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Abstract

Controlled paraphrase generation produces
paraphrases that preserve meaning while al-
lowing precise control over linguistic attributes
of the output. We introduce LINGCONYV, an
encoder-decoder framework that enables fine-
grained control over 40 linguistic attributes
in English. To improve reliability, we intro-
duce a novel inference-time quality control
mechanism that iteratively refines attribute em-
beddings to generate paraphrases that closely
match target attributes without sacrificing se-
mantic fidelity. LINGCONV reduces attribute
error by up to 34% over existing models, with
the quality control mechanism contributing an
additional 14% improvement.!

1 Introduction

Controllable text generation (CTG) aims to pro-
duce text with specified linguistic attributes (Ficler
and Goldberg, 2017; Jin et al., 2022). A sub-task,
controlled paraphrase generation (CPG), aims to
generate paraphrases that satisfy desired attributes
while preserving meaning. CPG has applications in
text simplification (Lee and Lee, 2023b; Zhang and
Lapata, 2017), toxicity control (Zheng et al., 2023),
data augmentation (Iyyer et al., 2018a), and creat-
ing linguistically challenging data (Perkoff et al.,
2023). The key challenge is to balance attribute
adherence with semantic fidelity.

Prior work in CPG typically controls a small
number of attributes, often less than three (Ban-
del et al., 2022; Liu et al., 2023b; Yang et al.,
2023). Large language models (LLMs) such as
Llama (Dubey et al., 2024), while powerful, strug-
gle with precise and simultaneous control over
many attributes via prompting (Dekoninck et al.,
2024). In addition, decoding-time methods that use
attribute classifiers can be slow and less effective in

'Our code and an interactive demo (Elgaar and Amiri,

2025) are available at https://github.com/CLU-UML/
LingConv.

Four clowns are walking down the road, waving as they go.

Coordinate Phrases 0 — 2 — 1 — 1
Stop Words 7 — 8 — 5 — 6
Adjectives 0 — 2 — 0 — 1
Words 11 —> 14 — 9 — "
Punctuations 2 —> 2 —> 0 —> 1
Sophisticated Words | 1 — 2 — 2 — 1
v
Four clowns, two male and two female, are
walking down the street and waving Jr
Four clowns are walking down the road and waving JV

Two male and two female clowns are walking along the street.

Figure 1: We aim to transform a given sentence into
multiple paraphrases, each satisfying distinct linguistic
attributes. Our model takes a source sentence and a
set of target linguistic attributes and generates a para-
phrase optimized to satisfy the target attributes. Here
we show three paraphrases with different linguistic at-
tributes generated for the source sentence. Linguistic
features identified using the spaCy “en_core_web_sm”,
with stop-word list from Explosion AI (2025).

high-dimensional attribute spaces (Yang and Klein,
2021; Liu et al., 2023b), and inference-time quality
control is rarely addressed.

CPG can generate linguistically challenging
data? (Perkoff et al., 2023; Ashok Kumar
et al., 2023; Wambsganss et al., 2022), augment
datasets (Lyyer et al., 2018a; Malandrakis et al.,
2019), and support language simplification (Lin
et al.,, 2021). The main challenge is to generate
text that preserves meaning and satisfies target at-
tributes. Most prior work focuses on a limited set
of attributes. However, broader attribute control
increases flexibility for diverse audiences.

We introduce LINGCONV, a novel encoder-
decoder CPG model that offers fine-grained con-
trol over 40 linguistic attributes spanning lexical,
syntactic, discourse, and semantic aspects (see Ap-

“Especially in the current era of NLP, where datasets of-
ten contain examples that lack enough linguistic complexity,
leading to a plateau in model performance improvements.
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pendix B). LINGCONV integrates attribute embed-
dings directly into the decoder and employs a ro-
bust inference-time quality control (QC) mecha-
nism. This QC mechanism iteratively refines out-
puts using linguistic attribute and semantic consis-
tency classifiers, guided by a line-search algorithm
to ensure close alignment with target attributes
without sacrificing meaning. Figure 1 shows an
example of our model’s capability.
Our contributions are:

* the first system, to our knowledge, for
CPG with simultaneous control over 40 fine-
grained linguistic attributes;

* anovel inference-time quality control mecha-
nism that significantly improves attribute ad-
herence; and

* application to data augmentation, generating
attribute-controlled synthetic data to improve
downstream task performance.

We demonstrate through extensive experiments that
LINGCONV outperforms strong baselines by up to
34% in attribute control, with the QC mechanism
providing a further 14% improvement.

CPG has the potential to generate data that
challenges existing models from a linguistic per-
spective, produce text with varying levels of lin-
guistic complexity for language learners (Okano
et al., 2023; Perkoff et al., 2023; Uto et al., 2023;
Ashok Kumar et al., 2023; Wambsganss et al.,
2022) or data augmentation (Iyyer et al., 2018a;
Malandrakis et al., 2019), and make text accessible
through language simplification (Lin et al., 2021).
The main challenge in CPG is to generate text that
preserves the meaning of the source and satisfies
the desired linguistic attributes. While existing
work has explored this balance, most work has fo-
cused on a limited set of attributes, as discussed
below. Accommodating a wider array of linguistic
attributes in CPG is crucial because it improves the
flexibility and engagement for diverse audiences
including language learners.

LINGCONV is an encoder-decoder CPG model
that offers fine-grained control over 40 linguistic
attributes spanning lexical, syntactic, discourse,
and semantic aspects (see Appendix B). It inte-
grates attribute embeddings directly into the de-
coder and employs a novel inference-time quality
control (QC) mechanism that iteratively refines out-
puts using linguistic attribute and semantic con-
sistency classifiers to ensure close alignment with

target attributes without sacrificing meaning.

Extensive experiments demonstrate that LING-
CoNV outperforms strong baselines by up to 34%
in attribute control, with the QC mechanism pro-
viding a further 14% improvement. We also show
the utility of our approach in data augmentation,
where attribute-controlled synthetic data can be
tailored to improve downstream task performance.
Analysis reveals which linguistic attributes are eas-
ier or harder to control and the factors influencing
controllability.

2 Related Work

Controllable text generation (CTG) and controlled
paraphrase generation (CPG) have seen signifi-
cant advances, with early works focusing on con-
trolling a small set of attributes such as formal-
ity (Ficler and Goldberg, 2017; Dathathri et al.,
2020; Yang and Klein, 2021). Most prior CPG ap-
proaches are limited to manipulating up to three
attributes simultaneously (Bandel et al., 2022; Liu
et al.,, 2023b; Yang et al., 2023), often relying
on discrete control tokens or prompt-based strate-
gies, which can be imprecise and lack fine-grained
control. Decoding-time control methods using at-
tribute classifiers (Yang and Klein, 2021; Liu et al.,
2023b) are typically slow and struggle with high-
dimensional attribute spaces, and quality control at
inference time is rarely addressed. LLLMs such as
Llama (Dubey et al., 2024) and TS5 (Raffel et al.,
2020) demonstrate strong general-purpose genera-
tion, but prompt-based control remains coarse and
unreliable for fine-grained attribute manipulation.
Colin and Gardent (2018) show that including
a textual syntactic constraint in paraphrase genera-
tion produces syntactically diverse outputs. Other
approaches have explored keyword exclusion (Ka-
jiwara, 2019), using discriminator networks to en-
force diversity (Qian et al., 2019), and following
exemplar syntax (Chen et al., 2019). FSET (Kazem-
nejad et al., 2020) improves quality and diversity
by retrieving similar paraphrase pairs and apply-
ing their edits to the source sentence. variational
autoencoders (VAEs) were used to disentangle se-
mantic and syntactic representations to generate
diverse paraphrases (Chen et al., 2020; Yang et al.,
2021). GCPG (Yang et al., 2022) concatenates con-
ditions to the input to control keywords and syntax.
Shi and Wu (2024) introduced action-controlled
paraphrasing using action tokens, though this does
not directly control specific linguistic attributes.
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Unfortunately, I cannot swim.

Swimming is not within my scope of capabilities.
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Figure 2: LINGCONV Architecture: The paraphrase generator extends the TS model by incorporating linguistic
attributes into the decoder inputs. Linguistic attributes of the source (15) and target (I') are embedded and fused
with the generation using element-wise addition to the decoder inputs. In addition, the linguistic attribute predictor
estimates attributes of the generated text, which facilitates backpropagation of the linguistic attribute error. During
inference, the quality control mechanism iteratively adjusts inputs to guide outputs towards desired attributes.
The Semantic Equivalence Predictor (SE) receives as input the source sentence and the candidate generation #,
as in Algorithm 1 (line 25), to assess semantic similarity. The model is trained with a dual objective of semantic

equivalence and linguistic attribute adherence.

Alternative approaches to CTG include energy-
based models that sample from a latent space (Ku-
mar et al., 2021; Wang et al., 2019; Gu et al., 2023;
Liu et al., 2023a). Gradient-based methods like
PPLM (Dathathri et al., 2020) steer generation us-
ing an attribute classifier at inference time but are
often slow. FUDGE (Yang and Klein, 2021) im-
proves efficiency by re-weighting the next-token
probability based on the desired attribute.

Existing work has focused on specific types of
control. QCPG (Bandel et al., 2022) controls for
three abstract attributes (semantic similarity, syn-
tactic variation, lexical variation), while others fo-
cus on keyword presence (Zeng et al., 2019; Liu
et al., 2023b). Syntactically-controlled paraphrase
generation has been explored by manipulating ab-
stract meaning representation (AMR) trees (Huang
et al., 2023), reordering parse tree segments (Goyal
and Durrett, 2020), or using constituency parse
templates (Iyyer et al., 2018b). Other methods dis-
entangle semantics and syntax by adding sentence
parse trees or AMR trees as features (Huang and
Chang, 2021; Huang et al., 2022).

In summary, previous works have primarily fo-
cused on a narrow set of linguistic attributes and

often lack robust quality control mechanisms at
inference time. In addition, LLMs are power-
ful general-purpose generation, but achieving fine-
grained, multi-attribute control is still a major chal-
lenge. Our work addresses these gaps by introduc-
ing a model capable of controlling a large, diverse
set of linguistic attributes simultaneously, comple-
mented by a novel inference-time quality control
mechanism to ensure both attribute adherence and
semantic fidelity.

3 LingConv

3.1 Problem Formulation

Consider a dataset D = {(s;,;,1t)}Y,, where
each triplet contains a source sentence (s), a target
sentence (t), and the target’s linguistic attributes
(I* € R¥). The task is to generate ¢, given s and [

3.2 LingConv Architecture

Overview LINGCONYV is a seq2seq model with
three main components (Fig. 2): an encoder-
decoder paraphrase generator, a linguistic attribute
predictor, and a quality control (QC) module. The
attribute predictor and a semantic equivalence clas-
sifier are pre-trained and used only during inference
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for QC. Input attribute vector may specify any sub-
set of attributes; missing values are allowed and
they are imputed via MICE (Azur et al., 2011). The
encoder-decoder integrates attribute embeddings
into the generation process, and the QC module
iteratively refines outputs to match target attributes.
The model is trained to generate paraphrases con-
ditioned on source and target attributes.

Encoder-Decoder The encoder-decoder extends
T5 (Raftel et al., 2020), embedding the target at-
tribute vector /! and adding it to the first decoder
input token. Decoder-side injection provides direct,
precise control over generation (see Appendix C).
This approach balances semantic preservation and
attribute control, and allows users to specify only
selected attributes, with the remainder imputed
from training data patterns.

Specifically, to guide the model toward gener-
ating desired outputs, we embed the linguistic at-
tributes {! into a dense vector representation and
integrate them with T5’s decoder inputs. While
incorporating attributes via input modifications is
common in controlled generation, our architecture
achieves a balanced trade-off between semantic
preservation and attribute control by performing
decoder-side injection.

Our architecture effectively balances semantic
preservation and attribute control by injecting at-
tributes at the decoder side, allowing direct influ-
ence on token generation through self-attention
while maintaining access to the full source con-
text through cross-attention. First-token injection
strikes an optimal balance between providing a
strong control signal and minimizing disruption to
the pre-trained model’s capabilities.

To address practical concerns regarding the spec-
ification of all linguistic attributes, our approach
can utilize variable imputation. This allows users
to specify only the variables of interest, while the
model fills in the rest based on learned patterns
from the training data.

Specifically, in order to effectively guide the
model toward generating desired outputs, we pro-
pose to embed the linguistic attributes [’ into a
dense vector representation and integrate it with
T5’s decoder inputs. To achieve this goal, we add
the embedding of the target linguistic vector 1 to
the first token of the decoder inputs, which corre-

sponds to the beginning of sentence token <bos>:

Y’(lt) _ Y; @ LE(IY) ifi=0 0
Y; otherwise,

where Y is the decoder input embedding, LE is the
linguistic attribute embedding layer, ® indicates
the element-wise addition operation, and Y is the
updated decoder inputs. LE is a fully connected
layer from R* to R?, where k is the number of
linguistic attributes and d is the dimension of text
input embeddings. The input attributes are stan-
dardized to a mean of 0 and a variance of 1 prior to
embedding.

Objective We train our model using cross en-
tropy loss (2):

len(y)—1

lop(sit) = Y —log p(y” |1, y), @)
=0

where p(yi(j ) |z;,y<7) is the probability of the
model predicting the j-th token in the target se-
quence given the source sequence x; and the pre-
vious tokens <7 in the target sequence; this loss
translates the source sentence to a semantically
equivalent sentence as induced by our choice of
training data (only paraphrase examples). At test
time, the model takes a source sentence, the linguis-
tic attributes of the source sentence, and the desired
linguistic attributes; and generates an output using
auto-regressive greedy decoding.

Linguistic Attribute Predictor (LP) estimates
the linguistic attributes of a given generation. This
component is independently pre-trained and frozen.
It allows for differentiable computation of linguis-
tic attributes and thus backpropagation of the error.
While existing linguistic tools can extract attributes,
they are not differentiable and would require rein-
forcement learning approaches for optimization.
Moreover, it helps us avoid the computationally
intensive task of calculating 40 linguistic attributes
for each generated text within the training process.
We implement the linguistic predictor (LP) using a
T5 encoder followed by a projection layer, and it is
pre-trained by minimizing the mean squared error
of the predicted linguistic attributes of each text
(LP(x) = [P in Figure 2) from its gold attributes
(1%) as follows:

Caise(z) = |LP(z) — 1%||3. (3)
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It is not possible to backpropagate the loss through
a discrete prediction resulting from an argmax oper-
ation. Therefore, we apply Straight-through Gradi-
ent Estimation (Bengio et al., 2013) to the linguistic
attribute predictor, so the gradient is propagated to
the prediction logits through the multiplication of
the prediction logits and the regressor’s token em-
bedding matrix, further described in Appendix E.1.
Additionally, the LP enables baseline methods like
BOLT (Liu et al., 2023b) and FUDGE (Yang and
Klein, 2021) that require differentiable attribute
scoring for decoding-time control.

During inference, this pre-trained LP is used
within the QC mechanism to evaluate how well
the generated text £ matches the target attribute
vector . Specifically, LP computes the attribute
error |[LP(#) — 1*||2, which is then used to guide
the iterative refinement of the generated output, as
detailed in Algorithm 1.

Imputation of Missing Values Manually spec-
ifying all 40 linguistic attributes for a target para-
phrase is impractical and prone to error, as users
may not know desirable values for every attribute or
may specify inconsistent combinations. To address
this real-world challenge, we employ the Multiple
Imputation by Chained Equations (MICE) algo-
rithm (Azur et al., 2011). This allows users to
provide values for only a small subset of attributes
they wish to control. The model then imputes the
remaining values by leveraging statistical relation-
ships learned from the training data. This feature
significantly improves usability and reduces the
risk of misconfiguration. See Appendix L for de-
tails.

Semantic Equivalence Classifier (SE) quanti-
fies semantic equivalence of a pair of sentences,
and is used in the quality control algorithm. The
SE module receives as input the source sentence
and the candidate generation  to compute semantic
equivalence. We implement SE using a TS5 encoder
followed by a projection layer. This design ensures
architectural compatibility and efficient integration
with our T5-based LingConv generation model,
and allows us to pre-train SE using a contrastive
loss function specifically tailored to our paraphrase
data. Notably, the contrastive loss described be-
low was used exclusively for pre-training SE; it
was not explored during the main LingConv model
training. During inference, SE serves solely as a
fixed, pre-trained module for semantic equivalence
assessment, without further updates or integration

of the contrastive loss into the primary model’s
training objective. SE is pre-trained by minimizing
the following contrastive loss:

SE(s,t)
> SE(s,t')’

t'eN(s)

Esem(sa t) = - log (4)

where N (s) is the set of negative paraphrases of
s. The loss maximizes the probability of valid
paraphrases (s, t) and minimizes the probability of
invalid paraphrases (s, ¢'). For a mini-batch of size
m, m — 1 samples are used as negative paraphrases
for the remaining sample.

Quality Control To ensure high-quality outputs,
we propose a quality control mechanism to use
at inference time. Achieving precise control over
multiple linguistic attributes while maintaining text
quality presents significant challenges in controlled
text generation. Our approach employs an adaptive,
gradient-based iterative refinement process (Pad-
makumar et al., 2023) that dynamically adjusts
the model’s input embeddings to steer outputs to-
ward the target attributes. To ensure both attribute
control and semantic fidelity, we use a line search
algorithm (Armijo, 1966; Boyd and Vandenberghe,
2004) to select the optimal update strength at each
step. This mechanism enables robust, fine-grained
control over linguistic properties during inference.
For a detailed description of the algorithm, see Ap-
pendix D.

4 Experiments

We evaluate LINGCONV on MRPC, STS-B, and
QQP, using BERTScore and mean squared error
(MSE) of attribute adherence (see Appendix F).

4.1 Experimental Setup

For each source and target sentence in our dataset,
we extract the 40 linguistic attributes (listed in
Appendix B) from existing linguistic toolkits (Lu,
2020, 2012; Lee and Lee, 2023a; Elgaar and Amiri,
2023). The attributes include lexical, syntactic, se-
mantic, and discourse attributes, which capture a
comprehensive spectrum of linguistic structures.
We use flan-t5-base (Chung et al., 2024) as a base
model, and re-implement all baselines to use the
same base model for fairness. We use greedy de-
coding for all models.

Furthermore, we compare against: Copy (input
as output), Reference (gold paraphrase), T5-FT
(fine-tuned T5), FUDGE (Yang and Klein, 2021),
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Novel Target Challenge

Model BERTST MSE(%)] MSE(®)t Overallt ‘ BERTS? + MSE(%)] MSE(l°)t Overallt
Ref 100.0 0.00 0.96 0.85 94 .4 9.82 0.96 0.19
Copy 94.4 0.96 0.00 0.32 100.0 9.86 0.00 0.33
T5-FT 94.24 0.96 +003 0.51 o004 0.48 +oo01 | 96.65 9.00 £078 0.68 002 0.32 +003
Llama 91.03 224 +008 1.86 +007  0.38 o001 | 92.77 8.71 o049 247 +026 0.27 +0.03
BOLT 90.64 1.12 +003  1.10 005 0.44 +o001 | 90.38 734 +066 1.84 006 0.29 +0.04
FUDGE 92.01 0.85 +001  1.05+005 0.48 +o01 | 92.53 694 +078 292 +057 032 +00s5
QCPG 95.36 0.63 o002 0.82 +005 0.54 £001 | 91.36 5.54 o055  3.14 o006 0.36 +004
Lingconv  95.15 0.62 004 0.80 +006 0.55 +001 | 92.04 3924032 420+03 041 +003
+QC 95.17 0.56 o004 0.77 005  0.56 £001 | 91.54 3.07 £029 592 +037 0.44 +o004

Table 1: Mean squared error (MSE) values reflect how close the linguistic attributes of the generated paraphrase are
to the target (MSE(%)]) or source (MSE(1®)1). Lower MSE(1?) indicates better attribute control; higher MSE(I*®)
indicates greater deviation from the source. Results are averaged over three seeds; standard error is shown for all
metrics except BERTScore, where it is always less than 0.01.

Model Lexical Syntactic Discourse Macro-
MSE (1)
Ling-disc  0.08 0.14 0.50 0.24

Table 2: Pre-training test loss of the linguistic discrimi-
nator.

QCPG (Bandel et al., 2022), BOLT (Liu et al.,
2023b), and Llama (Dubey et al., 2024). See Ap-
pendix H for a detailed description of each baseline.

4.2 Evaluation

Our evaluation is designed to assess both se-
mantic fidelity and fine-grained linguistic con-
trol in our controlled paraphrase generation sys-
tem. In the standard evaluation setting, where tar-
get reference paraphrases are available, we adopt
BERTScore (Zhang et al., 2020) to measure seman-
tic similarity between the generated paraphrase and
its corresponding reference. BERTScore leverages
contextualized embeddings to capture deep seman-
tic correspondences that go beyond surface-level
n-gram overlap, making it particularly effective in
scenarios with substantial linguistic reformulation.

To quantify the model’s ability to adhere to target
linguistic attributes, we measure the mean squared
error between the generated paraphrase’s linguis-
tic attributes and the target attributes, denoted as
MSE(?). Lower values of MSE(l?) indicate that
the generated paraphrase closely follows the de-
sired attribute controls. Furthermore, we compute
MSE((®) to assess the divergence of the paraphrase
from its source text, ensuring that the output not
only preserves the intended semantic content but
also exhibits the required linguistic modifications.

A lower MSE(#) indicates better attribute con-
trol, a higher MSE(1®) is actually desirable in many

cases, as it reflects the model’s ability to pro-
duce significant linguistic transformations from the
source. This is particularly important in the Novel
Target Challenge, where successful models must
demonstrate the capacity to significantly restructure
inputs according to target attributes that differ sub-
stantially from the source text’s attributes. A model
that simply copies the source (or makes minimal
changes) would have a low MSE(l®), indicating
insufficient attribute transformation.

To provide a concise summary of performance
across these dimensions, we define an Overall
score computed as the average of three normal-
ized metrics, each scaled to lie between 0 and
1: BERTScore, the normalized MSE(l®), and
(1 — normalized MSE(1t)). This Overall score cap-
tures our dual objectives of preserving semantic
fidelity and effective attribute control.

In addition to standard evaluation, we introduce
the Novel Target Challenge, a more demanding set-
ting in which models generate paraphrases based on
target linguistic attributes derived from an “irrele-
vant” sentence relative to the source. An “irrelevant”
sentence is one randomly sampled from the test set,
with no guaranteed semantic or topic relation to the
source. This creates a robust test of a model’s abil-
ity to generate diverse paraphrases, independent
of the source’s linguistic structure. Since no gold
reference is available in this scenario, we employ a
reference-free variant of BERTScore (Shen et al.,
2022), denoted by BERTScore!". Reference-free
BERTScore computes semantic similarity directly
with respect to the source text instead of a gold
standard reference, thereby providing a robust as-
sessment when the target attributes are decoupled
from conventional reference paraphrases. This is
crucial for testing model adaptability in real-world
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Algorithm 1 Quality Control

This algorithm optimizes the alignment of generated text with
target linguistic attributes while preserving semantic equiva-
lence to the source. The quality control loop adjusts the text
embeddings iteratively using a gradient-based method com-
bined with a line search to minimize attribute errors. The
process continues until a satisfactory generation is found or
the algorithm exhausts its search.

Require: model M, linguistic predictor L P, semantic clas-
sifier SE, input s, target attributes I*, base step size 70,
step size scaling factor -, semantic equivalence threshold
T, patience k

1: procedure QUALITY_CONTROL(S, I)
: O < Emb(s) > Initialize embeddings from the
source text
3: while True do

: t« M(©,1") > Generate text with current
embeddings
5: lewrrent < ||LP(f) —1*||3 > Compute attribute
error
6: g < Velo > Compute gradient w.r.t. embeddings
7. © < ADAPTIVE_STEP_SEARCH(O, lo)
8: if © = null then
9 break > Terminate if no improvement is
found
10: return £
11: procedure ADAPTIVE_STEP_SEARCH(O, lo)
12: n<no > Initialize step size
13: patience + k > Initialize patience counter
14: while patience > 0 do
15: Tsem < SE(s,1') > Check semantic equivalence
16: if ' < lo and oem > 7 then
17: return ©' > Accept and return the new
embeddings
18: else
19: N nxy > Reduce step size
20: patience <— patience — 1 > Decrease patience
21: while patience > 0 do
22: O +—O-—nxg > Update embeddings
23: t— M((©',1Y > Generate text
24: I < ||LP(#) —1"|3 > Compute new attribute
error
25: Tsem < SE(s,1') > Check semantic equivalence
26: if ' < lo and oem > 7 then
27: return ©’ > Accept and return the new
embeddings
28: else
29: N nxy > Reduce step size
30: patience <— patience — 1 > Decrease patience
31: return null > Return null if no improvement

applications where specified target attributes may
be entirely novel relative to the source.

Alternative metrics such as iBLEU (Liu et al.,
2020; Niu et al., 2021) have been proposed for
paraphrase evaluation to balance semantic similar-
ity with lexical diversity by penalizing excessive
overlap with the source. However, these metrics
focus largely on surface-level comparisons. In
contrast, our evaluation framework, which com-
bines BERTScore (or BERTScore!” in the novel
target setting) with MSE metrics for target and
source linguistic attributes, directly quantifies both

semantic preservation and the degree to which con-
trolled linguistic attributes are followed, regardless
of whether they are similar or different from those
of the source. This approach is more aligned with
linguistically controlled paraphrase generation.

Detailed analysis of linguistic attribute control
and a full description of our paraphrase generation
for data augmentation are presented in Appendix J
and Appendix 5.5.

5 Results

Table 1 shows the results obtained by all models
across evaluation metrics.

5.1 Attribute Control vs. Semantic Fidelity

Our first observation is that LINGCONV generates
paraphrases that align more precisely with the de-
sired linguistic attributes, as demonstrated by its
lower MSE(I*) compared to other competing base-
lines. This result can be attributed to directly inte-
grating linguistic attributes with the decoder input
through element-wise addition and the linguistic
attribute predictor which effectively guides the de-
coder to generate paraphrases that adhere to the
target linguistic attributes. QCPG shows similar
MSE((") performance but it employs a more indi-
rect method for incorporating target attributes—by
prefixing the input sequence with special discrete
tokens. While effective, this approach may not
provide the same level of precision in guiding the
generation process. The discrete token prefixes
could potentially introduce ambiguity or weaken
the direct influence of linguistic attributes on the
generated text.

Second, we observe that LINGCONV performs
well in balancing attribute control, and seman-
tic similarity of output, as shown by the overall
score. The balance between attribute control and
paraphrase faithfulness is a crucial aspect of high-
quality controlled paraphrase generation. Specif-
ically, within the novel target case LINGCONV
achieves a substantial 34% decrease in attribute er-
ror compared to the best-performing baseline while
maintaining comparable semantic consistency as
the gold reference paraphrases. Furthermore, in
the novel target challenge, our quality control ap-
proach provides a significant reduction in MSE({?)
of the linguistic attributes with minimal reduction
in BERTScore, providing a 14% further decrease
in attribute error.
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5.2 Trade-offs in the Novel Target Challenge

In the Novel Target Challenge, LINGCONV some-
times achieves a slightly lower BERTScore com-
pared to baselines. This can be explained as a trade-
off inherent to the task: LINGCONV is designed
to prioritize adherence to the specified (and often
difficult or even conflicting) novel attribute targets,
as evidenced by its much lower MSE(I%). Achiev-
ing these attribute targets may require the model
to make more substantial changes to the source
sentence, which can result in greater semantic devi-
ation from the original text. In contrast, models that
are less effective at precise attribute control (and
thus have higher MSE(/?)) tend to produce outputs
that remain closer to the source, thereby achiev-
ing a higher BERTScore, at the cost of failing to
achieve the requested attribute modifications.

Third, the novel target case shows LingConv
scores a significant increase in MSE(/®) compared
to the baseline models, with a difference of 2.95
points. The low value of MSE(/®) indicates that
baseline CPG methods are biased by the linguistic
structure of the source sentence, and do not de-
viate far from it, while LingConv can restructure
the input sentence to achieve the desired control
attributes. Detailed per-dataset results are available
in Appendix Table 8, showing that our approach
consistently outperforms baselines across all three
datasets.

5.3 Analysis of Baseline Methods

In addition, we find that BOLT has a limited capac-
ity on fine-grained attribute control. In the novel
targets case, BOLT achieves a 24% drop in error
compared to T5-FT, which indicates that it moves
in the correct direction. However, it still has a high
MSE compared to other CPG methods, indicating
that it struggles to control many attributes at once.
On the other hand, FUDGE, with a high enough
AFUDGE, has a guarantee to reduce the attribute er-
ror compared to T5-FT, because it samples the next
token with the joint maximum LLM likelihood and
minimum attribute error. However, FUDGE has
difficulty performing linguistic controls because it
relies on long-scale dependencies of the text, where
the generation needs to be based on sentence-level
decisions rather than token-level.

5.4 Comparison with Large Language Models

We observe that LLama, although able to gener-
ate semantically similar paraphrases, has difficulty

following instructions for attribute controls. In the
standard case, this is evident by the MSE(I?) higher
than T5-FT, and in the novel target case we see
that LLama slightly follows the attribute controls,
achieving a poor error comparable to that of TS-FT.

Our model achieves a 34% error reduction over
LLama in attribute control. While large models
like LLama-70B excel at general-purpose gener-
ation, our results show they struggle with pre-
cise attribute control (MSE(l?) of 8.90 vs Ling-
Conv’s 3.69 in novel target scenarios). This high-
lights a fundamental limitation of prompt-based ap-
proaches—even with detailed instructions, LLMs
lack the specialized architecture and optimization
procedures needed for fine-grained attribute match-
ing. The quality control mechanism provides an
additional 14% error reduction, demonstrating the
value of having full access to model gradients
and intermediate states, which is not possible with
black-box LLLM APIs. These results suggest that
specialized fine-tuned models remain state-of-the-
art for narrow, well-defined tasks requiring precise
control and guarantees. For a qualitative compari-
son of model outputs with attribute-level analysis,
see Appendix A.

5.5 Application in Data Augmentation

We demonstrate the utility of LINGCONV for data
augmentation on three GLUE tasks: CoLLA, SST-
2, and RTE. By generating paraphrases of train-
ing samples with specific linguistic properties, we
show that the effectiveness of augmentation is
highly dependent on the attributes of the synthetic
data. We created “Effective” and “Ineffective” sets
of augmented data by sampling target attributes to
either increase or decrease the prevalence of cer-
tain linguistic features. Our results (Table 3) show
that “Effective” augmentation yields statistically
significant performance improvements on down-
stream tasks, while “Ineffective”” augmentation can
harm performance. This highlights the importance
of controlled generation for creating high-quality,
targeted training data.

The number of training and test samples for
CoLA, SST-2, and RTE are 8.5k and 1k, 67k
and 1.8k, and 2.5k and 3k, respectively. Data
augmentation is generally more effective for
smaller datasets (Okimura et al., 2022; Louvan
and Magnini, 2020). Therefore, we use Full and
Limited versions of each dataset, with Limited
containing reduced training data (10% for CoLA
and SST-2, and 40% of RTE due to its smaller
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CoLA (Matthew’s Corr.) RTE (Acc.) SST-2 (Acc.)
Augmentation Limited Data Full Data Limited Data Full Data Limited Data Full Data
No Aug. 53.8 £04 60.6 + 1.0 68.4% + 15 74.2% + 1.5 91.3% + 0.1 92.4% +03
Ineffective Aug. 52.5+08 58.4 + 1.1 66.1% +2.8 71.7% + 2.6 91.0% +03 91.7% =+ 0.1
Effective Aug. 54.8 £ 0.6 60.8 £ 1.1 712% +13  76.0% +08  922% +03  93.0% +04

Table 3: Performance on GLUE tasks with No, Effective and Ineffective augmentation. Effective and ineffective
augmentations differ in the set of target linguistic attributes used to generate them.

size). We use LINGCONV to generate paraphrases
of the training samples, which are added back to
the training set with labels matching the original
samples. We create two sets of target attribute
vectors by non-uniform sampling from the origi-
nal data’s linguistic attribute vectors (7). Biased
sampling aims to produce increased or decreased
prevalence of particular attributes in the generated
paraphrases for augmentation, compared to the
original data. This approach allows us to iden-
tify which attribute values result in “Effective” vs.
“Ineffective” augmentation based on task perfor-
mance post-augmentation, compared to no aug-
mentation. For example, we may sample data
such that p(I* : I* € T) = 0.9 if I}y, > 0.8 and
p(l* :1' € T) = 0.1 otherwise, which results in
substantial prevalence of high TTR values in the
augmented samples.

We run experiments with DeBERTay,s. (He et al.,
2021), using the same parameters as their GLUE
benchmark experiments. Each experiment is run
with six random seeds, and we report the mean
and standard error. We identify “Effective” and
“Ineffective” sets by first evaluating 20 randomly
sampled sets. From these, we select two sets: one
that shows a statistically significant performance
increase and one that shows a significant decrease
compared to no augmentation. We then compare
the attribute distributions of these two sets to iden-
tify which attributes differ significantly. Results
in Table 3 confirms that the distribution of the tar-
get attributes influence the effectiveness of data
augmentation.

We find that on RTE (Limited), for effective aug-
mentation, target attributes should have a signifi-
cantly higher prevalence of shorter sentences, while
ineffective augmentation produces more medium-
length sentences. The Mann—Whitney U test con-
firms significant differences with p-value < 0.05
in the attribute distributions between effective and
ineffective sets across all our six datasets. Details
are provided in Appendix M.

6 Conclusion

We present a model for controllable text generation,
offering control over 40 linguistic attributes and an
effective mechanism for quality control at inference
time, yielding a 12% improvement in output qual-
ity. We introduce the “Novel Target Challenge”,
where models generate paraphrases based on at-
tributes from an “irrelevant” sentence. The setting
evaluates models’ adaptability to novel attributes
and acts as a robust test for controlled paraphrase
generation models. In addition, we evaluate the
model on the downstream application of generat-
ing synthetic data for augmentation. Our model
generates paraphrases that boost performance and
can be used to mitigate dataset biases. Future work
can investigate mechanisms to handle contradictory
or noisy attribute specifications to enable the model
to resolve conflicts and prioritize constraints, and
extend LINGCONV beyond English to multilingual
and low-resource settings, where new attribute ex-
tractors and cross-lingual transfer will be needed.

Limitations

Our approach requires the availability of linguistic
attributes, which, although available for the En-
glish language, may not be available for all lan-
guages. Certain linguistic attributes may require
more sophisticated control mechanisms. The di-
rect injection of embedded linguistic attributes into
the decoder input in LINGCONV, although effec-
tive, has weaknesses. Specifically, we find it to
be sensitive to outlier linguistic targets. If the lin-
guistic target contains extreme values, we find that
the model degenerates into non-grammatical and
repetitive text.

In addition, while flan-t5-base (Chung et al.,
2024) was likely exposed to the training sets of our
evaluation tasks during its pre-training, we conduct
all evaluations strictly on held-out test sets. We
believe any potential data contamination is miti-
gated because our core challenge is fine-grained
attribute control, and our evaluation uses novel at-
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tribute combinations and reference-free metrics in
the challenging scenarios.

An estimate of human performance serves is a
useful baseline. However, the task of generating
paraphrases that adhere to an extensive set of 40
linguistic attributes is beyond the capabilities of
even expert linguists, making human evaluation
impractical and potentially unreliable. Fortunately,
we have direct access to the same software tools
that precisely compute these linguistic attributes
for both the source texts and generated outputs,
enabling straightforward and highly accurate auto-
matic evaluation. These deterministic tools calcu-
late exact values for each attribute with consistent
reliability, eliminating the subjectivity and vari-
ability inherent in human judgments. Our evalua-
tion framework combines BERTScore, which has
shown strong correlation with human judgments
of semantic similarity in prior work (Zhang et al.,
2020), with precise attribute measurements that ob-
jectively quantify how closely the generated text
adheres to target linguistic specifications.

Regarding the performance of our linguistic dis-
criminator, we evaluated its accuracy on predict-
ing 40 different linguistic attributes. The model
achieves an average mean square error of 0.52 on
the test set, which is significantly lower than the
naive baseline of predicting the mean value for each
attribute (MSE=1.0). The accuracy varies by at-
tribute category, with some syntactic features (e.g.,
clause count, T-unit count) being more accurately
predicted (average MSE=0.35) than lexical features
like sophisticated word usage (average MSE=0.61).
This performance gap reflects the inherent com-
plexity of modeling certain linguistic phenomena
and represents a limitation of LINGCONV.

Ethical Statement

Controlled text generation needs ethical consid-
erations. There is a fine line between controlled
generation and manipulation. Malicious actors may
use such a model for the propagation of biased, mis-
leading, or harmful information. We must ensure
that the technology is disseminated responsibly,
with safeguards in place to prevent malicious us-
age and unintended consequences. Furthermore,
these models allow for generating paraphrases with
great diversity that may be undetectable in cases of
plagiarism. More sophisticated safeguards around
plagiarism, cheating, and theft must be put in place
to address this issue.

Broader Impacts

The implications of our complexity-controlling
paradigm are wide-ranging and significant. By
generating more accessible text, this technology
extends its reach to individuals with limited liter-
acy proficiency, cognitive impairments, learning
disabilities, aphasia, or dementia. Moreover, it al-
lows for personalized communication, functions
as a valuable tool for linguistic researchers and
natural language processing (NLP) experts, and
enhances the pedagogical landscape of second lan-
guage acquisition by dynamically adapting text
complexity to match the learner’s skill level. In
addition, our approach addresses the conversion
of text complexity through fine-grained control of
linguistic attributes. Text complexity plays a cru-
cial role in text readability, comprehension, and
propriety for different readers. For example, an
educational platform that dynamically adjusts the
complexity of its content to match the reader’s pro-
ficiency level can enable better comprehension and
engagement. Such personalized learning experi-
ences can potentially revolutionize education by
adjusting complexity with respect to the learner’s
capabilities and accommodating a wider range of
learners. Our model can also help content creators
to tailor their messaging to their target audience.
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Linguistic Attributes

Word Count
Character Count

Characters per Sentence
Words per Sentence
Syllables per Sentence Sentence Count
Characters per Word Clause Count
NORP Entities
GPE Entities

Law Entities

T-unit Count
Noun Count
Numeral Count
Stop Words
Proper Nouns

Money Entities

Ordinal Entities
Sophisticated Words
Sophisticated Word Count
Sophisticated Lexical Words

Complex T-units
Complex Nominals
Dependent Clauses

Lexical Sophistication Verb Sophistication

Unique Word Ratio Total Words

Unique Verb Ratio Unique Lexical Words
Coordinating Conjunctions Unique Adverb Ratio
Subordinating Conjunctions Unique Adjective Ratio
Age of Acquisition Score Readability Level

Table 4: Linguistic indices used in this paper.

A Qualitative Analysis

Figure 3 presents a qualitative analysis of outputs
from different models, highlighting the varying ca-
pabilities in linguistic attribute control. This anal-
ysis provides insight into the strengths and limita-
tions of our approach compared to existing meth-
ods.

B List of Linguistic Attributes

We use expert-crafted linguistic indices as the con-
trol attributes for CPG. Table 4 lists all the indices
that we use. We select 40 indices, such that there
are no duplicates, there is a representative index
from each family, there is at least one index from
each domain, the index is not too granular as to not
be useful, and the selected included indices have
utility in text style control.

The linguistic indices employed in our work are
derived from off-the-shelf tools that implement
linguist-defined rules grounded in psycholinguis-
tics literature. Lexical and surface-level indices,
for example, are computed by simply counting
word occurrences, ensuring robust and reliable
measurements. Syntactic and discourse indices
are extracted using part-of-speech (POS) tagging,
dependency parsing, and named entity recognition
(NER), for which we employ the en_core_web_sm
model from spaCy (Honnibal et al., 2020). This
model has been reported to achieve 97% accuracy
on POS tagging, 92% on parsing, and a 0.84 F1-

score on NER, verifying the reliability of these de-
rived attributes. Moreover, the deterministic nature
of these algorithms guarantees consistent results
across experiments. All models and baselines in
our study are evaluated using the same input indices
and evaluation process, ensuring fair comparison
of their linguistic-control capabilities. For the full
descriptions please refer to Lu (2020), Lu (2012),
and Lee and Lee (2023a).

The following is a brief description of a few
indices as an example: Automated Readability
Index is the grade level required for a reader to
comprehend the text, from preschool to professor
level. Lexical words are nouns, verbs, adjectives,
and adverbs. Sophisticated words are the uncon-
ventional words. We consider the 2000 least fre-
quent words in the American National Corpus as
sophisticated. GPE Entity is a geopolitical entity.
NOREP entity is nationalities or religious or politi-
cal groups. Age of acquisition is the typical age at
which a person learns and begins to use a particular
word.

C Comparison of Injection Methods

Table 5 presents a comparison of different injection
methods for integrating linguistic attributes into the
generation process. Results are reported on both
standard and novel targets test sets in terms of mean
squared error for target (I*) and source (/%) linguis-
tic attributes, as well as BERTScore (BERTYS).

We experimented with adding linguistic embed-
dings to all tokens of the decoder input, concate-
nating to the decoder inputs (equivalent to prompt
tuning), concatenation/addition to encoder inputs,
concatenating/adding to encoder outputs, and fus-
ing to encoder outputs using a linear layer. In gen-
eral, decoder injections were better than encoder
injections. Decoder first-token-addition was the
best-performing overall.

D Quality Control Algorithm Details

The quality control (QC) mechanism is designed to
optimize the alignment of generated text with tar-
get linguistic attributes while preserving semantic
equivalence to the source. The QC loop adjusts the
text embeddings iteratively using a gradient-based
method combined with a line search to minimize at-
tribute errors, following the scientific approach out-
lined in Padmakumar et al. (2023); Armijo (1966);
Boyd and Vandenberghe (2004).
The process consists of two key components:
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Example 1: Lexical brevity

Source U.N. inspectors later said the documents were old and irrelevant — some ad-
ministrative material , some from a failed and well-known uranium-enrichment
program of the 1980s .

Target 2 sophisticated words, 5 total words
LingConv Gen U.N. inspectors said the documents were old.
QCPG Gen The documents were old.
Attribute Target LingConv QCPG
Sophisticated words 2 2 (0) 0(-2)
Total words 5 7 (+2) 4 (-1)
Summary LingConv matches the sophistication requirement; QCPG omits it. Both simplify,

but only LingConv aligns with the target.

Example 2: High complexity

Source Named in the complaint were former chief executive officers Paul A. Allaire and
G. Richard Thoman and former CFO Barry D. Romeril .

Target 10 sophisticated words, 26 words, 4 complex nominals

LingConv Gen The executives fined included former Chief Executives Paul A. Allaire and G.

Richard Thoman as well as former chief financial officer Barry Romeril, all of
the company’s board members.

QCPG Gen The executives fined included former Chief Executives Paul A. Allaire and G.
Richard Thoman as well as former Chief Financial Officer Barry Romeril, among
others.

Attribute Target LingConv QCPG
Sophisticated words 10 8 (-2) 9(-1)
Total words 26 30 (+4) 25 (-1)
Complex nominals 4 3(-1) 1(-3)

Summary Both models generate relevant summaries but cannot fully match the high attribute

targets.

Example 3: Structural complexity
Source The puppy tried to get out of the tub.
Target 20 words, 4 verb phrases, 3 clauses, 3 complex nominals

LingConv Gen A fluffy puppy is trying to get out of the tube while he is holding a plastic drawer.

QCPG Gen Even though this puppy is extremely sensitive, it is still trying to get out of the
cat’s water.
Attribute Target LingConv QCPG
Total words 20 18 (-2) 19 (-1)
Verb phrases 4 3(-1) 3(-1)
Clauses 3 2 (-1) 2 (-1)
Complex nominals 3 2(-1) 1(-2)
Summary Both models fail to reach the structural targets; QCPG’s paraphrase also drifts
semantically.

Figure 3: Qualitative comparison of LingConv and QCPG. For each attribute, the target, each model’s value, and
the error magnitude are shown. Large errors are bolded.

20857



Injection Method

| Novel Targets

MSE(I*) MSE(®) BERTS | MSE(") MSE(°) BERTS
Encoder Input Concatenation 0.61 0.89 94.8 4.85 9.46 86.7
Encoder Input Addition 0.62 1.08 94.3 6.31 12.75 85.2
Decoder Input Concatenation 16.52 18.60 85.5 28.99 38.16 82.3
Decoder Input Addition 0.59 0.94 94.2 10.90 15.62 85.7
Decoder Input Addition to First Token 0.58 0.91 95.1 4.32 11.55 69.0
Layer 1 Addition (all tokens) 0.56 1.03 94.0 7.25 8.92 84.3
Layer 1 Addition (first token) 10.01 10.20 82.0 56.63 59.79 80.1
Layer 6 Addition (first token) 12.45 12.89 83.1 62.31 65.44 81.2
Layer 12 Addition (all tokens) 15.67 16.02 80.5 68.92 71.35 78.9
Layer 12 Addition (first token) 16.89 17.25 79.8 71.54 73.88 71.5

Table 5: Comparison of injection methods for linguistic attribute integration. Results include mean squared errors
(MSE) for the target () and source (I*) attributes and BERTScore (BERTS), measured on in-distribution (ID) and

out-of-distribution (OOD) test sets.

1. Aniterative refinement process that repeatedly
updates the generation until it matches the tar-
get attributes or further improvement becomes
impossible.

2. A line search algorithm that finds the optimal
control strength for each refinement step while
preserving semantic coherence.

Algorithm 1 shows this process. Initially, we
freeze the parameters of the generation model and
set input sentence embeddings as our parameter of
interest. The model then generates an initial output
t (line 4 in Algorithm 1). We use the linguistic at-
tribute predictor component to predict the linguistic
attributes of this generation and compute the mean
squared error, [y, between the predicted attributes
and the target attributes (line 5). The gradient g
of this error with respect to the input embeddings
provides the direction for updates (line 6).

The adaptive step size is determined through a
modified line search algorithm (lines 11-31) that
finds the smallest viable step size that improves the
output. The resulting generation must satisfy two
conditions: (a) The predicted linguistic attribute
error should decrease (i.e., be less than [y) (b) The
semantic equivalence probability should remain
above a threshold 7

These conditions ensure both improved attribute
control and semantic preservation. The process
continues until no viable step size can be found,
indicating the generation has reached its optimal
state.

E Algorithm Background

This section describes further details on the STE
and line search algorithms.

E.1 Straight-through Gradients

STE (Bengio et al., 2013) is a technique used
to propagate gradients through non-differentiable
equations in the computational graph, through an
estimation of the derivative. In our case, the de-
coder produces token logits, which are then trans-
formed into probabilities through softmax. Then,
we transform the probabilities into an output se-
quence using argmax. LP takes as an input the
sequence of tokens and not the sequence of log-
its. However, if we want to propagate the gradient
of the loss generated by LP to the main model,
we must pass the gradient through the output logits.
Thus, we use the following trick to create a pathway
in the computational graph from LP’s inputs to the
logits. First, the output sequence is represented in
one-hot encoding rather than a sequence of tokens.
Second, we add the logits to the one-hot encoding
and subtract a detached (constant) variable equal
to the logits. The end result would be equal to the
one-hot encoding, but the computational graph now
has a path from the logits to LP through the mul-
tiplication of the one-hot encoding with LP’s text
embedding. This means that the gradient propa-
gated to each token of the logits is scaled according
to the weights of the text embedding matrix.

E.2 Line Search

Line search (Armijo, 1966) is a standard numerical
optimization algorithm, where at every update step,
the step size is chosen dynamically. There are
different methods of finding the best step size. They
often include trying out many different step sizes,
evaluating the resulting parameters, and choosing
the step size that results in the lowest loss value.
Our algorithm is based on backtracking line
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Dataset Full Dataset Positive Samples
QQpP 363,846 134,378

MRPC 3,668 2,474

STS-B 5,749 2,994

Total 373,263 139,846

Table 6: QQP, MRPC, and STS-B contain samples that
are either semantically equivalent or not equivalent. We
select from the three datasets samples with the equiva-
lent label for training and evaluating our model.

search, which starts with a large candidate step
size, and if it doesn’t result in a lower loss than the
current, reduce it by a factor of v (often = 0.5) and
try again. The intuition is that we would like to
take the largest step possible that results in an im-
provement to descend toward the global minimum
and potentially avoid local minima. However, we
would like the opposite; we would like to take the
smallest possible step that results in an improve-
ment to not deviate away from the original sentence
semantics. Therefore, our algorithm starts from a
small step size and grows it by a factor of y at each
line search step.

F Datasets

We combine The Microsoft Research Paraphrase
Corpus (MRPC) (Dolan and Brockett, 2005), The
Semantic Textual Similarity Benchmark (STS-
B) (Ceret al., 2017), and The Quora Question Pairs.
The three datasets are created for the task of clas-
sifying whether the pair of texts are semantically
equivalent. Therefore, we only select the positive
samples for our model’s training and discard the
remaining samples. The data distribution is shown
in Table 6.

The dataset is randomly split into training, val-
idation, and testing sets according to the ratio
80:10:10. The same data is used for training all
versions of our approach and baselines. The seman-
tic equivalence and linguistic predictor models are
both pre-trained using the same data and splits.

G Training Data Preparation

We utilize the bidirectional equivalence inherent
in paraphrase pairs to enrich our training set with
augmented data. First, we augment the data
by reversing the order of source and target sen-

tences: {t;,s;,1,15}. Second, we augment the

data with self-paraphrase pairs: {s;, s;,17,15} and

177

{t;,t;, 1L, It}. This ensures diversity in the types of

177
linguistic conversions that the model can learn, and

strengthens the semantic consistency within and
across paraphrase pairs, which improves model’s
understanding and generation capabilities. We aug-
ment 25% of the training data.

This augmentation strategy significantly in-
creases the diversity of our training data. Starting
with our original dataset of approximately 370k
samples, our augmentation approach creates a final
training set of roughly 840k samples. By including
reversed pairs and self-paraphrase pairs, we expose
the model to a wider range of attribute transforma-
tion patterns. This diversity is crucial for the model
to learn flexible linguistic transformations rather
than merely memorizing specific source-target at-
tribute pairs.

Importantly, our model learns to map from a
dense, normalized 40-dimensional attribute space
to generated text. This approach enables gener-
alization to novel attribute combinations not seen
during training, as the model learns a continuous
function rather than discrete mappings. The in-
clusion of self-paraphrase pairs where source and
target attributes are identical helps the model learn
when to preserve aspects of the input, while the
reversed pairs teach it bidirectional transformations
between different linguistic styles. Together, these
augmentation strategies ensure that LINGCONV
can generate diverse outputs tailored to various at-
tribute specifications rather than being constrained
to a limited set of transformations.

H Baselines

* Copy: the output is a copy of the input text.

* Reference: the output is the ground-truth tar-
get paraphrase from the dataset.

* T5-FT: a standard TS model that lacks linguis-
tic attribute control capabilities, fine-tuned on
the dataset of paraphrase pairs.

* FUDGE (Yang and Klein, 2021): controlled
text generation with future discriminators per-
forms attribute control by weighting the token-
prediction logits according to an attribute clas-
sifier of the potential continuations.

* QCPG (Bandel et al., 2022), quality con-
trolled paraphrase generation is a state-of-the-
art model for controlled generation. Target at-
tributes are discretized into tokens, and added
as a prefix to the encoder input.

* BOLT (Liu et al., 2023b): a decoding-time
algorithm for controlled text generation. For
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Words Sophisticated Words Lexical Words Ratio of Unique Words Nouns Readability Index

Ref 12.97 4.29 7.60 9.13% 2.16 6.62
Copy 12.98 4.29 7.61 9.25% 2.14 6.65
T5-FT 12.83 4.22 7.49 9.18% 2.10 6.69
Llama 12.04 4.55 7.25 8.29% 2.36 8.01
BOLT 10.85 3.36 6.11 8.51% 1.83 5.47
FUDGE 11.10 3.36 6.29 7.95% 2.00 5.09
QCPG 5.34 2.83 3.62 5.93% 1.16 3.04
Lingconv  4.37 2.38 3.04 5.92% 1.27 3.36

+QC 3.21 1.97 2.36 6.38% 1.23 3.01

Table 7: A detailed breakdown of model performance across a selected set of linguistic attributes. performance is
reported in mean absolute error (MAE). the results are based on novel targets of linguistic attributes.

each test sample, it learns a set of biases by
minimizing the losses of an attribute discrimi-
nator model and an LM’s perplexity.

* LLama3 (70B) (Dubey et al., 2024): an in-
struction fine-tuned LLM.

I Experimental Settings

Before adapting all baselines to the flan-t5-base
backbone for our comparative experiments, we first
replicated their original results using the official
code and recommended configurations provided
by the respective authors. This ensured faithful
reproduction of their approach.

For inference efficiency, our model takes approx-
imately 25 ms/token, compared to FUDGE (112
ms/token), BOLT (114 ms/token), and LLama (162
ms/token), making it significantly more efficient for
practical applications. Detailed hyper-parameter
settings are provided in Appendix I.

We train our model using a single A100 GPU
with a batch size of 40, and a learning rate of
le — 3 Adam optimizer. We optimize the hyper-
parameters of FUDGE and QCPG. In QCPG, op-
timized batch size = 8, learning rate = le — 4,
and we train for a large number of epochs = 20
to ensure high performance. In FUDGE, we opti-
mize the update factor and the multiplicative fac-
tor A\rpypge = 0.7. We use the linguistic pre-
dictor described in § 3.2 as an attribute classifier
for FUDGE, and weigh the logits according to the
inverse of the mean squared error of the predic-
tion’s linguistic attributes and the target linguistic
attributes. Although FUDGE benefits from not hav-
ing to train or fine-tune the language model, it is
extremely slow at inference time due to the demand
of evaluating numerous candidates at each genera-
tion step. The parameters for the Algorithm 1 are:
no = 103,y = 2.25,7 = 0.95, k = 4 All models
are run with 1 seed. The random seed used for all

data processing and models is 0. When £ > 1 ran-
dom seeds are used, such as in section 5.5, seeds
are fromOto k — 1.

The three augmentation settings are trained for 2
epochs, and the best checkpoint is used. We use a
learning rate of 1e — 3, batch size of 40, and linear
learning rate scheduling.

Linguistic attributes are quantized using the
KBinsDiscretizer’® with the “kmeans” clustering
strategy.

The per-dataset results in Table 8 demonstrate
the consistent superiority of LingConv across all
three datasets. On QQP (the largest dataset), Ling-
Conv reduces attribute error by 39.5% compared to
QCPG, while maintaining comparable BERTScore.
Adding quality control further reduces the error by
15.4%. Similar patterns are observed on STS-B
and MRPC, with LingConv+QC achieving the low-
est attribute errors of 2.65 and 3.66 respectively,
showing that our approach generalizes well across
diverse paraphrase collections regardless of domain
or size.

J Analysis of Linguistic Attributes

We analyze the performance of models across dif-
ferent groups of linguistic attributes to understand
their strengths and weaknesses, and the inherent
difficulty in controlling different types of attributes.
We group the linguistic attributes into several types
according to the categorizations in (Lu, 2020, 2012;
Lee and Lee, 2023a). The attribute types are lexical,
syntactic, and discourse features. We analyze MSE
values for each model across standard and novel
target scenarios, revealing the following insights:

Shttps://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.KBinsDiscretizer.
html
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QQP STS-B MRPC

Model B-S MSE(’) B-S MSE() B-S MSE()
Ref 100.0 1022  100.0  8.63  100.0  10.58
Copy 946  10.16  94.1 8.68 946 1077
T5-FT 950 1044 940 8.64 935  10.59
Llama 91.1 7.98 90.7 7.64 90.8  11.25
BOLT 90.5 7.92 89.5 7.04 87.8 7.76
FUDGE  92.6 6.79 91.1 7.07 89.5 8.04
QCPG 90.4 6.12 90.6 4.56 89.9 6.56
Lingconv  90.9 3.70 91.3 3.55 90.5 4.57

+QC  90.8 3.13 90.8 2.65 89.7 3.66

Table 8: Performance breakdown by dataset on the Novel Target Challenge. B-S is BERTScore and MSE(!?) is
mean squared error of target attributes (lower is better). Results show LingConv consistently outperforms baselines
across all datasets, with the quality control mechanism providing further improvements.

Model Lexical Syntactic Discourse Macro-
MSE(I*)
Ref 12.62 8.89 5.91 9.14
Copy 12.66 8.87 6.19 9.24
T5-FT 12.73 8.82 6.16 9.24
Llama 10.88 8.37 5.56 8.27
BOLT 9.36 7.23 3.21 6.60
FUDGE 9.54 6.83 2.34 6.23
QCPG 7.64 4.30 5.46 5.80
Lingconv  4.25 3.08 4.70 4.01
+QC 351 2.31 3.62 3.15

Table 9: A detailed breakdown of model performance
(MSE) across distinct groups of linguistic attributes.
Each group represents specific linguistic attributes that
contribute to the overall complexity and structure of the
generated text.

J.1 Controlling Discourse Proves Most
Challenging

Table 9 shows the error rate of each approach in
controlling different linguistic attribute groups.
Despite having the lowest average error across
models, discourse attributes show the smallest
reduction in error by LINGCONV compared to
T5-FT, at 41%. This suggests that discourse
attributes are the most challenging to control. In
contrast, lexical attributes have the highest average
baseline error, and LINGCONV achieves the most
significant reduction in this error, at 74%. Syntactic
attributes appear to be the easiest to control, with
the error rate dropping from 8.82 to 2.31, a 73%
reduction, the lowest among all groups. We note
that FUDGE achieves the lowest error in discourse
attributes. This is because many of these attributes
are represented by the presence and density of
particular named entities. The generation of
FUDGE is driven by the next word that minimizes
the MSE. Therefore, it can generate the singular

named entities that significantly reduce the error.
However, this is not an optimal strategy for
syntactic structures that require several iterations
of planning and building, as evidenced by the high
error rate of FUDGE on syntactic attributes.

Quality Control Boosts Adherence across Lin-
guistic Attributes The quality control algorithm
reduces the error rates of LINGCONV across all
types of attributes. The largest improvement of
25% is in syntactic attributes. The algorithm of iter-
ative refinement of a source sentence is particularly
suited to the task of iteratively adding and deleting
selected entities, and matching the required target
more closely. The second largest improvement is
in lexical attributes at 23%, the algorithm can it-
eratively add and delete selected words, matching
the desired lexicon and minimizing the error in
lexical attributes. Finally, discourse features often
require a complete restructuring of the sentence,
which is the most difficult. However, quality con-
trol achieves a 17% reduction in error.

To further verify, we apply the quality control
mechanism to T5-FT, instead of LINGCONV. T5-
FT plus quality control has a 0.90 MSE({?) in the
standard case and 9.20 in novel target case. In both
scenarios, the model improved over the vanilla T5.
However, it is evident from this results that quality
control alone is not sufficient for attribute control,
and the architecture of LINGCONV is essential.

Our model achieves a 34% error reduction over
LLama in attribute control. While large models
like LLama-70B excel at general-purpose genera-
tion, our results show they struggle with precise
attribute control (MSE(?) of 8.90 vs LingConv’s
3.69 in novel target scenarios). The quality control
mechanism provides an additional 14% error reduc-
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tion, demonstrating the value of having full access
to model gradients. These results suggest that the
black-box nature of prompt-based approaches lim-
its their ability to achieve exact attribute matching.

Linguistic Predictor Performance The final
MSE loss of the pre-trained linguistic predictor
(LP) is 0.16 on our test set, indicating that the
model’s results have been achieved despite using
imperfect linguistic predictor. This could poten-
tially compound errors in the refined outputs gen-
erated during inference time with quality control
mechanism. We further report the error of the
linguistic discriminator over different types of at-
tributes in Table 2. We find that the error rates
are lowest for lexical attributes, moderately higher
for syntactic attributes, and highest for discourse
attributes. This finding is consistent with the liter-
ature on linguistic attributes (Pallotti et al., 2019;
Rafatbakhsh and Ahmadi, 2023).

J.2 Handling of Contradictory Attributes

In this paper, we assumed all input control vec-
tors are linguistically valid. To extend our work to
handle potentially contradictory attributes, a clear
definition of such conflicts is needed. Contradic-
tions can arise from structurally incompatible re-
quirements (e.g., a control vector specifying both
“no verbs” and “three verb phrases”) or from at-
tributes that are strongly negatively correlated (e.g.,
requesting a “higher number of clauses” alongside
a “lower average sentence length”). In such cases,
we hypothesize that the model would prioritize the
more commonly observed attribute pattern from
its training data, effectively ignoring the outlier re-
quest. For instance, it would likely ignore a “no
verbs” constraint in favor of producing a grammat-
ically plausible sentence with verb phrases. Ana-
lyzing model behavior with conflicting targets is a
valuable direction for future work, and could reveal
insights into the model’s implicit linguistic biases
and trade-off strategies.

K Attribute-specific Performance

Table 7 shows the error rate of each approach with
respect to individual attributes. The errors are re-
ported in mean absolute error (MAE).

LingConv achieves the least error in 5 out of
6 of the listed indices. LLama shows the worst
performance compared to CPG methods. Com-
pared to the T5-FT baseline, BOLT and FUDGE
only slightly improve the error. QCPG is the

best-performing baseline after LingConv. Notably,
QCPG shows the smallest error in controlling the
number of nouns in a sentence. Moreover, QCPG
controls the readability index of the generation with
an MAE of 3 and the ratio of unique words in a
sentence with an error of 6%. For both of these
indices, LingConv still achieves the smallest error.

LingConv controls the number of words up to an
error of 3 words, which is the best among all base-
lines. LingConv also significantly improves upon
the control of word sophistication in the sentence,
with an MAE of 2 words. Finally, LingConv can
control the reading level of a sentence from Kinder-
garten (1) to Professor (14) level with an MAE of
3, which is non-trivial given that non-control base-
lines have an MAE of 6 levels, and LLama has an
MAE of 8 levels.

L Imputation of Missing Values

Missing linguistic attribute values are imputed us-
ing the Multiple Imputation by Chained Equations
(MICE) algorithm (Azur et al., 2011). For each
missing attribute, a regression model is fitted using
the other observed variables, and missing values
are imputed based on this model. This process is
repeated for 1000 iterations for each variable with
missing data, forming a chain of equations that
leads to iterative refinement. We use a Ridge Re-
gression (Golub et al., 1999) linear model as the
estimator with v = 1000 to ensure robust predic-
tions.

The regression models are fitted using a training
set consisting of ground-truth linguistic attribute
vectors from the training data of LINGCONV. Be-
fore the initial iteration of MICE, missing values
are initialized using the mean value for each at-
tribute, allowing prediction of a missing attribute
as a function of all other attributes.

MICE leverages the relationships among vari-
ables to handle missing data. In the context of lin-
guistic attributes, there are fixed relations between
many of the attributes (e.g., any lexical count can-
not be larger than the total number of words, and
the number of clauses cannot be larger than the
number of sentences in the text). By using ridge re-
gression models within the MICE framework, these
relationships are preserved while providing regular-
ized predictions that avoid overfitting. This imputa-
tion mechanism enables users to specify only a few
attributes of interest rather than all 40 attributes.
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L.1 Imputation Experiment Results

We evaluate the performance of the MICE impu-
tation method. We find that it leads to 0.02, 0.05,
0.06, 0.11 mean squared error, for imputing 20%,
40%, 60%, and 80% of the attributes, respectively,
in the linguistic attributes that are imputed.

M Distributions of Augmentation
Attributes

Figures 5-9 show the distributions of the biased
attributes in the strong and weak sets of target lin-
guistic variables.

Figure 5 shows that for the CoLA (Limited)
dataset, effective augmentation is correlated with
an increased percentage of sentences where the
ratio of unique verbs exceeds 0.7. This suggests
that sentences with a higher diversity of verbs con-
tribute to more effective augmentation, likely by
enhancing the semantic richness of the generated
data.

Figure 6 presents results for the CoLA (Full)
dataset with two distinct attribute biases. On the
left, we see that increasing the percentage of sen-
tences with fewer proper nouns is associated with
effective augmentation. This indicates that simpler
sentences with fewer proper nouns may improve
performance. On the right, the data shows that in-
creasing the number of sentences containing more
than one coordinate phrase also leads to effective
augmentation. This suggests that complex sentence
structures with multiple coordinate phrases con-
tribute positively to augmentation effectiveness.

Figure 7 details biases applied to the RTE (Full)
dataset. The left subplot indicates that effective
augmentation is linked to a higher percentage of
sentences with more than three clauses. This sug-
gests that sentences with more complex structures
are beneficial for augmentation. Conversely, the
right subplot shows that decreasing the percent-
age of sentences with a Type-Token Ratio (TTR)
greater than 0.8 is associated with effective aug-
mentation. This implies that sentences with a lower
TTR, reflecting less lexical variety, can also en-
hance augmentation effectiveness.

Figure 8 demonstrates the impact of reducing
the ratio of sophisticated words in the SST-2 (Lim-
ited) dataset. Effective augmentation is associated
with a decrease in sophisticated words, suggest-
ing that simpler vocabulary contributes to better
augmentation outcomes in this dataset.

Figure 9 provides a detailed view of biased at-

tributes for the SST-2 (Full) dataset. The top-left
subplot shows that increasing the number of unique
lexical words leads to effective augmentation. The
top-right subplot reveals that increasing the aver-
age sentence length is also beneficial. Additionally,
the bottom subplot indicates that a higher number
of sentences with more than nine lexical words
contributes to effective augmentation. These re-
sults suggest that a richer vocabulary and longer
sentences improve augmentation effectiveness.
These figures collectively illustrate how manip-
ulating various linguistic attributes influences the
effectiveness of data augmentation, highlighting
specific features that can be optimized to enhance
performance across different datasets.

100 —
Data

9 21.9 Augmentation
; 134.8 B Ineffective
g\ I None
‘g 50 = 133.6 B Effective
E 119.9
11.2 12.0
0 1 T T

7.0 31.7 56.3 81.0
# Words Per Sentence

Figure 4: Attribute distributions for effective vs. inef-
fective augmentation on the RTE (Limited) dataset. Ef-
fective augmentation has a greater percentage of shorter
sentences.
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Figure 5: For CoLA (Limited), effective augmentation
is associated with increased percentage of sentences
with ratio of unique verbs > 0.7.
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(b) Increase the number of sentences with more than 1 corodi-
nate phrase.

Figure 6: For CoLA (Full), we bias two attributes.
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Figure 7: For RTE (Full), we bias two attributes.
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