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Abstract

We observed that Contrastive Language-Image
Pretraining (CLIP) models struggle with real-
world downstream tasks such as road traffic
anomaly detection, due to their inability to ef-
fectively capture spatial and action relation-
ships between objects within images. To ad-
dress this, we propose a dependency parsing
based method to compile and curate a dataset
with 1M samples of images using language su-
pervision provided by the common image cap-
tion dataset, in which each image is paired with
subject-relationship-object descriptions empha-
sizing spatial and action interactions, and train
a Spatial and Action relationship aware CLIP
(SA-CLIP) model. We evaluated the proposed
model on the Visual Spatial Reasoning (VSR)
dataset and further verified its effectiveness
on the Detection-of-Traffic-Anomaly (DoTA)
dataset. Experiment results show that the pro-
posed SA-CLIP demonstrates strong abilities
in understanding spatial relationships while
achieving good zero-shot performance on the
traffic anomaly detection task.

1 Introduction

Vision-language models have demonstrated strong
potential in real-world tasks and in producing ex-
plainable results (Lv and Sun, 2024; Zanella et al.,
2024; Gu et al., 2024), among which the CLIP
(Radford et al., 2021) based models gain particu-
lar attention (Pan et al., 2022; Wang et al., 2023;
Fan et al., 2024). CLIP is pretrained to align im-
age and text representations by minimizing their
distance, and shows strong generalization ability
for real-world image-text matching tasks. Such
ability makes CLIP particularly attractive for tasks
requiring a high degree of interpretability, as it
allows the model to explain its decisions in human-
understandable terms by linking specific visual ele-
ments with descriptive language, while being com-
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Figure 1: Comparison of image-text matching scores be-
tween SA-CLIP and CLIP in the traffic anomaly scene.
SA-CLIP focuses on the objects and relationships be-
tween the objects both in image and text, and achieves
better anomaly detection ability than the vanilla CLIP.

putationally effective, relying only on similarity
computation at inference time.

However, despite its strengths, the CLIP model
shows limitations in complex scenarios. We ob-
served that CLIP model is unable to distinguish
between the normal and abnormal scenes through
textual descriptions, as shown in the right part of
Fig. 1. We hypothesize and confirm through exper-
iments that the CLIP model is unable to accurately
capture and reason about the spatial and action
relationships between objects both in images and
those described in texts, which are often critical
in such real-world scenarios. For example, the rel-
ative positions of vehicles, pedestrians, and road
signs could determine whether a situation is nor-
mal or potentially dangerous. Without a deep un-
derstanding of these spatial relationships and the
action interaction between the objects, the model
may misclassify events, leading to false positives or
missed detections. To address this challenge, in this
paper we propose to enhance the CLIP model’s abil-
ity for spatial and action relationship understand-
ing in both image scenes and textual descriptions.
We first curate a dataset that focuses on the main
objects and their spatial and action relationships
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in the image scenes, using the language descrip-
tion provided by the caption of the images, based
on the existing large-scale image-caption datasets.
We exploit the linguistic patterns and develop a
rule-based method to extract subject-relationship-
object triplets from the captions, and train a relation
classification model to filter out the low-quality
triplets. Leveraging the compiled dataset, we in-
troduce Spatial-Action CLIP (SA-CLIP), which
explicitly models the spatial and action relation-
ships between objects in the images by learning to
map the subject-relationship-object triplet in texts
to the objects and their positions in images. Exper-
iment results on the VSR dataset (Liu et al., 2023)
demonstrate the effectiveness of the model in mod-
elling spatial relationships. We further verify the
model’s ability to address real-world tasks by eval-
uating on the DoTA dataset (Yao et al., 2022) for
the road traffic anomaly detection task.

2 Methodology

To improve CLIP’s ability to understand spatial
and action relationships among objects in scenes,
we focus on the Subject-Verb-Object (SVO) struc-
ture in both image descriptions and scene graphs.
The SVO structure is a fundamental linguistic pat-
tern that describes interactions (verbs) between sub-
jects and objects, and we extend the verbal refer-
ences to include prepositional phrases (PPs) that
indicate spatial relationships. We train CLIP to
map the SVO structures from language to visual
representations. Due to the scarcity of datasets
with diverse and detailed spatial and action anno-
tations, we mine such information from abundant
image-caption datasets and pretrain the proposed
SA-CLIP on the curated data.

2.1 Dataset Curation

The approach follows a two-step process. First, we
apply a rule-based parser to extract SVO triplets
from a seed subset of image-caption data, sam-
pled from cleaner sources such as MSCOCO (Lin
et al., 2014) to reduce noise. The parser extracts
subjects, objects, and associated verbal or preposi-
tional phrases to form initial triplets. In the second
step, we filter noisy triplets. The wrongly extracted
triplets usually exhibit significant semantic incon-
sistencies between subjects and objects and their
relations, which can be easily identified by LLMs.
Therefore, we leverage LLMs to annotate the seed
data and train a lightweight relation classifier on
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Figure 2: Dataset curation procedure.

these annotations to identify and retain high-quality
triplets. The overall process is illustrated in Fig. 2.

Following the process, we compiled a dataset
containing around 970,000 samples, filtered from
MSCOCO (Lin et al., 2014), SBUCaption (Or-
donez et al., 2011), CC3M (Sharma et al., 2018),
CC12M (Changpinyo et al., 2021) and Visual
Genome (VG) (Krishna et al., 2017).

2.2 Model Architecture

The proposed model employs a dual image text
encoder architecture that incorporates both tex-
tual and visual inputs, which is illustrated in Fig.3.
Specifically, a pretrained vision model is employed
to encode image inputs and extract visual features,
while a text encoder processes textual inputs. For
the model to be aware of objects and their rela-
tionships in the scene, the vision model also takes
object regions as inputs, which are extracted based
on the triplet in the textual description, while the
text encoder processes the SVO features. The SVO
structure in the textual inputs is then mapped to the
object interactions in the image through contrastive
learning. We elaborate on each component below.

2.2.1 Textual Features
The textual input to the model consists of a sen-
tence describing the scene and an extracted SVO
triplet. To generate textual representations that
emphasize the objects and their relationships, the
SVO structure, composed of the subject s, relation
v and object o, is embedded together with the in-
put sentence. Using the positional information of
the tokens corresponding to the subject idxs, rela-
tionship idxv, and object idxo within the sentence,
the model outputs individual representations for
each part of the triplet, which are then aggregated
using mean pooling followed by a linear projec-
tion to produce a unified representation of the SVO
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Figure 3: The overall architecture of the proposed method. Part 1 shows positive sample construction process
using SVO textual similarity; part 2 shows inter-sample contrastive loss between positive samples; part 3 shows
negative sample construction for triplet loss. Altogether, part A shows inter-sample training process, and part B
shows intra-sample training.

relationship within the scene, denoted by rsvo, as
shown in following equations and the upper part of
part 2 in Fig.3.

rsent = fu(sent) (1)

rs, rv, ro = rsent[idxs, idxv, idxo] (2)

r̂svo = MeanPooling(rs, rv, ro) (3)

rsvo = Wr̂svo + b (4)

Where fu denotes the text model and sent refers to
the sentence description. The textual representation
is the concatenated representation of the sentence
features and the SVO features, as shown in Eq.(5)
and the upper right of part B in Fig.3.

u = Concat(Pool(rsent), rsvo) (5)

2.2.2 Visual Features
For each image input, the Regions of Interest (ROI)
corresponding to the subject and object in the im-
age are first extracted, based on the object and sub-
ject in the SVO structure of the textual description.
Each ROI is then encoded by the vision model fv to
obtain an ROI feature. Similar to (Tan and Bansal,
2019), positional information is incorporated into
the ROI features by combining the embeddings of
their box position, as described in Eq.(6), Eq.(7)
and lower part of part 2 in Fig.3.

r̂roi = fv(ROI) + Embed(PositionROI) (6)

rroi = Wr̂roi + b (7)

The model’s overall image representation is the
concatenated representation of the image features
and the ROI features, described in Eq.(8) and the
lower part of part B in Fig.3.

v = Concat(fv(image), rroi) (8)

2.3 Training Objectives
2.3.1 Inter-sample Contrastive Learning
We employ inter-sample contrastive learning to im-
prove the model’s representation of SVO structures
in both textual and visual spaces. The inter-sample
contrastive learning aims to pull the embedding of
similar SVO structures in different samples close
in the representation space, improving the model’s
ability to recognize similar object relationships in
various scenarios. The inter-sample contrastive loss
is shown in Eq.(9) and described in part 2 of Fig.3.

Lu = −
N∑

i=1

N∑

j=1

log
exp(sim(ui, uj)/τ)∑2N−1

k=1 exp(sim(ui, uk)/τ)

(9)
Where u is the textual features described in Eq.(5).
The inter-sample loss for the visual features is cal-
culated similarly.

2.3.2 Intra-sample Contrastive Learning
To maintain cross-modal alignment during inter-
sample contrastive learning, we adopt an intra-
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sample contrastive loss. Instead of using an in-
batch contrastive loss with the sample’s caption as
the positive and other captions in batch as negatives,
we incorporate a triplet loss to allow the model to
better distinguish between different relationships
of the same objects in the scene. The triplet loss is
shown in Eq.(10) and indicated in part B of Fig.3.

Ltriplet = max
(
0, ∥v − u∥22 − ∥v − u′∥22 + α

)
(10)

where v is the visual features of the sample, u is
the textual feature of the sample’s caption, u′ is
the textual feature of the sample’s negative feature.
The overall loss for a sample is a linear addition of
Lu, Lv and Ltriplet.

2.3.3 Positive and Negative Sample
Construction

In inter-sample learning, positive pairs are image
samples retrieved based on the textual similarity of
their SVO triplets; negative samples are other in-
batch samples. For the triplet loss in intra-sample
learning, the image feature is used as the anchor,
the positive sample is its corresponding text, while
the negative is a textual description with similar
objects and scenes but an opposite relationship. To
obtain negative samples that satisfy this constraint,
simply retrieving from the dataset is often insuffi-
cient. Therefore, given the textual description of
the anchor image and its SVO triplet, we use LLM
to generate an opposing description that retains the
same subject and object but conveys an inverse re-
lationship. The opposite description together with
its triplet are then used as the negative sample.

3 Experiments

3.1 Datasets
CLEVR Dataset (Johnson et al., 2017): To test
our hypothesis that CLIP struggles with spatial rea-
soning in both text and image, we use a controlled
dataset inspired by CLEVR. We generate scenes
and textual descriptions containing two objects of
controlled visual features and consistent shapes
(cube and sphere), placed in one of eight spatial
configurations: front, behind, left, right, front-left,
front-right, behind-left, and behind-right. We input
the image-text pairs into the model and visualize
the resulting embeddings using t-SNE (Van der
Maaten and Hinton, 2008). Sample images are
shown in Fig.4b.
VSR Dataset (Liu et al., 2023): To further examine
the proposed model’s spatial understanding ability

Model Params Accuracy

Finetuned

VisualBERT (Li et al., 2019) 111 M 51.0
ViLT (Kim et al., 2021) 111 M 63.0
LXMERT (Tan and Bansal, 2019) 208 M 61.2

Full zero-shot

CLIP-ViT-H-14 (w/ prompting) 1 B 54.5
SA-CLIP 151 M 57.8

Table 1: Evaluation results on the VSR zero-shot split.

quantitatively, we use the Visual Spatial Reasoning
(VSR) dataset, which includes 6,940 images and
66 distinct spatial relations. The task is to classify
whether a caption correctly describes the spatial
arrangement in the image. We evaluate the model
on the zero-shot test set (1,222 samples) using
accuracy as the metric.
DoTA (Yao et al., 2022): For real-world evalua-
tion, we test the model’s anomaly detection ability
on road traffic videos from the DoTA dataset, fo-
cusing on non-ego (non-self-induced) anomalies.
From the test set, 597 relevant samples are se-
lected and grouped into three anomaly interaction
types: vehicle-vehicle (VV), vehicle-person (VP),
and vehicle-obstacle (VO). ROC-AUC is used as
the evaluation metric.

3.2 Evaluation Results

Spatial Understanding Ability In CLEVR
scenes, where the visual features of the objects are
controlled, the only distinguishing factor is their
spatial relationship. Therefore, the degree to which
a model forms distinct clusters in its representa-
tions reflects its ability to capture spatial differ-
ences. As shown in Fig.4, CLIP fails to distinguish
between these relationships. In contrast, SA-CLIP,
pretrained on the curated dataset, effectively cap-
tures spatial distinctions, producing clear clusters
in both visual and textual embeddings. This is fur-
ther supported by results on the VSR test set in
Table 1, where SA-CLIP surpasses CLIP-ViT-H-14
in zero-shot performance without careful prompt-
ing and with significantly fewer parameters, and
performs comparably to fully finetuned baselines.
The contributions of each model component are
evaluated through an ablation study, as shown in
Table 3 in Appendix B.

Traffic Anomaly Detection Results The evalua-
tion results on the DoTA testset are shown in Table
2. The proposed model achieves superior zero-shot
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Figure 4: The visualization of spatial relationships in
the generated CLEVR scenes.

Methods VV VP VO

Finetuned

AnoPred (Liu et al., 2018) 64.9 64.9 64.2
AnoPred +Mask (Liu et al., 2018) 66.0 64.0 58.8
FOL-STD (Yao et al., 2019) 70.8 69.7 63.8
FOL-Ensemble (Yao et al., 2022) 73.2 71.2 65.2
TTHF (Liang et al., 2024) 71.3 64.3 69.9
SA-CLIP 71.6 72.1 58.0

Zero-shot

CLIP-ViT-B-32 (Radford et al., 2021) 49.7 49.8 50.0
SA-CLIP 56.8 58.2 52.1

Table 2: AUC on the DoTA testset. Best performance is
marked in bold; second-best is underlined.

anomaly detection ability over the vanilla CLIP
model and remains competitive with SOTAs. No-
tably, it performs well in detecting VP anomalies
but worse in VO cases. Further analysis reveals that
this is due to the reliance on the object detector, as
the model’s performance is closely related to the
quality of region-of-interest.

4 Conclusion

In this work, we address CLIP’s limitations in spa-
tial and action understanding by introducing SA-
CLIP, pretrained on a curated dataset focused on
these relationships in both images and text. SA-

CLIP outperforms vanilla CLIP in spatial action
understanding and also proves effective in the real-
world task of road traffic anomaly detection.

Limitations

This work has three main limitations. First, due to
the contrastive training objective, the model lacks
generative capabilities and thus relies on predefined
textual knowledge in downstream tasks. While this
limits flexibility, it also enables efficient inference.
Second, it remains unclear whether the model truly
learns to understand the semantic relationships be-
tween regions of interest in the images and the
corresponding textual SVO triplets, or if it simply
relies on mapping representations of seen instances
for inference. We plan to conduct a qualitative
study on the curated data to enable a more thorough
understanding of the model’s behavior. Finally, the
model heavily depends on an off-the-shelf object
detector to identify subjects and objects, making
its performance sensitive to detection accuracy.
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A Training Details

Dataset Curation We used spaCy1 to get the de-
pendency tree from the image captions. To extract
spatial and action relationships, we composed rules
focusing on the prepositional and verbal phrases.
The rules start by checking the POS tag of the root
node and its child nodes to determine the subject for
the sentence, and recursively looking for POS pat-
terns that satisfy the desired phrases from the root
node. We selected captions from the MSCOCO
dataset as seed data to obtain seed triplets, which
contain less noise compared to web-collected data.
The seeds were annotated by GPT-4o2 to obtain bi-
nary labels for the parsing correctness, and a binary
classifier was trained on the annotated data using
bert-base-uncased model which was then used to
filter high-quality extractions.

Training Settings We initialize the weights of
SA-CLIP text and vision models using CLIP-ViT-
B-32. During training, we adopt the locked tuning
strategy and freeze the vision model. We use a
learning rate of 5e-4 with AdamW optimizer and
set batch size to 512, which corresponds to 1,024

1https://spacy.io/
2https://openai.com/index/hello-gpt-4o/
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image-text pairs in each step, and train the model
for 30,000 steps on the curated dataset using one
NVIDIA A100 GPU with 80GB memory. The
pretrained SA-CLIP was then used in the following
downstream tasks and evaluations.

B Ablation Details

We evaluate the contribution of model compo-
nents to relationship understanding using the VSR
dataset and examine the impact of pretraining on
the curated dataset for anomaly detection. The
results are shown in Table 3. SVO indicates inter-
sample training using textual SVO triplets; ROI
indicates inter-sample training using visual ROI
features; Triplet loss indicates intra-sample train-
ing using both textual and visual features.

Pretrain SVO ROI Triplet Loss Accuracy

w/o ✗ ✓ ✓ 53.5
w/o ✓ ✗ ✓ 54.5
w/o ✗ ✗ ✓ 53.1
w/o ✓ ✓ ✗ 51.1
w/o ✓ ✓ ✓ 54.7

w/ zero-shot ✓ ✓ ✓ 57.8
w/ + finetune ✓ ✓ ✓ 57.9

Table 3: Ablation results on VSR dataset. w/o denotes
without pretraining on the curated relationship dataset;
finetune denotes training on the target dataset.

Table 3 shows that incorporating inter-sample
contrastive learning improves the model’s spatial
relationship understanding by improving the accu-
racy score on the VSR dataset compared to only
using triplet loss. However, without the triplet loss,
the model could not match texts with images, lead-
ing to a drastic drop of accuracy.

C Traffic Anomaly Detection Evaluation
Details

We use a text-driven method to detect anomalies
based on the SA-CLIP model. Specifically, we first
summarize the domain knowledge into a compre-
hensive hierarchy of traffic anomaly descriptions,
under the assistance of domain experts.

Then, we compute the similarity between the tex-
tual features from the anomaly description and the
visual features of the frame to be evaluated using
the model to decide if a frame contains anomaly.
Specifically, given the structured description D of
traffic anomaly, the anomaly scenes Da and normal
scenes Db are represented by the subcategories in

the hierarchical knowledge, and the binary clas-
sification problem for the anomaly detection task
is decomposed into matching the visual features
of a frame to the textual features of the structure
node describing the abnormal and normal scenes.
The final anomaly score for a frame fn is calcu-
lated through the additive decomposition over all
the descriptions as follows:

score(fn) =
1

|D(a)|
∑

d∈D(a)

(sim(ud, ẑn)) (11)

Where d is a description from abnormal scene de-
scriptions, and u is the textual representation of
the description. By inspecting the similarity score
between the frame and each description, descrip-
tions that best match the scene can be identified,
thereby providing insight into the model’s decision
for anomaly.
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