SCoder: Iterative Self-Distillation for Bootstrapping
Small-Scale Data Synthesizers to Empower Code LLMs

Xinyu Zhang" ", Changzhi Zhou" ", Linmei Hu"', Luhao Zhang',
Xiancai Chen?, Haomin Fu®, Yang Yang®, Mengdi Zhang’®
!'School of Computer Science, Beijing Institute of Technology,

2 School of Computer Science, Peking University > Meituan
{xyzhang@105}@gmail.com, {zhou_changzhi97, hulinmei}@bit.edu.cn

Abstract

Existing code large language models (LLMs)
often rely on large-scale instruction data dis-
tilled from proprietary LLMs for fine-tuning,
which typically incurs high costs. In this paper,
we explore the potential of small-scale open-
source LLMs (e.g., 7B) as synthesizers for high-
quality code instruction data construction. We
first observe that the data synthesis capability of
small-scale LLMs can be enhanced by training
on a few superior data synthesis samples from
proprietary LL.Ms. Building on this, we pro-
pose a novel iterative self-distillation approach
to bootstrap small-scale LLMs, transforming
them into powerful synthesizers that reduce
reliance on proprietary LLMs and minimize
costs. Concretely, in each iteration, to obtain
diverse and high-quality self-distilled data, we
design multi-checkpoint sampling and multi-
aspect scoring strategies for initial data selec-
tion. Furthermore, to identify the most influ-
ential samples, we introduce a gradient-based
influence estimation method for final data fil-
tering. Based on the code instruction datasets
from the small-scale synthesizers, we develop
SCoder, a family of code generation models
fine-tuned from DeepSeek-Coder. SCoder mod-
els achieve state-of-the-art code generation ca-
pabilities, demonstrating the effectiveness of
our method.

1 Introduction

Code generation has long been a central challenge
in computer science and has attracted wide atten-
tion from the research community. Recent ad-
vancements in code large language models (LLMs)
(Chen et al., 2021; Li et al., 2022, 2023; Chowd-
hery et al., 2023; Roziere et al., 2023; Lozhkov
et al., 2024) have led to significant breakthroughs.
These models can generate code that closely aligns

“Equal contribution.
Meituan.
TCorresponding author.

Work done during internship at

I -original
3 -enhanced
[-bootstrapped

[MagicoderS-DS-6.7B
[SCoder-Q14-6.7B

Qwen2.5-Coder-7B Qwen2.5-Coder-14B HE HE+ LCB-Full LCB-Easy

Figure 1: Left: The performance of code generation
models on HumanEval using data provided by different
synthesizers (Qwen2.5-Coder-7B or -14B). Right: The
performance of our SCoder and the baseline. SCoder
uses 60K instruction data generated by a small-scale syn-
thesizer, and the baseline uses 75K instruction data gen-
erated by proprietary LLMs. All code generation mod-
els are fine-tuned from DeepSeek-Coder-6.7B-Base.

with user intent and are increasingly being widely
adopted.

Typically, instruction tuning on base models
(e.g., DeepSeek-Coder-Base) is a crucial step in
developing high-performance code LLMs. There-
fore, extensive research on code LLMs focuses
on constructing high-quality instruction data. A
common approach involves distilling knowledge
from proprietary LLMs. For instance, Code Al-
paca (Chaudhary, 2023) and WizardCoder (Luo
et al., 2024) are fine-tuned with instruction data
distilled from GPT-3.5, using Self-Instruct (Wang
et al., 2023) and Evol-Instruct (Xu et al., 2024),
respectively. Additionally, MagicoderS (Wei et al.,
2024) is fine-tuned on data distilled from both GPT-
3.5 and GPT-4, using OSS-Instruct to generate cod-
ing problems and solutions based on the given code
snippets. While these methods have proven effec-
tive, they all suffer from the cost-intensive issue
caused by the distillation of large-scale instruction
data from the proprietary LLMs like GPT-3.5 and
GPT-4.

In this paper, we explore the potential of rela-
tively small-scale (7B, 8B, and 14B) open-source

20825

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 20825-20841
November 4-9, 2025 ©2025 Association for Computational Linguistics

LLMs as synthesizers for code instruction data con-
struction. Previous works have shown that small
LLMs can assist in pre-training data synthesis for
non-code domains (Yang et al., 2024). However,
instruction data typically takes a different form
from pre-training data and requires higher qual-
ity standards (Wang et al., 2025). To validate the
feasibility of small LLMs in synthesizing code in-
struction data, we conduct a preliminary experi-
ment. First, we use small-scale LLMs as original
synthesizers and further train them on a limited set
of proprietary LLM-distilled samples as enhanced
synthesizers. Then, we fine-tune code generation
models using data provided by them. The results
on the left of Figure 1 show that the instruction data
provided by the enhanced synthesizer outperforms
that of the original, highlighting that a few superior
samples can unleash the data synthesis potential of
small models. However, distilling more proprietary
samples to further improve the synthesis capability
of small synthesizers would again trigger the cost-
intensive issue. Therefore, a crucial question arises:
Can we continuously improve the data synthesis
capability of small-scale synthesizers without re-
lying on proprietary LLMs’ samples?

To address this, we propose a progressive self-
distillation method that iteratively bootstraps the
code instruction data synthesis capability of small-
scale LLMs. Specifically, starting with an en-
hanced synthesizer, we employ a two-step approach
in each iteration to obtain high-quality self-distilled
data synthesis samples for further training. First,
we design multi-checkpoint sampling and multi-
aspect scoring strategies to obtain diverse and re-
liable self-distilled samples. Then, we introduce
a gradient-based influence estimation method to
further select the influential ones by comparing
the gradients induced by self-distilled samples with
those induced by superior samples from proprietary
LLMs. We validate our method on small-scale
LLMs like Qwen2.5-Coder-7B/14B-Ins (Hui et al.,
2024), improving their data synthesis capabilities
as shown in the left of Figure 1, and transforming
them into powerful data synthesizers.

Based on the code instruction datasets pro-
vided by our small-scale synthesizers, we develop
SCoder, a family of code generation models fine-
tuned from DeepSeek-Coder-6.7B-Base (Guo et al.,
2024). Experimental results on HumanEval (+)
(Chen et al., 2021; Liu et al., 2023), MBPP (+)
(Austin et al., 2021), LiveCodeBench (Jain et al.,
2024), and BigCodeBench (Zhuo et al., 2024) show

that SCoder outperforms or matches state-of-the-
art code LL.Ms that use the instruction data from
proprietary LLMs. Overall, our contributions can
be summarized as follows:

* We propose a novel iterative self-distillation
approach that transforms small-scale LLMs
into effective synthesizers of code instruction
data. Using the instruction data generated by
these synthesizers, we train a family of code
generation models (SCoder), which achieve
performance comparable to that of models
relying on proprietary LLM-distilled data.

* To obtain diverse and high-quality self-
distilled data, we design multi-checkpoint
sampling and multi-aspect scoring strategies
for initial data selection. To further identify
the most influential samples, we introduce a
gradient-based influence estimation method
for final data filtering.

* We fine-tune the code generation models
(SCoder) based on the datasets generated by
our small-scale synthesizers. Experimental
results on multiple benchmarks show the ef-
fectiveness of our method.

2 Related Work

2.1 Code Large Language Models

In recent years, large language models have gar-
nered unprecedented attention (Zhang et al., 2024;
Azaria et al., 2024; Chen, 2024; Zhou et al., 2025),
and LLM-driven code generation has achieved re-
markable progress. Prominent closed-source mod-
els such as Codex (Chen et al., 2021), GPT-4 (Ope-
nAl, 2023), PaLM (Chowdhery et al., 2023), and
Gemini (Anil et al., 2023) have shown impressive
performance across various code generation bench-
marks. Meanwhile, open-source models like Code-
Gen (Nijkamp et al., 2023), CodeGeeX (Zheng
et al., 2023), StarCoder (Li et al., 2023), CodeL-
lama (Roziere et al., 2023), DeepSeek-Coder (Guo
et al., 2024), and CodeQwen (Hui et al., 2024) have
also made substantial contributions. These models
not only enhance code generation capabilities but
also promote more efficient and automated soft-
ware development.

Typically, such models are developed through
continual pre-training (Roziere et al., 2023), fol-
lowed by supervised fine-tuning (SFT) (Yu et al.,

20826

2023). While pre-training utilizes large-scale, unan-
notated code corpora, SFT relies on high-quality la-
beled instruction data, whose construction remains
a key challenge (Ding et al., 2024).

2.2 Code Instruction Data Synthesis

Creating diverse and complex code instruction
data is challenging and requires domain exper-
tise. While human-written datasets used in Oc-
toPack (Muennighoft et al., 2024) and PIE (Shy-
pula et al., 2024) are effective, they are labor-
intensive and hard to scale. To address this, many
recent works leverage powerful proprietary LLMs
for automatic instruction generation. For exam-
ple, Code Alpaca (Chaudhary, 2023) adopts Self-
Instruct (Wang et al., 2023), WizardCoder (Luo
et al., 2024) uses Evol-Instruct (Xu et al., 2024),
and Magicoder (Wei et al., 2024) utilizes OSS-
Instruct to create realistic, diverse programming
tasks from open-source code. Similarly, Wave-
Coder (Yu et al., 2023) introduces a generator-
discriminator framework, while OpenCodelnter-
preter (Zheng et al., 2024) leverages user-LLM-
compiler interactions to synthesize multi-turn in-
struction data. Despite their effectiveness, these
approaches often depend on costly proprietary mod-
els (Wu et al., 2024). In this work, we explore using
small-scale open-source LLMs to generate high-
quality code instruction data more cost-effectively,
reducing reliance on expensive proprietary models
while maintaining strong performance.

3 Methodology

3.1 Overview

In this work, we aim to train a set of small-scale
code instruction data synthesis models, named syn-
thesizers, capable of generating high-quality code
instruction data, i.e., the code problem-solution
pair (g, s) given an open-source code snippet ¢
and an instruction synthesis prompt p. To achieve
this, we first construct a clean and noise-free code
snippet pool C = {¢;}, following the data pre-
processing pipeline of StarCoder2 (Lozhkov et al.,
2024). Next, we distill a limited number of in-
struction data synthesis samples, denoted as D,, =
{(p, ', q¥, s¥)}, from proprietary LLMs to obtain
enhanced synthesizers. Finally, we propose an iter-
ative bootstrap approach to continuously train the
synthesizers using self-distilled data, denoted as
Ds = {(p,c},q;,s;)}. The prompt p and more
details of the code snippet pool C are provided in

Synthesizer HumanEval MBPP
Llama3.1-8B-Ins 60.4 64.7
+Enhanced 64.2 69.3
Qwen2.5-Coder-7B-Ins 61.6 70.8
+Enhanced 65.6 72.1
Qwen2.5-Coder-14B-Ins 65.3 73.7
+Enhanced 67.5 75.8

Table 1: The performance of the code generation model
fine-tuned on 40K code instruction data provided by
different synthesizers.

Appendix D and A, respectively.

3.2 Preliminary Study

We conduct a preliminary study to validate whether
small LLMs can acquire a certain level of data
synthesis capability by distilling a limited number
of proprietary LLM samples. To obtain propri-
etary samples with sufficient knowledge coverage,
we adopt a classification-based diversified code
snippet sampling technique. Specifically, we em-
ploy 10 pre-defined task categories and calculate
the similarity between each code snippet and the
task category descriptions with the help of a state-
of-the-art embedding model INSTRUCTOR (Su
et al., 2023). Based on the embedding similar-
ity, each code snippet is assigned to its most rele-
vant task category. We then randomly sample 1K
code snippets from each category to ensure suffi-
cient knowledge diversity. Finally, these selected
code snippets are used to prompt proprietary LLMs
generating code instruction data synthesis samples
D, = {(p, . ¢, s¥)}, where (p, ¢') denotes input
and (¢?, s”) denotes output.

We use Llama3.1-8B-Ins and Qwen2.5-Coder-
7B/14B-Ins as the original synthesizers and train
them on D, to obtain enhanced synthesizers. Based
on code instruction data provided by these synthe-
sizers, we fine-tune DeepSeek-Coder-6.7B-Base as
the code generation model. The results are shown
in Table 1, the enhanced synthesizers exhibit a sig-
nificant improvement in data synthesis capability,
even with only 10K proprietary LLM samples. This
demonstrates the strong potential of small models
for code instruction data synthesis.

3.3 Bootstrapping with Iterative
Self-Distillation

To further boost small LLMs for synthesizing
higher-quality code instruction data without dis-
tilling additional proprietary LLM samples, in this

20827

Multi-CKPT Sampling with Multi-Aspect Scoring

Gradient-based Influence Estimation

D, |+| D | .0} AL e | [e
E Gradient
SFT @ CKPT-1 | |CKPT:2 | |CKPT3 |CKPTM || @ 4} @ Calculaﬁon@ @ @
Y { sampling Y B=0 B=0
Multi-Aspect Scoring Model VW w
Small Synthesizer ulti-Aspect Scoring Mode !
& g Scoring {} A=N(0,0%) A=N(0,0%)
qu1, 811} i@21,821) ig31, 31 b1, Svn Similarity O
Instruction Data : D E E i E E @ @ @ @ Comparison
S SFT 'q12, $12} @i22, 52217 132,832 1Qm2, SM2!
Synthesis b By 1 8k Vo : Cosine Similarity
M . QN SIN 2N, S2N | 3N, S3N! MN, SN
Code Generation Model | | -7 ottt poTTTTmeen mmmmmeees @ @ Filtering
(SCoder) v ——
X {(psc5Q58)} """""""" {(p7c yqd 5 S)}
Code Generation Tasks

Update

Figure 2: Overview of our iterative self-distillation bootstrap method. In each iteration, we sample outputs
from multiple checkpoints and evaluate them with a multi-aspect scorer for diversity and reliability. We then use a
gradient-based influence estimation method to select the most influential samples, which is done by evaluating the
gradient similarity between the self-distilled and proprietary LLM-distilled code instruction data.

section, we propose an effective bootstrap method
based on iterative self-distillation. Specifically,
we start with the mentioned enhanced synthesiz-
ers, considering this as the O-th iteration of the
bootstrap. Then, in each iteration, we first col-
lect diverse and reliable self-distilled data synthesis
samples by multi-checkpoint sampling and multi-
aspect scoring strategies. These samples are gen-
erated by the synthesizers from the previous it-
eration. Next, to further identify the most influ-
ential samples, we introduce a gradient-based in-
fluence estimation method, which quantifies each
sample’s influence by computing its gradient simi-
larity with proprietary LLM samples. Finally, these
high-quality samples are used to train the synthe-
sizer itself, enhancing its ability to generate code
instruction data. The overview of our method is
illustrated in Figure 2, and a detailed theoretical
analysis of the iterative self-distillation is provided
in Appendix E.

Multi-Checkpoint Sampling with Multi-Aspect
Scoring. As our approach iteratively trains on
self-distilled data synthesis samples, ensuring their
quality and diversity is essential. Therefore, we
first develop a multi-checkpoint sampling strategy.
Specifically, given the synthesis prompt p and a
code snippet ¢, we obtain M x NN diverse problem-
solution pairs {(¢;j, si;)} by sampling N times
from M checkpoints of synthesizers, where ¢ €
[1,M] and j € [1, N]. Compared to the strategy
Best-of-N (Stiennon et al., 2022), which selects

candidates from a single checkpoint, our approach
expands the search space and improves both the
reliability and diversity of the selected data.

Next, to rank and select the best candidate pair
corresponding to the code snippet, we introduce a
multi-aspect scoring model, namely scorer. Given
a candidate pair (g;j, 5;5), the scorer evaluates it
across Z aspects, producing a feature vector x;; =
{z7;} , where z7; € [0,9] represents the integer
score in the z-th aspect, such as problem-solution
consistency '. Furthermore, considering that dif-
ferent aspects are independent and integer-based
scores provide only a hard signal that lacks gran-
ularity for distinguishing data quality, we propose
a weighted scoring aggregation method, which as-
signs each aspect a weight w® and computes the
final aggregated real-valued score Score;; as:

Z
Score;; = Z woxy;. (1)
z=1
To determine the optimal weight vector w = {w?},
we conduct K experiments based on the instruction
data generated by synthesizers. For each experi-
ment, we compute the average multi-aspect scores
X of the instruction data and use the data to fine-
tune DeepSeek-Coder-6.7B-Base. The fine-tuned
model is then evaluated on an out-of-distribution
(OOD) test set to obtain the corresponding perfor-
mance score yi. Given the data {(Xg,yr)}, we

The prompt for the multi-aspect scorer are provided in
Appendix D.

20828

estimate w by solving the following ridge regres-
sion problem:

K

w = argmin y_(yx —w-%)° + Al ()
k=1

where A is a regularization term to prevent overfit-
ting, and the learned weights indicate the relative
importance of each scoring aspect in determining
the effectiveness of instruction data.

Gradient-based Influence Estimation While
multi-checkpoint sampling with multi-aspect scor-
ing ensures diversity and reliability, the influence
of each selected self-distilled sample on the fine-
tuning of the base model can vary. Inspired by pre-
vious works (Pruthi et al., 2020; Xia et al., 2024),
we introduce a gradient-based influence estimation
method to further identify the most valuable sam-
ples by estimating the fine-tuning influence of the
code instruction data they contain.

Concretely, based on the influence formulation
(Pruthi et al., 2020), the influence of a self-distilled
code instruction data d = (q, s) on the prediction
of a test instance ¢ in a base model parameterized
by 6 can be estimated by computing the similarity
between their gradients:

Inf(d, t) o Sim(Vi(d, 0), VI(t,0)). (3)

However, code generation tasks are inherently
broad and diverse, and some of them may lack
well-established benchmarks. To address this, we
instead estimate the influence of d by computing
its gradient similarity to the code instruction data
{dP = (¢?,sP)} from proprietary LLM samples
D,. The idea is that proprietary LLMs (e.g., GPT-
40) have undergone extensive optimization through
various strategies, making their distilled instruction
data highly effective in improving model perfor-
mance across diverse tasks.

Specifically, inspired by previous work (Xia
et al., 2024), we first train an LLM-based reference
model on the proprietary instruction data {dP =
(P, sP)} using LoRA (Hu et al., 2022), which al-
lows for low-rank adaptation, significantly reduc-
ing trainable parameters and ensuring the efficiency
for the following gradient computations. We then
compute the gradient of each self-distilled instruc-
tion data d with respect to the LoRA parameters
O1ora> denoted as Vi .r(d, 05rq). To further im-
prove efficiency, following prior work (Park et al.,
2023), we apply a projection matrix initialized with

a Rademacher distribution to reduce gradient di-
mensionality, resulting in Vi, #(d, 01orq). Accord-
ing to the Johnson-Lindenstrauss Lemmas (John-
son et al., 1984), this transformation can preserve
gradient distances while ensuring the usefulness of
lower-dimensional features. Similarly, we compute
the projected gradients for each proprietary instruc-
tion data d”, denoted as Vi, #(dP, O1orq). Finally,
we approximate the influence of d by calculating its
cosine similarity to the average gradient of {d”}:

V(d) = Cosine <@l7~ef(d, Orora);
N “)
Fp Z Vlref (df7 0lora)>)

i=1

where N, is the size of {d”}. Eventually, the data
samples with the highest influence will be selected
and used for training.

4 Experiments

4.1 Benchmarks

We evaluate model performance using the pass@1
metric on several standard benchmarks: Hu-
manEval (Chen et al., 2021), MBPP (Austin et al.,
2021) (along with their EvalPlus (Liu et al., 2023)
versions), LiveCodeBench (V4) (Jain et al., 2024),
and BigCodeBench (Zhuo et al., 2024). Evaluation
strictly follows each benchmark’s official settings
and prompts.

4.2 Baselines

We compare SCoder with several powerful base-
lines, including two proprietary models: GPT-4-
Turbo-20240409 (OpenAl, 2024a) and GPT-ol-
Preview-20240912 (OpenAl, 2024b), as well as
seven open-source models built on DeepSeek-
Coder-6.7B-Base (Guo et al., 2024): DeepSeek-
Coder-6.7B-Instruct, WaveCoder-Ultra-6.7B (Yu
et al., 2023), MagicoderS-DS-6.7B (Wei et al.,
2024), OpenCodelnterpreter-DS-6.7B (Zheng et al.,
2024), AlchemistCoder-DS-6.7B (Song et al.,
2024), InverseCoder-DS-6.7B (Wu et al., 2024),
and WizardCoder-GPT-4-6.7B (Luo et al., 2024).

4.3 Implementation Details

We provide a simplified version of the implemen-
tation details here; a more detailed version can be
found in Appendix C.

20829

Synthesizer Data Size \ HumanEval MBPP LiveCodeBench BigCodeBench
DeepSeek-Coder-6.7B-Base
None 0 | 476 72.07 16.21 41.8
Fine-Tuning DeepSeek-Coder-6.7B-Base on 40K Synthesized Data

Llama3.1-8B-Instruct 0 60.4 64.7 16.5 42.1
+Enhanced 10K 64.2 69.3 17.3 42.8
+1 Iter 20K 65.5 71.1 17.4 43.1
+2 iter 40K 67.4 734 17.8 43.5

Qwen2.5-Coder-7B-Instruct 0 61.6 70.8 17.0 42.7
+Enhanced 10K 65.6 72.1 18.2 43.8
+1 Iter 20K 66.3 72.9 18.4 441
+2 iter 40K 68.9 74.7 18.9 44.7

Qwen2.5-Coder-14B-Instruct 0 65.3 73.7 18.7 43.2
+Enhanced 10K 67.5 75.8 19.4 44.5
+1 Iter 20K 68.4 76.3 19.3 45.1
+2 iter 40K 70.1 76.5 19.7 45.9

Table 2: Performance of code generation models (target models) built on instruction data generated by small
synthesizers on HumanEval, MBPP, LiveCodeBench (Full), and BigCodeBench (Complete-Full). Data size refers
to the amount of data used to train the synthesizer. § denotes results from the benchmark leaderboards.

\ HumanEval MBPP LiveCodeBench BCB (Comp) BCB (Inst)
Models

| Base Plus Base Plus Full Easy Full Hard Full Hard

Proprietary Models
GPT-4-Turbo-20240409 902" 86.6' 857 733 420" 824 582" 3517 482" 3217
GPT-ol-Preview-20240912 96.3" 89.0" 955" 802" 585" 94.17 / 345 23.0°
DeepSeek-Coder-6.7B-Base
DeepSeek-Coder-6.7B-Base | 47.6° 39.6" 72.0° 587" 162" 38.7' 418" 1357 7/ /
Fine-Tuned Models based on DeepSeek-Coder-6.7B-Base

DeepSeek-Coder-6.7B-Instruct | 744" 71.3" 749" 65.6' 19.8" 45.8' 438" 155" 355" 1017
WaveCoder-Ultra-6.7B 7500 69.57 749" 6357 197 468 437" 169" 339" 128’
MagicoderS-DS-6.7B 768" 713" 794" 69.0" 204 479 476" 128" 3627 1357
OpenCodelnterpreter-DS-6.7B | 77.4" 713" 765" 664" 189 46.6 446" 169" 3717 135
AlchemistCoder-DS-6.7B 79.9* 75.6° 77.08 602f 174 447 425 142 335 132
InverseCoder-DS-6.7B 79.9F 76.8% 78.6% 69.0° 203 46.6 457 149 354 95
WizardCoder-GPT-4-6.7B 774 738 754 648 21.0 496 451 155 373 108
SCoder-L-DS-6.7B 782 738 716 654 21.1 517 462 151 379 134
SCoder-Q7-DS-6.7B 787 743 79.1 665 214 522 474 155 386 145
SCoder-Q14-DS-6.7B 80.5 750 81.0 693 222 526 492 162 406 169

Table 3: Performance comparison of different models on multiple code generation benchmarks. Three SCoder
models are fine-tuned using data generated by our small synthesizers, where L, Q7, and Q14 denote three different
synthesizers after two iterations of bootstrap. BCB, Comp, and Inst denote BigCodeBench, Complete, and Instruct.
T denotes results from the InverseCoder work (Wu et al., 2024). The best results are in bold and the second-best

results are underlined.

Small-Scale Data Synthesizer. We train
Llama3.1-8B-Ins, Qwen2.5-Coder-7B-Ins, and
Qwen2.5-Coder-14B-Ins as data synthesizers.
Each model is first trained on 10K GPT-40 data D,
then bootstrapped with 20K and 40K self-distilled
data D,. Training uses a learning rate of 1 x 107,
global batch size 128, and inference temperature
0.2.

SCoder. For fair comparison, we train DeepSeek-
Coder-6.7B-Base on 110K evol-codealpaca-v1 for
2 epochs, then fine-tune it on 60K synthesized data
(from small synthesizers) for 3 epochs to obtain
SCoder. The 110K data is commonly used in base-
lines (Table 5). More target model results are in
Appendix H.

20830

Models HumanEval MBPP LiveCodeBench BigCodeBench
SCoder-Q7-DS-6.7B 78.7 79.1 214 474
w/o multi-checkpoint sampling 74.9 73.8 18.7 443
w/o multi-aspect scoring 72.3 76.7 19.9 45.5
w/o gradient-based influence estimation 75.1 74.4 18.2 43.2
SCoder-Q14-DS-6.7B 80.5 81.0 22.2 49.2
w/o multi-checkpoint sampling 75.6 74.4 20.4 46.3
w/o multi-aspect scoring 74.9 75.8 20.8 45.1
w/o gradient-based influence estimation 76.1 74.9 20.0 44.8

Table 4: Ablation study on HumanEval, MBPP, LiveCodeBench (Full), and BigCodeBench (Complete-Full). The
best results are in bold and the second-best results are underlined.

Model Common Data Specific Data
WizardCoder-GPT-4 0K

WaveCoder-Ultra 20K (GPT-4)

MagicoderS 75K (GPT-3.5)

AlchemistCoder 110K (GPT-4)

InverseCoder
SCoder (ours)

>80K (GPT-3.5)
90K (self-generated)
60K (small model-generated)

Table 5: Comparison of data used by different models.
The source of the data is indicated in parentheses.

4.4 Main Results

As shown in Table 2, our proposed method sig-
nificantly enhances the instruction data synthesis
capabilities of small models with only two itera-
tions of bootstrap, regardless of their model family
or scale. For example, the fine-tuning performance
of the 40K data synthesized by LLlama3.1-8B-Ins
on the base model achieves a 5.0% improvement
on HumanEval and a 5.9% improvement on MBPP
after two iterations of bootstrap. This demonstrates
that our approach, leveraging well-designed sam-
pling and filtering strategies, enables small models
to acquire self-distilled data synthesis samples with
broad diversity, strong reliability, and high influ-
ence. As a result, they progressively evolve into
effective data synthesizers while minimizing de-
pendence on proprietary LLM distillation.
Furthermore, Table 3 shows that SCoder, trained
on data generated by bootstrapped small-scale
data synthesizers, outperforms or matches other
state-of-the-art open-source baselines across mul-
tiple benchmarks. For example, SCoder-Q14-DS-
6.7B surpasses the best open-source baselines by
5.9% and 9.7% on average in the challenging Live-
CodeBench and BigCodeBench, respectively. No-
tably, the open-source baselines typically utilize a
larger amount of proprietary LLM-distilled instruc-
tion data as listed in Table 5, further validating the
effectiveness of our method in constructing strong
small-scale data synthesizers. A more detailed cost

efficiency analysis of our method is provided in
Appendix F.

4.5 Ablation Study

We conduct ablation studies based on SCoder-Q7-
DS-6.7B and SCoder-Q14-DS-6.7B. The results
presented in Table 4 demonstrate the importance of
our extensive sampling and refined filtering strate-
gies.

First, without multi-checkpoint sampling (i.e.,
sampling an equal number of outputs solely from
the last checkpoint of the previous iteration), the
performance of both code generation models on
HumanEval and LiveCodeBench drops by at least
4.8% and 8.1%, respectively. This indicates that a
limited sampling space reduces the likelihood of
obtaining high-quality self-distilled data, thereby
hindering the effectiveness of the bootstrap pro-
cess. Furthermore, when either multi-aspect scor-
ing or gradient-based influence estimation is re-
moved from the data selection process, the perfor-
mance on MBPP and BigCodeBench drops by up
to 7.5% and 8.9%, respectively. This highlights
that both strategies are essential for ensuring the
reliability and influence of self-distilled data, and
removing either significantly impacts the overall
effectiveness.

4.6 Data Scaling

To further evaluate the data synthesis quality of
small data synthesizers, we investigate the data
scaling law using the bootstrapped Qwen2.5-Coder-
14B-Ins. As shown in Figure 3, increasing the
data size leads to significant improvements of the
code generation model fine-tuned on DeepSeek-
Coder-6.7B-Base, surpassing DeepSeek-Coder-
6.7B-Instruct on most benchmarks. This further
validates the effectiveness of our approach in con-
structing high-quality small-scale data synthesiz-

20831

3 60k [80k

MBPP+

----- DeepSeek-Coder-6.7B-Instruct 20k 3 40k

HumanEval HumanEval+ MBPP

7

78
741]
20k 40k 60k 80k

BCB-Instruct
18 .l

20k 40k 60k 80K
BCB-Complete

70
20k 40k 60k 80k
LCB-Easy

0
20k 40k 60k 80k
LCB-Full

10 8 e
20k 40k 60k 80k 20k 40k 60k 80k 20k 40k 60k 80k

20k 40k 60k 80k

Figure 3: Impact of data scaling. The dashed lines
represent the performance of DeepSeek-Coder-6.7B-
Instruct across various benchmarks.

mEm Qwen2.5-Coder-7B-2iter BB with random selection
B with composite score EEE with lowest perplexity selection
B with average score B with highest perplexity selection

3 60K - null
B 40K - 40K

[20K - 20K
[0 40K - 20K

HumanEval

HumanEval+ HumanEval HumanEval+

Figure 4: Comparison of different selection methods
and the number of self-distilled data used in different
bootstrap iterations. The y-axis denotes the performance
of the code generation models fine-tuned on 40K syn-
thesized data.

€r8S.

4.7 Further Discussion

In this section, we provide a more fine-grained
analysis of the effectiveness of our method.

First, we compare the impact of different selec-
tion strategies during the bootstrap process. As
shown on the left of Figure 4, for multi-aspect scor-
ing, replacing the aggregated score with either the
raw composite score from the scorer or the simple
average of scores leads to a decline in the synthe-
sizer’s data synthesis performance. Moreover, sub-
stituting the gradient-based influence estimation
with alternative selection methods, such as random
selection or lowest/highest perplexity selection, re-
sults in an even more substantial performance drop.
These findings highlight the effectiveness of our
selection strategy in identifying reliable and influ-
ential self-distilled samples, thereby ensuring the
success of the bootstrap process.

Second, as the synthesizer’s capability improves
with more bootstrap iterations, we progressively in-
crease the number of self-distilled samples used in
training across two iterations (20K — 40K). Here,
we compare different settings, including removing
multi-round iteration (60K — Null), progressively

—— evol-codealpaca-vl —— our dataset

Code Exi: Difficulty

Correctyfe Refevance

Standardiza ondistency

smpgkite Score

Figure 5: Quality comparison between the evol-
codealpaca-v1 dataset and our synthesized dataset.

decreasing the sample size (40K — 20K), increas-
ing the sample size in the first iteration (40K —
40K), and decreasing the sample size in the second
iteration (20K — 20K). As shown on the right of
Figure 4, in all cases, performance declines, indicat-
ing that a well-balanced and progressively increas-
ing data schedule plays a crucial role in maximizing
the effectiveness of the bootstrap process.

4.8 Data Quality Analysis

To further validate the quality of data generated by
the synthesizers, we sampled 100 code instruction
data from evol-codealpaca-v1 and the bootstrapped
Qwen2.5-Coder-14B-Ins, respectively, and used
GPT-40-20240513 and GPT-4-turbo-20240409 to
score the data across 10 aspects based on the
prompt provided in Appendix D. The average re-
sults, shown in Figure 5, demonstrate that our syn-
thesized data achieves higher scores across all as-
pects, further confirming the effectiveness of our
method in building high-quality small-scale code
instruction synthesizers.

5 Conclusion

In this paper, we propose an iterative self-
distillation bootstrap method to fully unlock the
data synthesis potential of small-scale LLMs, trans-
forming them into powerful code instruction data
synthesizers while reducing reliance on propri-
etary LLMs and minimizing costs. We design
multi-checkpoint sampling and multi-aspect scor-
ing strategies to ensure the diversity and reliability
of self-distilled samples, followed by a gradient-
based influence estimation method to select influ-
ential ones for training. We validate our method
on Llama3.1-8B-Ins and Qwen2.5-Coder-7B/14B-
Ins, demonstrating their effectiveness as data syn-
thesizers. Based on the data generated by these
small-scale synthesizers, we introduce SCoder, a

20832

family of code generation models that achieves
strong performance on HumanEval (+), MBPP (+),
LiveCodeBench, and BigCodeBench, showcasing
the potential of small models in code instruction
data synthesis.

6 Limitations

Despite the demonstrated effectiveness of our it-
erative self-distillation bootstrap method in fully
leveraging the code instruction data synthesis ca-
pability of small-scale LLMs, certain limitations
persist. For example, the current synthesis frame-
work does not incorporate alternative data genera-
tion paradigms, such as Self-Instruct (Wang et al.,
2023) and Evol-Instruct (Xu et al., 2024), which
have shown promise in previous work. Investigat-
ing the integration of such approaches constitutes
an important direction for future work.

Furthermore, this study limits its empirical val-
idation to the domain of code generation. While
the underlying methodology may apply to other
domains, several challenges arise. For exam-
ple, although synthesizers can efficiently generate
large-scale code instruction data by leveraging vast
amounts of open-source code snippets, achieving
efficient data synthesis for other tasks may require
additional consideration and tailored design. There-
fore, further exploration is needed to fully assess
feasibility in other domains, and we plan to present
related findings in future work.

Acknowledgements

This work was supported by the National Sci-
ence Foundation of China (No. 62276029), CCF-
Zhipu.Al Large Model Fund (No. 202217), Beijing
Institute of Technology Research Fund Program
for Young Scholars (No.6120220261), and CIPSC-
SMP-Zhipu Large Model Cross-Disciplinary Fund.

References

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-
lican, and et al. 2023. Gemini: A family of highly
capable multimodal models. CoRR, abs/2312.11805.

Jacob Austin, Augustus Odena, Maxwell 1. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Amos Azaria, Rina Azoulay, and Shulamit Reches.
2024. Chatgpt is a remarkable tool—for experts.
Data Intelligence, 6(1):240-296.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil28@114/codealpaca.

Huajun Chen. 2024. Large knowledge model: Perspec-
tives and challenges. Data Intelligence, 6(3):587—
620.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, and et al. 2021.
Evaluating large language models trained on code.
CoRR, abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, and et al.
2023. Palm: Scaling language modeling with path-
ways. J. Mach. Learn. Res., 24:240:1-240:113.

Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze
Luo, Xinze Li, Guizhen Chen, Wenhan Xia, Junjie
Hu, Anh Tuan Luu, and Shafiq Joty. 2024. Data
augmentation using llms: Data perspectives, learning
paradigms and challenges. In Findings of the As-
sociation for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-
16, 2024, pages 1679-1705. Association for Compu-
tational Linguistics.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, and et al. 2024. Qwen2.5-
coder technical report. CoRR, abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. CoRR,
abs/2403.07974.

William B Johnson, Joram Lindenstrauss, et al. 1984.
Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1.

20833

https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1162/dint_a_00235
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://doi.org/10.3724/2096-7004.di.2024.0001
https://doi.org/10.3724/2096-7004.di.2024.0001
https://arxiv.org/abs/2107.03374
https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.97
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.97
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.97
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian
Liu, and et al. 2023. Starcoder: may the source be
with you! Trans. Mach. Learn. Res., 2023.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, and et al. 2022. Competition-level code gener-
ation with alphacode. CoRR, abs/2203.07814.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
and et al. 2024. Starcoder 2 and the stack v2: The
next generation. CoRR, abs/2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Niklas Muennighoff, Qian Liu, Armel Randy Ze-
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro von Werra,
and Shayne Longpre. 2024. Octopack: Instruction
tuning code large language models. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

OpenAl. 2024a. Gpt-4. https://openai.com/index/
gpt-4-research/.

OpenAl. 2024b. Learning to reason with
Ilms. https://openai.com/index/

learning-to-reason-with-11lms/.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Madry. 2023. TRAK:
attributing model behavior at scale. In International
Conference on Machine Learning, ICML 2023, 23-29

July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
27074-27113. PMLR.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. In Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, and et al. 2023. Code
Ilama: Open foundation models for code. CoRR,
abs/2308.12950.

Alexander Shypula, Aman Madaan, Yimeng Zeng,
Uri Alon, Jacob R. Gardner, Yiming Yang, Mi-
lad Hashemi, Graham Neubig, Parthasarathy Ran-
ganathan, Osbert Bastani, and Amir Yazdanbakhsh.
2024. Learning performance-improving code edits.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Zifan Song, Yudong Wang, Wenwei Zhang, Kuikun
Liu, Chengqi Lyu, Demin Song, Qipeng Guo, Hang
Yan, Dahua Lin, Kai Chen, and Cairong Zhao. 2024.
Alchemistcoder: Harmonizing and eliciting code ca-
pability by hindsight tuning on multi-source data.
Preprint, arXiv:2405.19265.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. 2022. Learn-
ing to summarize from human feedback. Preprint,
arXiv:2009.01325.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
embedder, any task: Instruction-finetuned text em-
beddings. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 1102—-1121. Association for
Computational Linguistics.

Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao
Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang,
Ying Xin, Yujiu Yang, et al. 2025. Epicoder: Encom-
passing diversity and complexity in code generation.
arXiv preprint arXiv:2501.04694.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484—13508. Association for Computational
Linguistics.

20834

https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://doi.org/10.48550/ARXIV.2303.08774
https://openai.com/index/gpt-4-research/
https://openai.com/index/gpt-4-research/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://proceedings.mlr.press/v202/park23c.html
https://proceedings.mlr.press/v202/park23c.html
https://proceedings.neurips.cc/paper/2020/hash/e6385d39ec9394f2f3a354d9d2b88eec-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e6385d39ec9394f2f3a354d9d2b88eec-Abstract.html
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://openreview.net/forum?id=ix7rLVHXyY
https://arxiv.org/abs/2405.19265
https://arxiv.org/abs/2405.19265
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and ~ Changzhi Zhou, Xinyu Zhang, Dandan Song, Xiancai

Lingming Zhang. 2024. Magicoder: Empowering
code generation with oss-instruct. In Forty-first In-
ternational Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Chen, Wanli Gu, Huipeng Ma, Yuhang Tian, Mengdi
Zhang, and Linmei Hu. 2025. Refinecoder: Iterative
improving of large language models via adaptive cri-

tique refinement for code generation. arXiv preprint
arXiv:2502.09183.

Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang, Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,

Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao
Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo,
Yewen Pu, Dawei Yin, Xing Hu, and Yunji Chen.
2024. Inversecoder: Unleashing the power of
instruction-tuned code llms with inverse-instruct.
CoRR, abs/2407.05700.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. LESS: se-
lecting influential data for targeted instruction tuning.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. Wizardlm: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, et al. 2024. Qwen2.
5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint
arXiv:2409.12122.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2023. Wavecoder: Widespread and versatile
enhanced instruction tuning with refined data genera-
tion. CoRR, abs/2312.14187.

Xilin Zhang, Zhixin Mao, Ziwen Chen, and Shen Gao.
2024. Effective tool augmented multi-agent frame-
work for data analysis. Data Intelligence, 6(4):923—
945.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD
2023, Long Beach, CA, USA, August 6-10, 2023,
pages 5673-5684. ACM.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang Yue.
2024. Opencodeinterpreter: Integrating code gener-
ation with execution and refinement. In Findings of
the Association for Computational Linguistics, ACL
2024, Bangkok, Thailand and virtual meeting, Au-
gust 11-16, 2024, pages 12834—12859. Association
for Computational Linguistics.

20835

Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Si-
mon Brunner, Chen Gong, and et al. 2024. Big-
codebench: Benchmarking code generation with di-
verse function calls and complex instructions. CoRR,
abs/2406.15877.

https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=XUeoOBid3x
https://doi.org/10.48550/ARXIV.2407.05700
https://doi.org/10.48550/ARXIV.2407.05700
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.3724/2096-7004.di.2024.0013
https://doi.org/10.3724/2096-7004.di.2024.0013
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.762
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.762
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877

A Code Snippet Gathering

To ensure the validity of our experimental results,
we first construct a clean and noise-free code snip-
pet pool that serves as the foundation for code
instruction data synthesis. Specifically, inspired
by the data preprocessing pipeline of StarCoder2
(Lozhkov et al., 2024), we follow the steps below
to construct the code snippet pool C from the Stack
V1, a collection of source code in over 300 pro-
gramming languages.

¢ Code Snippet Extraction: We first extract all
Python functions that include docstrings from
the Stack V1 dataset. To ensure a high level
of diversity while minimizing redundancy, we
perform near-deduplication using MinHash,
Locality-Sensitive Hashing (LSH), and Jac-
card similarity with a threshold of 0.5.

Invalid Function Filtering: We remove any
functions that do not contain a return state-
ment or contain syntax errors. Additionally,
we supplement the remaining functions with
necessary dependency packages and remove
functions that import problematic packages
(e.g., os or sys), which could lead to issues in
execution.

Quality Evaluation: We further evaluate the
remaining functions using the StarCoder2-
15B as a classifier to filter out examples with
bad documentation or low-quality code.

Data Decontamination: Finally, we employ
an n-gram filtering technique to remove any
functions that contain solutions or prompts
from the benchmarks used in this work.

B Task Category

Following the Magicoder (Wei et al., 2024), we
use the following ten task categories for classify-
ing code snippets: "Algorithmic and Data Struc-
ture Problems", "Mathematical and Computational
Problems", "Database and SQL Problems", "Sys-
tem Design and Architecture Problems", "Security
and Cryptography Problems", "Performance Op-
timization Problems", "Web Problems", "Domain
Specific Problems", "User Interface and Applica-
tion Design Problems", and "Data Science and Ma-
chine Learning Problems".

C Implementation Details

Multi-Aspect Scorer. We sample 2.5K code in-
struction data from Llama3.1-8B-Ins, Qwen2.5-
Coder-7B-Ins, Qwen2.5-Coder-14B-Ins, and the
evol-codealpaca-v1 dataset (Luo et al., 2024), re-
spectively. Using the prompt in Appendix D, we
distill scoring results from GPT-40-20240806 from
Z = 10 aspects and train Llama3.1-8B-Base for
3 epochs with a learning rate of 1 x 107> and a
global batch size of 64, obtaining the multi-aspect
scorer. During inference, we set the temperature
to 0. To derive the weight vector w, we conduct
K = 20 experiments and evaluate the results on
LiveCodeBench (202410-202501).

Reference Model. We train Llama3.1-8B-Base
as the reference model on 10K GPT-40-20240806
data (D,) for 3 epochs with a learning rate of 2 x
105 and a global batch size of 32. For LoRA
configurations, we set lora_r = 128, lora_alpha =
512, and apply LoRA to the target modules: q_proj,
k_proj, v_proj, and o_proj. We further investigate
the impact of different reference models on data
selection in Appendix G.

Small-Scale Data synthesizer. We train
Llama3.1-8B-Ins, Qwen2.5-Coder-7B-Ins, and
Qwen2.5-Coder-14B-Ins as data synthesizers.
Each model is first trained on 10K GPT-4o-
20240806 data (D,) before undergoing two
iterations of bootstrapping. In each iteration,
we sample N = 3 data synthesis samples from
M = 5 different checkpoints, respectively. The
first iteration trains on 20K self-distilled samples,
while the second iteration uses 40K. Each training
runs for 3 epochs with a learning rate of 1 x 107°
and a batch size of 128. During inference, we set
the temperature to 0.2.

SCoder. To maintain consistency with the base-
lines, we use DeepSeek-Coder-6.7B-Base as the
base model and distill 60K code instruction sam-
ples from each of the three bootstrapped small-
scale synthesizers. For a fair comparison, we
also incorporate the evol-codealpaca-v1 dataset,
an open-source Evol-Instruct implementation with
approximately 110K data, widely used in baselines
such as WizardCoder-GPT-4, WaveCoder-Ultra,
MagicoderS, AlchemistCoder, and InverseCoder.
The training data size comparison across different
models is presented in Table 5.

To obtain SCoder, we first fine-tune DeepSeek-
Coder-6.7B-Base on the 110K evol-codealpaca-v1

20836

data for 2 epochs with an initial learning rate of
5 x 107> and a global batch size of 512. We
then further fine-tune it on the 60K small model-
generated data for 3 epochs with an initial learning
rate of 1 x 10~ and a batch size of 64. Both phases
of training utilize a linear learning rate scheduler
with a 0.05 warmup ratio and the AdamW opti-
mizer. Training is conducted on 16 A100-80G
GPUs.

D Prompts

The data synthesis prompt is inspired by Wei et al.
(2024) and is shown in Figure 6. The multi-aspect
scoring prompt is inspired by Hui et al. (2024) and
is shown in Figure 7.

E Theoretical Analysis of Iterative
Self-Distillation

In this section, we provide a rigorous theoretical
analysis of the iterative self-distillation framework
from two perspectives: convergence behavior and
its interpretation in terms of Nash equilibrium and
the exploration-exploitation trade-off.

E.1 Problem Setup

Let (M, ||-||) be a complete metric space represent-
ing the space of model parameters. Let My € M
be a fixed initial model. Define the data generation
process as a mapping G : M — P, where P de-
notes the space of data distributions. The training
operator is defined as 7 : M x P — M, mapping
a model and a dataset to an updated model.

At each self-distillation iteration ¢, the process
proceeds as follows:

D; = G(M;), &)
My =T (Mo, D;). (6)

where D; is the data generated by model M;, and
each new model M, is trained from scratch using
the fixed initialization M and dataset D;.

E.2 Convergence Analysis

We analyze the convergence behavior of the model
sequence { M;} by examining the composed oper-
ator (M) = T (Mo, G(M)), which encapsulates
the entire update process at each iteration of self-
distillation. This operator provides a clear descrip-
tion of how the model M evolves after one iteration
of self-distillation, starting from the fixed model
Mpy.

Assumptions:
tions:

We impose the following assump-

* (A1) Training Lipschitz Continuity: There ex-
ists L7 > 0 such that for all D, D' € P, the
training process satisfies:

|7 (Mo, D) = T (Mo, D) || < Lr||D — D'||.
(7N

* (A2) Data Generation Lipschitz Continuity:
There exists Lg > 0 such that for all

M, M' € M, the data generation process sat-
isfies:

IG(M) = GM)|| < Lal|M = M. (8)

* (A3) Contraction Condition: The product of
the Lipschitz constants satisfies:

LrLg < 1.)

Under assumptions (A1) and (A2), we can estab-
lish the following lemma: The composed operator
®(M) = T(My,G(M)) is Lipschitz continuous
with a constant of L1 L¢. Specifically, for any two
models M and M’, we have the following inequal-

ity:

|@(M) — @(M')]|
=[|7(Mo,G(M)) — T (Mo, G(M"))]|
<L7||G(M) - G(M')|
<LrLg|M — M|

(10)

Now, we impose the contraction condition (A3),
which ensures that ® is a contraction mapping.
Since L7 Lg < 1, we can apply Banach’s Fixed-
Point Theorem to guarantee the existence of a
unique fixed point M* € M such that M* =
®(M*). Given this, we can analyze the conver-
gence of the model sequence { M; }, where M; 1 =
®(M;). For any i > 0, the distance between M; 1
and M* is given by:

M = M = [2(M) — 20|
< LrLg||M; — M*||.

By recursively applying this inequality, we obtain:

1M1 = M*|| < (LrLe)'|[Mo — M*[|. (12)

Since L Lg < 1, the factor (L7 Lg)* decays ex-
ponentially, and thus the sequence {M; } converges
to M* at a linear rate.

20837

Therefore, under the assumptions of Lipschitz
continuity of both the training and data generation
processes, and the contraction condition, the model
sequence converges to a unique fixed point M*,
with linear convergence determined by the product
of the Lipschitz constants L1 L.

E.3 Nash Equilibrium Interpretation

Beyond convergence, the fixed point M * of the self-
distillation process can also be interpreted through
a game-theoretic lens as a Nash equilibrium.

Consider each iteration of self-distillation as a
two-player interaction:

* Teacher: A model M € M that generates
synthetic data via G(M).

e Student: A fixed model M, that is re-
trained on the teacher’s generated data via

T (Mo, G(M)).

The process evolves according to the update rule
in Equation 5 and 6 where the teacher at iteration ¢
is M;, and the student is always initialized as M.
The student updates its parameters based on the
synthetic data provided by the teacher, effectively
defining a best-response map from the teacher’s
strategy to a new model.

At convergence, the fixed point M * satisfies:

M* =T (Mo, G(M")), (13)
which indicates that when the teacher generates
data using M*, retraining the student M, on that
data simply reproduces the same model M *. Thus,
neither the teacher nor the student can unilaterally
change their behavior to improve the outcome, sat-
isfying the condition for a Nash equilibrium.

This perspective emphasizes that iterative self-
distillation converges to a stable teacher—student
pair, where the synthetic data and the resulting
trained model are mutually consistent.

E.4 Exploration-Exploitation Trade-off

The iterative nature of self-distillation inherently
embeds an exploration—exploitation mechanism.

¢ Exploration: In each iteration ¢, the teacher
model M; generates a new dataset D; =
G(M;), which may differ significantly from
previous iterations. This promotes exploration
of new data distributions, especially in the
early stages when M is far from convergence.

Data Synthesizer @~ HE LCB-V4-Full
Llama3.1-8B 60.4 16.5

+2 iter 67.4 17.8

+3 iter 67.2 17.9
Qwen2.5-Coder-7B 61.6 17.0

+2 iter 68.9 18.9

+3 iter 69.1 18.8

Table 6: Finetuning performance of DeepSeek-Coder-
6.7B-Base on 40K data synthesized by different synthe-
sizers.

* Exploitation: At every iteration, the student
model is always retrained from the fixed ini-
tialization M. This exploits prior knowledge
encoded in My, focusing learning on the cur-
rent data D;.

As training progresses, the diversity of generated
data typically decreases, and the model converges
to a stable state M*. In this sense, the process
naturally transitions from high-entropy exploration
to low-entropy exploitation. This dynamic provides
a theoretical rationale for the empirical success of
iterative self-distillation.

E.5 Discussion

Although the convergence and equilibrium are guar-
anteed under idealized assumptions (e.g., Lipschitz
continuity, contraction property), in practical sce-
narios with non-convex models and imperfect op-
timization, strict convergence is not guaranteed.
However, our empirical results suggest that the
self-distillation process stabilizes in practice and
leads to consistently improved model performance,
as shown in Table 2.

Furthermore, we extended the self-distillation
process to three iterations. In the third iteration,
we used 40K self-distilled samples for training. As
shown in Table 6, the performance of the synthe-
sizers becomes stable when the number of self-
distillation iterations reaches two or more, indi-
cating that additional iterations yield diminishing
returns while maintaining strong generation qual-

1ty.
F Cost Efficiency of Our Method

In this section, we detail the cost advantages of
our proposed approach, which relies on training a
lightweight data synthesizer rather than directly dis-
tilling a proprietary large language model (LLM).

20838

Our method significantly reduces reliance on ex-
pensive LLM queries, improving both efficiency
and accessibility.

Specifically, we use only 10K proprietary LLM
samples during the initial bootstrapping phase.
This is a substantial reduction compared to prior
works, which typically require 150K-200K propri-
etary samples, as shown in Table 5. By contrast,
once the bootstrapped synthesizer is trained, we
can generate high-quality instruction data at scale
without further calls to proprietary models.

The main computational cost of our method lies
in fully fine-tuning the data synthesizer. In com-
parison, model inference (for sampling and multi-
aspect scoring) and gradient similarity calculations
are relatively lightweight. For instance, construct-
ing the gradient library for each iteration takes ap-
proximately 3 hours on a single NVIDIA A100
80GB GPU.

Taking Qwen2.5-Coder-7B-Instruct as an exam-
ple, we fine-tuned on 110K self-distilled samples
throughout the entire bootstrap process, which took
around 6.5 hours on 8x A100 80GB GPUs. Based
on Google Cloud’s official pricing?, the total cost is
estimated to be only $263.58. In contrast, using pro-
prietary model APIs such as the GPT-40-20240806
API for instruction synthesis incurs significantly
higher costs; given average input/output lengths
of 253 and 752 tokens respectively (as statistically
measured from 10K distilled samples from the pro-
prietary model), the same budget would only allow
for generating approximately 30K samples. This
highlights the efficiency of our approach: once
trained, the synthesizer enables large-scale data
generation at a fraction of the cost.

G Influence of Different Reference
Models

In our main experiments, we primarily used
Llama3.1-8B-Base as the reference model to com-
pute gradient-based influence scores for guiding
data selection. To assess whether the choice of ref-
erence model significantly impacted the outcome,
we conducted additional experiments using differ-
ent reference models while keeping the data synthe-
sizer (Qwen?2.5-Coder-7B-Instruct) and the target
model (DeepSeek-Coder-6.7B-Base) unchanged.
We trained the data synthesizers for 2 iterations
and used them to generate 40K code instruction
data for training the target model. As shown in

https://cloud.google.com/products/calculator

Reference Model HE LCB-V4-Full
Llama3.1-8B 68.9 18.9
Llama2-7B 68.4 18.5
Llama2-13B 69.2 18.8

Table 7: Performance of the target model (DeepSeek-
Coder-6.7B-Base) using different reference models for
influence estimation. The data synthesizer is fixed to
Qwen2.5-Coder-7B-Instruct.

Models HE LCB-V4 Full
Llama3.1-8B-Ins 65.9 18.0
SCoder-Q14-Llama-8B 70.1 19.1
Qwen2.5-Coder-7B-Ins 88.4" 24.7
SCoder-Q14-Qwen-7B 85.8 294

Table 8: Training results of different target models.
denotes results from the official technical report.

Table 7, the performance variations across different
reference models are relatively small. This indi-
cates that our method is stable and largely insensi-
tive to the specific scale or version of the reference
model, further validating its robustness and practi-
cality.

H Data validity on more target models

To further demonstrate the generalization capability
of the data synthesized by the small synthesizers,
we additionally selected Llama3.1-8B-Base and
Qwen2.5-Coder-7B-Base as target models. Fol-
lowing the settings described in Appendix C, we
set the bootstrapped Qwen2.5-Coder-14B-Ins as
the synthesizer and trained SCoder-Q14-Llama-8B
and SCoder-Q14-Qwen-7B respectively. As shown
in Table 8, SCoder achieves significant improve-
ments over the corresponding instruction models
across the majority of evaluation metrics. Consid-
ering that Qwen2.5-Coder-7B-Ins was trained on
millions of instruction data while we only used 60K
data generated by the small synthesizer, this still
demonstrates the effectiveness of our approach.

20839

https://cloud.google.com/products/calculator

Data Synthesis Prompt

Please gain inspiration from the following random code snippet to create a high-quality programming problem. Present
your output in two distinct sections: [Problem Description] and [Solution].
Code snippet for inspiration:

<<code>>

Guidelines for each section:

1. [Problem Description]: This should be **completely self-contained**, providing all the contextual information one
needs to understand and solve the problem. Assume common programming knowledge, but ensure that any specific
context, variables, or code snippets pertinent to this problem are explicitly included.

2. [Solution]: Provide a comprehensive and correct solution that accurately addresses the [Problem Description] you
have provided. First, analyze the problem, then provide the specific code, and finally, explain the code.

Figure 6: Data Synthesis Prompt.

20840

Multi-Aspect Scoring Prompt

You are responsible for training a large language model with coding abilities. Given a code instruction and a
corresponding response, you need to evaluate the quality of this code data pair. Score the data based on its value for
training a large code language model, using a scale from 0 to 9, where 0 represents the worst and 9 represents the best.

Constraints:
1. The evaluation score must be judged among these ten scores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], and decimal scores cannot
appear.
2. The output should have [Reason] part. You need to Generate the evaluation reason first and then generate the score.
3. You should concentrate on the quality only. The following irrelevant matters **should not** influence the quality
evaluation.

3.1 whether the data is domain-specific or not should not be considered, given that the code language model need to
deal with inputs with diverse domains.

3.2 whether the data contains non-English content or not should not be considered, given the code language model
may need to deal with multilingual inputs.

3.3 whether the data has timeliness statements or not should not be considered, given the code language model may
need to deal with issues with timeliness.
4. For each data pair, evaluate the following scoring criteria individually and provide an overall composite score:

4.1 Consistency: Whether Q&A are consistent and correct for fine-tuning.

4.2 Relevance: Whether Q&A are related to the computer field.

4.3 Difficulty: Whether Q&A are sufficiently challenging.

4.4 Code Exist: Whether the code is provided in question or answer.

4.5 Code Correctness: Evaluate whether the provided code is free from syntax errors and logical flaws.

4.6 Code Standardization: Consider factors like proper variable naming, code indentation, and adherence to best
practices.

4.7 Code Clarity: Assess how clear and understandable the code is. Evaluate if it uses meaningful variable names,
proper comments, and follows a consistent coding style.

4.8 Code Comments: Evaluate the presence of comments and their usefulness in explaining the code’s functionality.

4.9 Easy to Learn: Determine its educational value for a student whose goal is to learn basic coding concepts.

4.10 Composite Score: Considering the above factors, an overall quality score is assigned to the data pair, weighted by
the importance of each criterion.

The instruction and response you need to evaluate is as following:
[Instruction]

<<instruction>>

[Instruction End]

[Response]

<<response>>

[Response End]

Your response should be in the following format:
[Reason]
{reason}
[Score]
{
"Consistency": {score},
"Relevance" : {score},
"Difficulty": {score},
"Code Exist" : {score},
"Code Correctness™": {score},
"Code Standardization” : {score},
"Code Clarity": {score},
"Code Comments" : {score},
"Easy to Learn": {score},
"Composite Score” : {score}
}
\ [End])

Figure 7: Multi-Aspect Scoring Prompt.

20841

