportunities for low-
latency, on-device reasoning.

20873



Limitations

While LAWCAT demonstrates strong long-context
performance, on some complex benchmarks like
S-NIAH-3 (1K) as shown in Table 1 and LM Eval-
uation Harness tasks (Gao et al., 2024) as shown
in Table 7, purely distilled linear attention models
may not fully match the performance of similarly
sized transformer models or the linear attention
model with sliding window attention (SWA). Al-
though incorporating the SWA can bridge this gap
on shorter sequences, as observed in our experi-
ments, it potentially compromises the model’s ef-
fectiveness on tasks requiring very long context
generalization. This presents an interesting avenue
for future research: developing dynamic mecha-
nisms that can adaptively balance the global reach
of linear attention with the local strength often
captured by windowed approaches, perhaps condi-
tioned on input characteristics or sequence length.
Alternatively, exploring the integration of more so-
phisticated linear attention designs like Mixture-of-
Memories (Du et al., 2025) might further mitigate
the performance gap on standard benchmarks, al-
though this could introduce new optimization chal-
lenges. Addressing this trade-off between bench-
mark performance and long-context fidelity re-
mains a key direction for advancing efficient at-
tention mechanisms.
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A Appendix

A.1 Training Dataset

All datasets are in English. Passkey Retrieval We
use the same format as (Mohtashami and Jaggi,
2023) to generate 10K samples to build the training
dataset and 1K samples for validation. For the to-
kenizer of the Llama3.2 model, the length of each
sample is 1162 tokens, and for the tokenizer of the
Mistral model, the length is 1171 tokens.
S-NIAH 1&2&3 We use the same format as
(Hsieh et al., 2024) to generate 8456 samples to
build the training dataset and 1K samples for val-
idation. We used the BookSum dataset (Krys-
cinski et al., 2021) as the contextual "haystack’,
different from the Paul Graham Essay Collection
Dataset (Goel, 2023) in evaluation. For the tok-
enizer of the Llama3.2 model, the maximum length
is 1231, the minimum length is 675, the average
length is 785.50, the mode length is 768, and the
std is 49. We also found that adding additional 1K
data with the S-NIAH-1 format can improve the
overall performance. For these 1K data, the maxi-
mum length is 1223, the minimum length is 1222,
the average length is 1222.92, the mode length is
1223, and the std is 0.27.

BABILong QA2&QA3 For the BABILong bench-
mark (Kuratov et al., 2024), training and valida-
tion data were generated on-the-fly per the original
setup. Specifically, there are 10K samples for the
training data of QA2 and 9868 samples for the train-
ing data of QA3. Different from the curriculum
learning strategy in the original paper, we simpli-
fied the training by fine-tuning solely on sequences
of length 1300 with a mixed format of QA2 and
QA3.

A.2 Training Configuration

All experiments were implemented using the Flash
Linear Attention framework (Yang and Zhang,
2024). For the Passkey Retrieval task, we dis-
tilled and fine-tuned the LLaMA3.2 1B model
over 4 epochs each, totaling 1162 x 10, 000 x 4 x
2 = 92.96 M training tokens. For larger models
(LLaMA3 8B, Mistral v0.1 and v0.3 7B), distilla-
tion and fine-tuning were performed for 2 epochs
each, resulting in 1162 x10,000x2x2 = 92.96 M
tokens for LLaMA and 1171 x 10,000 x 2 x 2 =
93.68M tokens for Mistral. Similarly, for the
NIAH tasks, we distilled and fine-tuned for 2
epochs, yielding approximately (785.5 x 8456 +
1222.9 x 1000) x 2 x 2 ~ 31.46M tokens. For

the BABILong tasks (QA2 and QA3), datasets
were generated dynamically; thus, exact token
counts varied. With a maximum sequence length
of 1300 tokens, the total training tokens were under
1300 x (10,000 + 9,868) x 2 x 2 ~ 103.31M.

For the Passkey Retrieval task with Llama3.2
1B model, we use the cosine learning rate sched-
ule, and for other models and other tasks, we all
use the ReduceLROnPlateau, which reduces the
learning rate when the validation loss has stopped
reducing. For all experiments, we use the Adamw
optimizer (Loshchilov and Hutter, 2019) with an
initial learning rate of 0.1 for distillation, 0.0001
for fine-tuning. For the LoRA fine-tuning, the rank
is 8 and the alpha is 16, and we only add LoRA
module for the linear layer for the query, key, value
and output.

We keep the similar training hyperparameters
as Zhang et al. (2025). Specifically, for the
Passkey Retrieval task with the LLaMA3.2-1B
model, we adopt a cosine learning rate sched-
ule, while for all other models and tasks, we em-
ploy the ReduceLROnPlateau scheduler, which de-
creases the learning rate when the validation loss
plateaus. All experiments use the AdamW opti-
mizer (Loshchilov and Hutter, 2019), with an initial
learning rate of 0.1 during distillation and 1e-4 for
fine-tuning. During LoRA fine-tuning, we set the
rank to 8 and the scaling factor () to 16, applying
LoRA modules exclusively to the linear projec-
tions of the query, key, value, and output layers in
the attention block. For all experiments, we run
3 times using different random seeds and report
the results from the run achieving the best overall
performance.

A.3 Other Ablation Study

Do we need to share the linear and Conv
layers? In Table 4, we analyze four distinct con-
figurations regarding parameter sharing between
linear and convolutional layers. Our empirical
results demonstrate that optimal performance is
achieved when allowing () and K to independently
process contextual information through separate
convolutional layers while sharing the subsequent
linear projection. This architecture aligns with
the theoretical foundation in Equation 2, where
both query and key utilize the same transformation
function ¢(-). The separation of convolutional
processing is intuitively justified, as queries and
keys serve distinct roles in attention mechanisms
and therefore benefit from specialized feature
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extraction pathways when incorporating previous
token information. However, the shared linear
projection enforces consistency in the embedding
space where similarity is computed, maintaining
the mathematical elegance of the linear attention
formulation.

IK 2K 3K 4K 5K 6K 7K 8K

1.0 1.0 1.0 09 08 05 0.1 0.1
09 10 03 0 02 0 O O
1.0 1.0 1.0 08 08 06 03 0.1
1.0 1.0 1.0 1.0 1.0 1.0 09 09

X X a0
X X & |-
Sooco =

Table 4: Accuracy on the passkey retrieval task from
1K to 9K. "C" and "L" mean if sharing the Conv1D or
linear projection between query and key, "v'" means
yes, and " X" means no.

Do we need to add RoPE to linear atten-
tion? Modern linear attention models exhibit di-
verse strategies for handling positional information.
Some architectures, like GLA (Yang et al., 2023)
and Gated DeltaNet (Yang et al., 2025), often omit
explicit position embeddings, relying on their re-
current formulation to implicitly capture sequence
order. Conversely, others, including TransNormer-
LLM (Qin et al., 2023) and Retentive Networks
(Sun et al., 2023), explicitly integrate mechanisms
like rotary position embeddings (RoPE) (Su et al.,
2024) or its variants. This divergence raises a
question regarding knowledge distillation: when
transferring knowledge from standard Transform-
ers (which typically use position embeddings) to
linear attention models, is it beneficial to retain
these explicit positional signals? Ablation study
presented in Table 5 addresses this for the LoL-
CATs and LAWCAT. The results consistently in-
dicate that incorporating RoPE actually impairs
generalization performance on long-context tasks.
For LoLCATs, removing RoPE decreases per-
formance on shorter contexts (1K-3K tokens) but
slightly improves performance on longer contexts
(4K-8K tokens). This effect is more pronounced
in our LAWCAT architecture, where the variant
without RoPE maintains high accuracy form 1K
to 8K context lengths, while the RoPE variant’s
performance drops to zero beyond 3K tokens.
These results indicate that position embeddings
constitute a critical factor limiting generalization
to extended context lengths. The fixed positional
encoding scheme optimized for training context
appears to introduce inappropriate biases when

M PE 1K 2K 3K 4K 5K 6K 7K 8K
LoL- v 09 08 03 0 O O 0 O

CATs x 04 02 01 02 02 01 02 02
LAW- v 1 08 0 O O O O O
CAT x 10 10 10 10 1.0 1.0 09 09

Table 5: The test accuracy on the passkey retrieval task
from 1K to 8K. "M" means model name, and "PE"
means if using the RoPE for linear attention. "v'" means
yes, and " X" means no.

applied to longer sequences. This insight aligns
with recent research suggesting that recurrent
computation inherently captures sequential
dependencies without requiring explicit positional
information (Gu and Dao, 2023).

Do we need sliding window attention? Prior work
posited SWA as a key component for enhancing
linear attention model performance (Zhang et al.,
2025). To rigorously evaluate this claim, we con-
ducted ablation studies on both the original LoL-
CAT's model and our proposed LAWCAT architec-
ture, examining the impact of SWA across different
task types and context lengths.

Our investigation first focused on long-context
retrieval tasks. As shown in Table 5, row 3, remov-
ing SWA significantly degrades the performance
of the LOLCAT's model, suggesting its reliance on
SWA for effective passkey retrieval. Conversely,
incorporating SWA into our LAWCAT model ad-
versely affected performance, particularly as con-
text length increased. We hypothesize that this
stems from the difficulty in optimally balancing
the contributions of GLA and SWA. Furthermore,
achieving a balance that generalizes from shorter
training sequences to longer evaluation sequences
appears challenging. This suggests it is difficult to
balance the weights between linear attention and
softmax attention, and even if the model can make
their combination fit well on training data, it may
be hard to generalize it to longer context lengths.
For example, the ideal weights of LA and SWA for
1K-length contexts may not be good for 8K-length
contexts.

We further assessed the effect of SWA on stan-
dard short-context benchmarks using LM Evalua-
tion Harness tasks (LM Eval) (Gao et al., 2024) (Ta-
ble 7). When SWA is removed, LAWCAT substan-
tially outperforms LoLCATsS, consistent with our
findings on long-context tasks. However, adding
SWA (window size 64) significantly boosts per-
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M SWA 1K 2K 3K 4K 5K 6K 7K 8K

LoL- V 09 08 03 0 O O O O
CATs X 0r oo 0 o O O 0 O

LAW- Vv 05 05 02 01 0 O O O
CAT X 1.0 1.0 1.0 10 1.0 1.0 09 09

Table 6: The test accuracy on the passkey retrieval task
from 1K to 8K. "M" means model name, and "SWA"
means if using the sliding window attention. "v'" means
yes, and " X" means no.

Model PI AE AC HS WG |Avg

Pre-trained Transformer Model
Llama3.2 1B 744 655 358 63.7 60.5| 60.0
Llama 3.2 IB* 732 64.5 356 403 59.9 | 547

Pre-trained Recurrent Model
DeltaNet 1.3B 71.2 57.2 28.3 502 53.6 | 52.1

GLA 1.3B 71.8 572 26.6 49.8 539|519
Mamba 2 1.3B 73.2 64.3 333 599 609 | 58.3
Distilled Model
LoLCATs 594 412 238 314 502|412
LoLCATs* 74.6 63.0 35.1 63.7 61.5|59.6
Ours 719 650 36.3 53.1 52.8|55.8
Ours”* 75.3 65.2 351 62.0 62.0 | 599

Table 7: Comparison of various models on 5 tasks from
LM EVAL benchmark. Model name with * indicates
the model add sliding window attention with size of
64. Specially, Llama 3.2 1B * means the Llama 3.2 1B
model only uses SWA.

formance for both models, bringing them to com-
parable levels (59.6 vs. 59.9 average score). For
context, we include results from relevant baselines:
the standard Llama 3.2 1B transformer and sev-
eral SOTA recurrent models. Notably, a modified
Llama 3.2 1B using only SWA (denoted Llama 3.2
1B*) achieves competitive performance (54.7 avg.)
compared to the original (60.0 avg.), albeit with
a marked drop on HellaSwag. This suggests that
SAW alone possesses considerable capability. The
strong results of LOLCATs may therefore be pri-
marily attributed to the inherent effectiveness of
SWA, with the linear component potentially offer-
ing further gains on specific tasks like HellaSwag.

In conclusion, our ablation studies reveal a
nuanced role for SWA. While its integration
can substantially enhance performance on short-
context tasks, potentially contingent on successful
optimization of the hybrid attention mechanism, it
appears detrimental to generalization capability in
long-context scenarios.

Ablation study on the rank of the gate function
in GLA GLA models (Yang et al., 2023) utilize 2
consecutive low-rank linear layers to implement the
gate function for efficiency, with the original mod-
els adopting a rank of 16. We investigate the impact
of this rank hyperparameter in our LAWCAT mod-
els, distilled from Llama3.2 1B Instruct (Grattafiori
et al., 2024), on complex S-NIAH retrieval tasks:
S-NIAH-1 (pass-key), S-NIAH-2 (number), and
the particularly demanding S-NIAH-3 (UUID re-
trieval).

As shown in Table 8, LAWCAT models with
rank 16 performed well on S-NIAH-1 and S-NIAH-
2 but struggled significantly on S-NIAH-3 (e.g.,
12% at 1K, 0% at 2K). This indicates that a rank
of 16 limits the forget gate’s capacity for recalling
long, complex items like UUIDs. Increasing the
rank to 32 substantially improved S-NIAH-3 per-
formance (e.g., to 56% at 1K and 44% at 2K) while
maintaining strong performance on S-NIAH-1 and
S-NIAH-2. This suggests rank 32 offers a better
balance of capacity for complex retrieval.

Further rank increases to 64 yielded mixed re-
sults; while improving some S-NIAH-1/2 scores
at longer contexts (e.g., S-NIAH-1 8K at 92%; S-
NIAH-2 8K at 64%), it did not consistently im-
prove S-NIAH-3 over rank 32 (36% vs 56% at 1K).
Ranks 128 and Full Rank (FR) generally led to
performance degradation across tasks, particularly
at longer contexts (e.g., rank 128 scored 36% on S-
NIAH-1 8K). We hypothesize this non-monotonic
trend stems from higher ranks introducing opti-
mization challenges due to increased parameters
and a greater risk of overfitting, which can impair
the forget gate’s ability to learn generalizable reten-
tion patterns.

In conclusion, these findings indicate an optimal
gate function rank—around 32 for our 1B param-
eter LAWCAT models—that balances model ca-
pacity for complex retrieval against optimization
difficulties and overfitting.

A.4 The visualization of Attention Scores

To qualitatively assess the attention mechanisms,
we visualize attention score heatmaps from a repre-
sentative head on an example from the S-NIAH-3
task.

Figure 5 illustrates an attention head primarily
focused on local contextual information. A com-
parative analysis of the heatmaps reveals that while
the Transformer, LoOLCATSs, and LAWCAT models
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S-NIAH-1 S-NIAH-2 S-NIAH-3

(pass-key retrieval) (number in haystack) (uuid in haystack)
Rank \ IK 2K 4K 8K \ IK 2K 4K 8K \ 1K 2K 4K
16 100 100 96 80 | 100 96 92 52 | 12 0 4
32 100 100 100 80 | 100 96 83 48 | 56 44 24
64 100 92 100 92 | 100 96 96 64 | 36 32 20
128 100 92 8 36 | 92 72 72 4 20 24 12
FR 96 96 80 12 | 96 72 36 4 24 28 12

Table 8: Performance comparison across different models on S-NIAH 1, 2, and 3 tasks.

exhibit broadly similar local attention patterns, no-
table differences emerge. The LoLCATs model dis-
plays a tendency for its attention to be diffused by
more distant preceding tokens, potentially diluting
its focus. In contrast, LAWCAT maintains a sharper
concentration on the immediately relevant local
context, particularly the current token, mirroring
the behavior of the standard softmax Transformer
more closely. This suggests that the integrated
Conv1D layer in LAWCAT effectively strengthens
local bias. By design, the convolutional operation
aggregates information from adjacent tokens, al-
lowing the model to consolidate the importance
of the local neighborhood onto the current token’s
representation, thereby achieving a more focused
attention distribution akin to softmax attention.

Further insights are provided by Figure 6, which
depicts an attention head responsible for identify-
ing the relationship between an answer and the
"needle" (the target information to be retrieved). In
this scenario, LOLCATSs tends to allocate attention
more broadly across the sequence, a characteristic
that can hinder precise identification of the crucial
answer-needle relationship. LAWCAT, however,
mitigates this diffusion, exhibiting a more local-
ized attention pattern that closely resembles the
Transformer’s focused engagement on the relevant
segments. This closer alignment in attention scores
between LAWCAT and the softmax Transformer
not only correlates with LAWCAT’s superior per-
formance on retrieval tasks but also empirically
validates the efficacy of the Conv1D layer in foster-
ing a beneficial local inductive bias, enabling more
precise attention allocation.

A.5 More Resutls on BABILong

We also added the rustles on BABILong of the
Llama 3 8B Instruct and the LAWCAT variants, as
shown in Fig. 7, our LAWCAT variants consistently
outperform the baselines, particularly at longer con-
text lengths, mirroring the findings from experi-

Needle -> Needle Answer -> Needle Answer -> Answer

Needle -> Needle Answer -> Needle

-
I .

=
|

Needle -> Needle Answer -> Needle

= —Lloo

Figure 5: Visualization of attention scores from layer
15, head 5 across three models: Transformer (top), LoL-
CATs (middle), and LAWCAT (bottom). Each row
presents three attention maps: needle-to-needle (left),
answer-to-needle (center), and answer-to-answer (right)

Needle -> Needle ___Answer -> Needle ___Answer -> Answer

= 030

Answer -> Needle
-

Needle -> Needle Answer -> Answer

Needle -> Needle Answer -> Needle Answer -> Answer

- 025

Figure 6: Visualization of attention scores from layer
15, head 22 across three models: Transformer (top),
LoLCATSs (middle), and LAWCAT (bottom). Each row
presents three attention maps: needle-to-needle (left),
answer-to-needle (center), and answer-to-answer (right)
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Figure 7: Comparison of accuracy on QA1&QA2&QA3
from BABILong benchmark between Llama 3 8B In-
struct (left) and LAWCAT (right).
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Figure 8: Comparison of accuracy on QA1&QA2&QA3
from BABILong benchmark between Mistral v0.3 7B
(left) and LAWCAT (right).

ments with the smaller LLaMA 3.2 1B model. As
shown in Fig. 8, compared to the original model,
the distilled Mistral v0.3 7B model exhibits signifi-
cantly improved performance on inputs longer than
8k tokens. However, it suffers from noticeable per-
formance degradation on shorter context lengths,
especially the Ok setting, which does not contain
any "haystack" content. We hypothesize that this is-
sue arises because Mistral v0.3 is a pretrained base
model that is highly sensitive to prompt formatting,
particularly after limited fine-tuning. We observed
that, instead of producing incorrect answers, the
model often outputs nothing for Ok inputs.

Task OK 1K 2K 4K 8K 16K 32K

Pre-trained Transformer Model
QA2 44 52 47 35 14 5 2
QA3 36 34 35 23 27 23 16

LAWCAT
QA2 94 97 95 90 82 32 8
QA3 71 73 71 68 44 18 9

Table 9: Results of Mistral v0.1 Instruct 7B on BABI-
Long benchmark (QA2&QA3)

Therefore, we added the results of Mistral v0.1
Instruct 7B and Mistral v0.3 Instruct 7B models on
the QA2 and QA3 tasks of the BABILong bench-
mark, as shown in Table 9 and Table 10 respectively.
As expected, applying LAWCAT to the models af-

Task OK 1K 2K 4K 8K 16K 32K

Pre-trained Transformer Model
QA2 48 41 31 19 3 2 1
QA3 36 32 36 25 22 18 19

LAWCAT
QA2 87 92 95 96 96 72 43
QA3 59 55 66 72 69 64 43

Table 10: Results of Mistral v0.3 Instruct 7B on BABI-
Long benchmark (QA2&QA3)

ter instruction tuning will result in more stable per-
formance, and the results of the Mistral models are
consistent with those of the Llama model (although
there are slight accuracy drops for the Mistral v0.1
7B Instruct LAWCAT variant model on QA3 when
the context length is longer than 16k).

Overall, we believe these results further validate
the effectiveness of our LAWCAT on various model
architectures and tasks.
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