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Abstract
Table question answering is a popular task that
assesses a model’s ability to understand and in-
teract with structured data. However, the given
table often does not contain sufficient informa-
tion to answer the question, necessitating the
integration of external knowledge. Existing
methods either convert both the table and ex-
ternal knowledge into text, which neglects the
structured nature of the table; or they embed
queries for external sources in the interaction
with the table, which complicates the process.
In this paper, we propose a simple yet effec-
tive method to integrate external information in
a given table. Our method first constructs an
augmenting table containing the missing infor-
mation and then generates a SQL query over the
two tables to answer the question. Experiments
show that our method outperforms strong base-
lines on three table QA benchmarks. Our code
is publicly available at https://github.com/
UCSB-NLP-Chang/Augment_tableQA.

1 Introduction

Tables are ubiquitous types of information sources
that have attracted significant attention in the NLP
community. Researchers have developed models to
perform various tabular tasks, including table ques-
tion answering (QA) (Pasupat and Liang, 2015;
Chen et al., 2020c; Nan et al., 2022; Cheng et al.,
2022; Wu et al., 2025), table fact verification (Chen
et al., 2020b; Aly et al., 2021), table-to-text gener-
ation (Parikh et al., 2020; Chen et al., 2020a; Nan
et al., 2021), etc. A critical challenge in these tasks
is that tables often lack sufficient information for
the task at hand, which necessitates the integration
of additional knowledge. For example, in Figure 1,
to answer the question ‘How many chords have a
root not based on a sharp or flat note?’, a model
needs to have the knowledge of whether each root
is based on a sharp or flat note, which is not pro-
vided in the table and can only be obtained from
external sources.

Existing methods for integrating information
from tables and external sources can be mainly
categorized into two groups. The first method, ex-
emplified by Program-of-Thought (Chen et al.,
2023), linearizes the table into text and combines
it with external knowledge in textual format (Xie
et al., 2022; Chen, 2023). However, the linearized
table no longer has the structured format, making
it difficult to retrieve required values from the table
and perform comparisons and calculations.

An alternative, Binder (Cheng et al., 2023),
combines the symbolic language execution with
large language models (LLMs). It interacts with the
table through symbolic language like SQL, which
maintains the structured format. Part of the SQL
query is replaced with an LLM query that extracts
knowledge from the LLM for further SQL execu-
tion. For instance, in Figure 1 (b), the method
queries LLMs for whether each root is sharp or
flat and uses the results as a filtering criterion in a
SQL statement. However, it requires the model to
learn to embed LLM queries in the standard SQL
language, which differs substantially from the SQL
statements the model has been trained on. As a
result, it is more likely to generate syntactically
wrong statements that lead to execution errors.

In this paper, we propose a simple yet effective
method for combining external knowledge with a
given table. As shown in Figure 1 (c), our method
starts by analyzing the additional information re-
quired for answering the question. It then queries
a knowledge source for the information and orga-
nizes the results in a tabular format. This newly
created table augments the original table with addi-
tional information, and a SQL query is generated
to obtain the answer from the two tables. Such
an augment-then-generate pipeline eliminates the
need to embed LLM queries in SQL statements
while preserving the structured format of the table.

We evaluate our method on three table QA
datasets that require different types of external
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Figure 1: Comparison between Program-of-Thought, Binder, and our method.

knowledge (Chen et al., 2021; Zhu et al., 2021; Pa-
supat and Liang, 2015). Our method outperforms
or matches strong baselines on all datasets. Par-
ticularly, it demonstrates significant improvements
over Program-of-Thought in questions with large
tables or require complex tabular operations, and
compared to Binder, it exhibits fewer execution
errors and achieves better performance.

2 Related work

Table QA task combines structured data reasoning
with text understanding. Traditional methods parse
questions into executable commands to retrieve and
process data from the table to obtain answers (Be-
rant et al., 2013; Yin and Neubig, 2017; Zhong
et al., 2017; Shaw et al., 2020; Yu et al., 2018).
However, these methods require question-related
information to present the table in a rigorous for-
mat, which is limited when applied to web tables
that often do not have a clean schema. Recent
works pre-train neural models on large-scale tab-
ular data, and directly encode tables and generate
answers in an end-to-end fashion (Liu et al., 2022;
Xie et al., 2022; Herzig et al., 2020; Yin et al., 2020;
Zhao et al., 2022; Deng et al., 2020). To reduce the
training cost, some works leverage LLMs to read
and reason over tables (Chen, 2023; Pourreza and
Rafiei, 2023; Sui et al., 2024).

Although end-to-end methods excel on table QA
benchmarks, their predictions lack interpretability
and are not robust to input perturbations (Yang
et al., 2022). For this reason, recent works com-
bine LLMs with symbolic language execution. Par-
ticularly, Cheng et al. (2023) incorporates func-
tion calls to LLMs in SQL statements. Ye et al.
(2023) decomposes the question and table into sub-
problems solvable by SQL queries. Chen et al.

(2023) generates the reasoning process as Python
programs. A recent work (Wang et al., 2024) dy-
namically updates the table in the reasoning pro-
cess. They employ LLMs to iteratively generate
operations such as selecting a subset of rows or
adding a new column, and the final resulting table
is fed to LLMs to generate the answer. However,
their chain of operations is prone to error propa-
gation, while our method retains the original table
content and augments it with required information.

3 Methodology

3.1 Problem Formulation

Given a natural language question Q, a table T ,
and a knowledge source S, the task is to generate a
correct answer for the question. Crucially, T might
not contain all the necessary information to answer
the question, which necessitates the use of S to
obtain additional information. In this paper, we
consider S to be either a relevant text document or
an LLM that we can query.

3.2 Overall Framework

Our method contains three steps, as illustrated in
Figure 1 (c). The detailed instructions and exam-
ples for each step are listed in Appendix A.

Step 1: Analyze question. An LLM is instructed
to analyze the given question and table to determine
what additional information is needed to answer
the question. We instruct the LLM to first list out
all the necessary information for answering Q. For
each piece of information, it then determines if
the information is present in T or not. The output
of this step is a list of queries that can be later
used to obtain additional information from S, or
empty if no additional information is needed. For
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example, in Figure 1 (c), the model outputs ‘Is the
root based on a sharp or flat note?’. Additionally,
for information that needs to be obtained based on
the table, the LLM will also specify which columns
are needed, e.g., it specifies that the query needs to
be answered for each row in the ‘Root’ column.

Step 2: Construct augmenting table. Using out-
put queries from step 1, the LLM then obtains cor-
responding information from the source S. Specifi-
cally, when S is a text document, this step is similar
to the reading comprehension task where the LLM
needs to extract answers to the queries from the
document. When S is an LLM, this step resembles
a QA task where the LLM needs to directly answer
the query. Finally, the obtained information is orga-
nized into a separate table that can complement the
existing table T . Figure 1 (c) shows an example
where a new table of two columns is constructed.
It is worth mentioning that this step is flexible and
can be easily extended to other types of sources S.

Step 3: Generate SQL query. With the original
and newly constructed tables, the LLM then gener-
ates a SQL query that can be executed to obtain the
answer to the question. Importantly, the two tables
contain sufficient information for answering Q, and
the LLM can generate a standard SQL query, which
is easier and more similar to its pre-training data.

4 Experiments

We evaluate our method on table QA benchmarks,
focusing on two types of questions that might re-
quire external knowledge from different sources.
• Open-domain knowledge where external infor-

mation comes from an open domain. We use the
embedded knowledge in LLMs as the source.

• Closed-domain knowledge where all informa-
tion is within a given table and a text document
containing all related external knowledge.

We will discuss the common experiment settings
in Section 4.1 and individual experiments for each
type in Sections 4.2 and 4.3 respectively.

4.1 Experiments Setup

Implementation details. We prompt an LLM
with detailed instructions and in-context examples
for all three steps in our method. To feed the ta-
ble to the LLM for question analysis (Step 1) and
generating SQL queries (Step 3), we linearize the
table by concatenating columns with special tokens
(e.g., ‘|’) following previous works (Chen et al.,
2023). We use GPT-3.5-turbo-1106 as the back-

bone LLM and greedy decoding (i.e., temperature
is 0) for our method and all baselines. For a fair
comparison, we use the same number of in-context
examples as baselines (details in Appendix A).

Baselines. We compare with five LLM-based
baselines. ❶ End-to-End that directly outputs the
answer given the table, question, and optionally the
text document. ❷ Table-CoT (Chen, 2023) that
uses the chain-of-thought prompting (Wei et al.,
2022) to additionally output the reasoning chain.
❸ Dater (Ye et al., 2023), ❹ Binder (Cheng et al.,
2023), and ❺ Program-of-Thought (PoT) (Chen
et al., 2023) that combine LLMs with symbolic
language execution (details in Section 2). Particu-
larly, since Binder does not generate the reasoning
chain, we include an improved variant with chain-
of-thought prompting, denoted as Binder+CoT.

Metrics. We follow Cheng et al. (2023) to use
execution accuracy (EA) as the metric and use the
same evaluation code across all methods.

4.2 Open-Domain Knowledge
Datasets. We evaluate on WIKITQ dataset (Pasu-
pat and Liang, 2015), which requires complex table
reasoning for the question. According to Shi et al.
(2020), around 20% of WIKITQ questions are not
answerable by SQL queries, which are likely to re-
quire additional knowledge not present in the table.
We test all methods on the full test set, containing
4,344 samples.

Results. Table 1 presents the EA. There are two
observations from the table. First, methods that
involve step-by-step reasoning are generally better
than those do not, highlighting the importance of
decomposition. Second, our method achieves the
best performance, showing its effectiveness. To fur-
ther evaluate scalability across table sizes, Figure 2
plots the performance breakdown by the number of
tokens in the table. As can be observed, our method
and Binder+CoT are the only methods that main-
tain performance on large tables, whereas methods
that rely on LLMs to extract information from lin-
earized tables such as Table-CoT and PoT suffer
significant performance degradation on large tables.
This illustrates the advantage of SQL queries when
interacting with the table.

Comparison with Binder+CoT. To further ver-
ify whether our augment-then-generate pipeline
leads to easier and more accurate SQL genera-
tion over the best-performing baseline Binder+CoT
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Test EA

End-to-End 50.78
Table-CoT (Chen, 2023) 52.42

PoT (Chen et al., 2023) 53.02
Dater (Ye et al., 2023) 46.89
Binder (Cheng et al., 2023) 35.45
Binder+CoT 52.09
Ours 55.69

Table 1: Execution accuracy on WIKITQ test set. Meth-
ods in the bottom panel involve program execution.

0 500 1000 1500 2000 2500 3000
# Table Tokens

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Ex
ec

ut
io

n 
Ac

cu
ra

cy

Method
End-to-end
TableCoT
PoT
Dater
Binder
Binder+CoT
Ours

Figure 2: Performance grouped by table length.

(hereafter Binder), we compare the two methods
on the subset of questions not solvable by pure
SQL identified by Shi et al. (2020), which rely
more on the integration of external knowledge. Fig-
ure 3 shows the EA and percentage of execution
errors, where our method demonstrates a more
pronounced improvement. To better pinpoint the
cause of performance difference, we add a post-
processing step for Binder, where we extract the
LLM queries from the SQL statement generated
by Binder, query LLMs for desired information
and add it as a new column in the original table,
and re-generate a standard SQL (without LLM
queries) based on the augmented table. This variant
(dubbed Binder-separate) improves the EA and
reduces execution errors over Binder, which vali-
dates our hypothesis that combining LLM queries
with SQL complicates the generation, leading to
more syntax errors in generated programs. Notably,
our method still incurs fewer execution errors than
Binder-separate, which is likely due to the fact
that our method generates more augmentations for
the table, thus reducing the complexity of required
SQL (see Appendix C.1 for details and examples).
Finally, to evaluate our method’s generalizability
to different LLMs, we also compare our method
with Binder when GPT-4omini is used as the base
LLM. Results show that our method achieves a
higher accuracy than Binder (38.24 vs 27.36), sug-
gesting its broad applicability.
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Figure 3: Comparison between our method and Binder.

Single Cell Multiple Cells
45

50

55

60

65

70

Ex
ec

ut
io

n 
Ac

cu
ra

cy

69.61

56.44

65.75

61.66

TATQA

Program-of-Thought
Ours

Single Cell Multiple Cells

46

48

50

52

54

56

58

60

Ex
ec

ut
io

n 
Ac

cu
ra

cy

57.94

49.02

53.27

56.86

FinQA

Program-of-Thought
Ours

Figure 4: Performance decomposition by the number of
table cells needed to answer the question.

In Appendix B, we also compare our method
with Chain-of-Table (Wang et al., 2024). Re-
sults show that our method achieves 1.85 higher EA
when using GPT3.5-0613 as the backbone LLM,
demonstrating its effectiveness despite being sim-
pler and not requiring sequential operations. Please
refer to Appendix B for details.

4.3 Closed-Domain Knowledge
Datasets. We evaluate on TATQA (Zhu et al.,
2021) and FinQA (Chen et al., 2021). Questions in
these datasets involve a table and a financial report,
and the answer often requires arithmetic operations
in addition to table understanding ability. We filter
the datasets to only include questions that require
both table and report to answer (details in Table 5).

Results. Table 2 presents the results. Binder and
Dater are not included because the original paper
did not evaluate on these datasets and extension to
this setting requires substantial modification. There
are two observations. First, our method and PoT sig-
nificantly outperform the other two baselines that
do not involve program executions, which shows
the benefits of leveraging programs when questions
require arithmetic calculations. Second, although
the input tables are much smaller, which is bene-
ficial for PoT, our method is on par with PoT on
FINQA and outperforms it by 2 EA on TATQA. A
further performance breakdown by the number of
table cells required to answer a question in Figure
4 shows that our method is more effective on ques-

20772



TATQA FINQA

End-to-End 35.50 34.18
Table-CoT (Chen, 2023) 34.91 39.87
PoT(Chen et al., 2023) 61.14 54.43
Ours 63.12 53.80

Table 2: Execution accuracy on TATQA and FINQA.

tions that require information from multiple cells,
indicating that our method is more likely to general-
ize to complex questions. Furthermore, it is easier
to locate and correct errors made by our method
as it only requires inspection of the generated SQL
queries, whereas PoT requires checking the whole
table contents (see examples in Appendix C.2).

5 Conclusion

We propose a simple method that augments a table
by creating a new table that contains information
from external sources. The LLM then generates a
SQL query to answer the question. Experiments on
three table QA benchmarks show that our method
outperforms or matches strong baselines.

Limitation

There are several limitations in this work that need
to be further improved. First, our framework re-
lies on the LLM’s ability to generate correct SQL
statements. If the LLM has limited SQL generation
ability, such as Llama2 in Appendix B, the perfor-
mance of our method will be affected. In addition,
we only evaluate our method on integrating exter-
nal knowledge from two different sources. The
generalizability of our method to other knowledge
sources remains to be assessed.

Potential Risks and Use of Data

In this paper, we propose a method for the table
QA task that combines LLMs with SQL queries.
Each step of our method is interpretable, which
allows users to easily verify the correctness of each
step. Thus the potential risks of our method can
be considerably reduced. However, it is also im-
portant to note that our method relies on LLMs to
obtain additional information. Particularly, when
the LLM is used as the external source, it might
encounter the hallucination issue, where the LLM
generates wrong information for the question. It
is thus crucial to not fully trust the output from
the LLM and compare it with reliable information
sources to check the correctness of augmented in-
formation.

The datasets used in this paper are downloaded
from the official websites. All datasets are under
CC-BY-4.0 license and are consistent with their in-
tended use. Table 5 lists the statistics of employed
datasets.
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A Implementation Details

For all methods on all three datasets, we use the
greedy decoding for generation, i.e., temperature
equals 0. Table 3 lists other generation parame-
ters of our method. Table 5 shows the statistics of
datasets used in this paper.

A.1 Open-domain Knowledge

For the open-domain knowledge setting on WIK-
ITQ, since our method generates queries that will
be asked for every single row in one or more
columns, the constructed augmenting table will al-
ways have the same number of rows as the original
table. For simplicity, we directly join the two ta-
bles based on the row index before feeding them to
LLMs to generate the SQL statement in step 3. In
other words, the newly constructed table is joined
on the original table as additional columns, and
the SQL statement will be generated based on the
joined table. Figures 11 and 12 show the detailed
instruction used for this step and a demonstration
of the in-context example. For step 2, we use the
same instruction and in-context examples as Cheng
et al. (2023) to query LLMs for required informa-
tion. An example is shown in Figure 13. For step 3,
we provide LLMs with in-context examples along
with a one-sentence instruction, as illustrated in
Figure 14. We use the evaluation code in Cheng
et al. (2023) to calculate EA for all methods.

A.2 Closed-domain Knowledge

For the closed-domain setting on TATQA and
FINQA, we feed both the text document and the
table to the LLM to provide enough context. To
save the inference cost, we merge steps 1 and 2
together such that the model analyzes the required
additional information and then extracts them from
the document in a single run. We instruct the model
to extract information in a JSON format that can
be easily organized into a table. Figures 15 and
16 show the detailed instruction used and a demon-
stration of the in-context example on TATQA, and
Figures 18 and 19 show the same for FINQA. For
step 3, we provide the original table and the newly
constructed table if available to LLMs. Figures
17 and 20 show a demonstration of the in-context
examples on TATQA and FINQA respectively.

To select questions for evaluation, we only use
those that require both the table and the document.
Specifically, for TATQA, we select questions that
have answer_from=table-text, and for FINQA,
we select those whose ground truth evidence con-
tains at least one table row and one document sen-
tence. We follow Chen et al. (2023) to calculate
the EA.
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WIKITQ TATQA FINQA

top_p 1.0 1.0 1.0
max_output_tokens 512 512 512
num_shots 8 8 4

Table 3: Parameters for our greedy generation (sections
4.2 and 4.3).

GPT3.5 Llama2

Augmentation SQL Augmentation SQL
generation generation generation generation

temperature 0.6 0.4 0.8 0.4
top_p 1.0 1.0 1.0 1.0
sampling_n 3 2 or 4 4 3 or 4
max_output_tokens 512 512 256 256
num_shots 8 8 8 8

Table 4: Generation parameters for our ensemble model
on WIKITQ (Appendix B). Augmentation generation
and SQL generation correspond to the step 1 and 3 in
our method.

B Comparison with Chain-of-Table

We additionally compare with Chain-of-Table
(Wang et al., 2024) on WIKITQ. Since their
implementation is not available at the submis-
sion time of this paper, we use the same dataset
and backbone LLMs as theirs and directly com-
pare with the numbers reported in their paper.
Specifically, we use GPT-3.5-turbo-16k-0613
and Llama2-13b-chat (Touvron et al., 2023) as
backbone LLMs and evaluate on the full test set of
WIKITQ. Since their sequential operations require
multiple queries for LLMs, we consider the major-
ity vote of execution results from N SQL queries
as our final prediction. To generate these SQL
queries, we sample m different outputs for step
1 (i.e., m different augmentations), and for each
augmentation, we sample k SQL queries. The total
number of generated samples for each question is
m+ αm+mk, where α is the percentage of step
1 outputs that actually need additional information.
Table 4 lists the parameters for generation.

The results are shown in Table 6. As can be ob-
served, our method outperforms Chain-of-Table
and Binder when using GPT3.5 as the backbone
LLM, despite using fewer LLM queries. When us-
ing Llama2, Chain-of-Table achieves better per-
formance than Binder and our method. We hypoth-
esize that the performance difference is due to the
limited SQL generation ability of Llama2. An im-
portant difference is that Chain-of-Table feeds
the final table to LLMs and directly asks LLMs
to generate the answer, whereas Binder and our
method prompt LLMs to generate SQL queries and

execute to get the answer, which is affected more
when the LLM has limited SQL generation ability.
In fact, the generated SQL of our method contains
32.9% of execution errors when using Llama2 as
the LLM, compared to that of 8.7% when using
GPT3.5. However, our method still outperforms
Binder on Llama2, demonstrating the benefits of
our augment-then-generate pipeline.

C Additional Examples

C.1 Comparison with Binder

In this section, we elaborate on the com-
parison between our method, Binder, and
Binder-separate. In Figure 3, it can be observed
that our method achieves better performance and
exhibits fewer execution errors than Binder. More-
over, Binder-separate, which separates the SQL
generation and LLM queries in Binder, reduces
its execution errors, validating our hypothesis that
integrating LLM queries in SQL generation could
lead to more syntax errors. Figures 5 and 6 show
two examples where Binder encounters execu-
tion errors when trying to generate a SQL state-
ment with LLM queries, whereas our method and
Binder-separate correctly generate SQL state-
ments to answer the question.

Our method also incurs fewer execution errors
than Binder-separate, which can be ascribed
to the fact that our method generates more aug-
mentations for the table, which significantly re-
duces the complexity of required SQL statements.
Figure 7 illustrates one such example, where
Binder-separate gets errors because the required
information is missing from the table, whereas our
method correctly answers the question based on
the augmented table. In fact, our method generates
augmentations for 72.3% of the questions, while
Binder only includes LLM queries for 6.1% of the
questions, showing that our method also benefits
the augmentation of additional information.

C.2 Comparison with PoT

We now provide more examples for the comparison
between our method and PoT. Figure 4 shows the
performance breakdown by the number of cells re-
quired to answer the question. Based on the figure,
our method is more effective on questions that re-
quire multiple table cells for the answer. Figures 8
and 9 show two such examples, where our method
selects the correct values from the table to perform
calculations, but PoT retrieves wrong values from
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WIKITQ WIKITQ SQL unsolvable TATQA FINQA

# questions 4344 625 507 158
Split Test Dev Dev Test
# table rows 25.4 28.0 9.7 6.8
# table tokens 571.7 685.7 119.1 86.2
Knowledge source S LLMs LLMs Document Document

Table 5: Summary of the datasets used in this paper.

# generated samples EA

GPT3.5

Binder 50 56.74
Chain-of-Table ≤ 25 59.94
Ours (6 SQLs) 11.4 61.05
Ours (12 SQLs) 17.4 61.79

Llama2

Binder 50 30.92
Chain-of-Table ≤ 25 42.61
Ours (12 SQLs) 19.82 34.00
Ours (16 SQLs) 23.82 35.34

Table 6: Execution accuracy on full WIKITQ test set. #
generated samples denotes the total number of generated
samples to answer one question.

the table, despite generating programs with correct
logic. According to Chen et al. (2023), this type of
value grounding errors take up 47% of the errors
made by PoT. Moreover, correcting these errors re-
quires manual efforts to look into the contents of
the table, which is time-consuming when the table
is large.

On the contrary, Figure 10 shows an example
question that only requires a single cell from the
table. PoT correctly selects the answer but our
method selects the value in the wrong column.
However, correcting this error requires only manual
inspection of the generated SQL statement, which
is much more efficient than checking the whole
table contents.

Binder:
SELECT `first issued` FROM t1 ORDER BY 
LENGTH(QA("map@alphanumeric digits"; CONCAT(`serial 
format`, `serials issued`))) DESC LIMIT 1

Question: name the year of the license plate that has the largest amount of 

alphanumeric digits

row_id first issued serials format serials issued 

0 1955 a-12345 none

1 1958 abc-123 aaa-1 to bzz-999

…

9 2008 abc1234 aaa0001 to present

Ours:
Step 1: How many alphanumeric digits are there in the serial format?
Step 2: Augmented table:

row_id first issued
serials 
format 

serials 
issued 

alphanumeric_digits

0 1955 a-12345 none 6

1 1958 abc-123
aaa-1 to 

bzz-999
6

…

9 2008 abc1234
aaa0001 to 

present
7

(sqlite3.OperationalError) near "CONCAT": syntax error

Execution result: 2008 ✓

Step 3:
SELECT `first issued` FROM t1 ORDER BY 
`alphanumeric_digits` DESC LIMIT 1

Figure 5: An example question in WIKITQ. Binder
generates a SQL statement that queries LLMs for un-
solvable parts. However, the statement leads to an ex-
ecution error. Our method augments the table with an
additional column and correctly generates a SQL state-
ment to answer the question.
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Binder:
SELECT ABS(QA("map@date of creation"; `time created` 
WHERE `map or catalog` = '5 star prediction device') 
- QA("map@date of creation"; `time created` WHERE 
`map or catalog` = 'han comet diagrams'))

Question: what is the difference between the five star prediction device’s date 

of creation and the han comet diagrams’ date of creation?

row_id Time created map or catalog

0 1000 bc wu xian star map

1 168 bc 5 star prediction device

…

133 193 bc han comet diagrams

Ours:
Step 1: None
Step 2: None

(sqlite3.OperationalError) near "`time created`": 
syntax error

Binder-separate:
Added column: None

Execution result: 25  ✓

Execution result: 25  ✓

SQL:
SELECT ABS(
    (SELECT `time created` FROM t1 WHERE `map or catalog` 
= '5 star prediction device') - 
    (SELECT `time created` FROM t1 WHERE `map or catalog` 
= 'han comet diagrams'))

Step 3:
SELECT ABS(
    (SELECT `time created` FROM t1 WHERE `map or catalog` 
= '5 star prediction device') - 
    (SELECT `time created` FROM t1 WHERE `map or catalog` 
= 'han comet diagrams'))

Figure 6: An example question in WIKITQ. Binder
generates a SQL statement that queries LLMs. However,
the statement leads to an execution error. Our method
and Binder-separate correctly generate a pure SQL
statement to answer the question.

SQL:
SELECT DISTINCT `driver`, `nationality` FROM t1 WHERE 
`driver` = 'jarno trulli'

Binder:
SELECT 'jarno trulli' FROM t1 WHERE `driver` = 
'jarno trulli’

Question: jarno trulli was not french but what nationality?

row_id pos driver points

0 1 fernando alonso 10.0

1 2 jarno trulli 8.0

…

19 ret patrick friesacher nan

Ours:
Step 1: What is the nationality?
Step 2: Augmented table:

(sqlite3.OperationalError) no such column: nationality

Execution result: jarno trulli  ✘
Binder-separate:
Added column: None

row_id pos driver points nationality

0 1 fernando alonso 10.0 spanish

1 2 jarno trulli 8.0 italian

…

19 ret patrick friesacher nan austrian

Execution result: italian  ✓

Step 3:
SELECT `nationality` FROM t1 WHERE `driver` = 
'jarno trulli'

Figure 7: An example question in WIKITQ. Binder
generates a SQL statement without syntax error, but it
does not query LLMs for additional knowledge, result-
ing in a wrong answer. Since the original SQL state-
ment generated by Binder does not augment the table
with additional information, the question is not answer-
able using pure SQL, leading to an execution error in
Binder-separate. Our method augments the table and
correctly answers the question.
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Question: by what percent did the balance of tax benefits increase between the 

beginning of 2016 and the end of 2018?

Program-of-Thought:
balance_beginning_2016 = 166.8
balance_end_2018 = 127.1
percent_increase = ((balance_end_2018 - 
balance_beginning_2016) / balance_beginning_2016) * 100
ans = percent_increase

row_id 2018 2017 2016

0
balance at beginning of 

fiscal year
148.9 166.8 106.6

1
additions related to purchase 

accounting ( 1 )
3.4 7.7 16.5

…

8 balance at end of fiscal year 127.1 148.9 166.8

Ours:
SELECT 
    ((SELECT `2018` FROM t1 WHERE `row_id` = 8)
     - 
    (SELECT `2016` FROM t1 WHERE `row_id` = 0))
     /
    (SELECT `2016` FROM t1 WHERE `row_id` = 0) * 100

Execution result: 19.23  ✓

Execution result: -23.80  ✘

Figure 8: An example question in FINQA that requires
two table cells to answer. PoT retrieves the wrong value
(highlighted in red) from the table, despite generating
a program with correct logic. Identifying the error re-
quires looking into the table contents manually. Our
method correctly selects the values and answers the
question.

Program-of-Thought:
net_deferred_tax_assets_2018 = 26062
net_deferred_tax_assets_2019 = 83615
ans = (net_deferred_tax_assets_2019 - 
net_deferred_tax_assets_2018) / 
abs(net_deferred_tax_assets_2018) * 100

Question: What was the percentage change in the Net deferred tax assets (liabilities) 

between 2018 and 2019?

row_id 2019 2018

0 deferred tax assets: none none

12 total deferred tax assets 83615 26062

…

18
net deferred tax assets 

(liabilities)
48218 -1221

Execution result: -4049.06  ✓

Execution result: 220.83  ✘
Ours:
SELECT 
    ((CAST(`2019` AS REAL) - CAST(`2018` AS REAL)) / 
CAST(`2018` AS REAL)) * 100 AS percentage_change
FROM t1 
WHERE `row_id` = 18

Figure 9: An example question in TATQA that requires
two table cells to answer. PoT retrieves the wrong value
(highlighted in red) from the table, despite generating
a program with correct logic. Our method correctly
selects the values and answers the question.

Program-of-Thought:
product_revenue_variance_2019_vs_2018 = 2296

Question: What was the product revenue variance in dollars for 2019 vs 2018?

row_id
july 27, 2019 

(1)
2019 vs. 2018 

(variance in dollars)

0 revenue: none none

12 product 39005 2296

…

5 total 51904 2574

Execution result: 39005  ✘

Execution result: 2296  ✓
Ours:
SELECT `july 27, 2019 (1)` FROM t1 WHERE `row_id` = 1

Figure 10: An example question in TATQA that re-
quires a single table cell to answer. PoT correctly re-
trieves the value from the table. Our method mistakenly
selects the value. However, the error is easy to be spot-
ted and corrected by inspecting the SQL statement.
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Task Description:
Your task is to prepare a table for SQL query generation in order to answer a specific
question. This may require modifying the table by adding extra columns. These new
columns are created based on natural language questions , with each question applied
individually to every row in the existing columns. The goal is to transform existing
data into a format that 's suitable for SQL operations , or to incorporate additional
information into the table.

Procedure:
1. Evaluate the Table and Question: Assess if the table , in its current format , is
suitable for generating a SQL query to answer the given question.
2. Determine Additional Columns:

- If the table is already suitable for the SQL query , simply output "None"
- If the table requires modifications , identify and define the necessary changes.

Specifically , add new columns where each row 's value is derived from a natural language
question applied to the relevant columns. Use the format:

`new_column ` = @(" question "; [relevant_columns ]),
where `question ` is the question asked for each row to derive the new column 's

contents , and `relevant_columns ` are the existing columns that provide the information
needed for the question.

Response Format:
Begin your response with "Transformation :" and include:
- Solution outline: Describe a step -by-step reasoning chain of how to answer the
question.
- Further analysis: Determine if modifications are required for each step.
- Final output: List each required additional column in the specified format , each on a
new line. If no modifications are needed , output "None".

Figure 11: System prompt used for augmentation generation (Step 1) on WIKITQ.

Title: 2007 New Orleans Saints season
CREATE TABLE t1(

row_id int ,
date text ,
game site text ,
result/score text)

/*
3 example rows:
SELECT * FROM t1 LIMIT 3;
row_id date game site result/score
0 2007-9-6 rca dome l 41-10
1 2007-9-16 raymond james stadium l 31-14
2 2007-9-24 louisiana superdome l 31-14
*/

Q: what number of games were lost at home?
Transformation:
Solution outline:
1. Find the losing games.
2. Find the games at home.
3. Count the number of games that satisfy both conditions.
Further analysis:
For step 1, we need information in `result/score ` column. We need to parse if it's a win
or loss. We will add a column called `is_loss `.

For step 2, we need information in `game site ` column. We need additional information on
whether it's a home game or not. We will add a column called `is_home_game `.

Step 3 can be done with a SQL query.
Final output:
`is_loss ` = @("Is it a loss ?"; [result/score])
`is_home_game ` = @("Is it the home court of New Orleans Saints ?"; [game site])

Figure 12: A demonstration of the in-context example used for augmentation generation (Step 1) on WIKITQ.
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Give a database as shown below:
Table: 1963 International Gold Cup
/*
row_id driver
0 jim clark
1 richie ginther
2 graham hill
3 jack brabham
4 tony maggs
*/
Q: Answer question "What is his/her country ?" row by row.
Output:
/*
row_id driver
0 jim clark scotland
1 richie ginther united states
2 graham hill england
3 jack brabham australia
4 tony maggs south africa
*/

Figure 13: A demonstration of the in-context example used for querying additional information (Step 2) from LLMs
on WIKITQ.

Read the following table and write a SQL query to answer the question:
Title: 2007 New Orleans Saints season
CREATE TABLE t1(

row_id int ,
date text ,
game site text ,
result/score text ,
is_loss text ,
is_home_game text)

/*
3 example rows:
SELECT * FROM t1 LIMIT 3;
row_id date game site result/score is_loss is_home_game
0 2007-9-6 rca dome l 41-10 yes no
1 2007-9-16 raymond james stadium l 31-14 yes no
2 2007-9-24 louisiana superdome l 31-14 yes yes
*/

Q: what number of games were lost at home?
SQL: To answer the question , we need following steps:
1. Find the losing games by `is_loss ` column.
2. Find the games at home by `is_home_game ` column.
3. Count the number of games that satisfy both conditions.
Final SQL query:
```
SELECT COUNT (*) FROM t1 WHERE `is_loss ` = 'yes ' AND `is_home_game ` = 'yes '
```

Figure 14: A demonstration of the in-context example used for SQL generation (Step 3) on WIKITQ.
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Task Description:
You are tasked with analyzing a provided table and an accompanying report to answer a
specific question. This involves assessing whether the table contains all necessary
information for answering the question. If additional information is needed , you must
extract this from the report and create a supplementary table. Your primary focus is on
the analysis and information extraction process , which will facilitate in forming a SQL
query to answer the question.

Procedure:
1. Assess the Given Table and Question: Determine whether the provided table contains
all the required information to answer the question.
2. Extract Information for Additional Table Creation:

- If the existing table is sufficient , simply output "None"
- If the existing table lacks essential information , extract the required data from

the report in the following JSON format: `{"column_name ": [value1 , ...], ...}`

Each example is given in the following structure:
- Report: Contents of the report that may contain additional information.
- Tables: Contents of the table , with columns separated by " | " and rows by "\n".
- Question: The specific question that needs to be answered.

Response Format:
Begin your response with "Analysis :" and include:
- Solution outline: Describe the step -by-step outline for answering the question.
- Further analysis: Determine whether each step 's information is available in the
existing table or needs to be extracted from the report.
- Final output: Extract necessary information from the report in JSON format as
described above; if no additional information is needed , output "None".

Notes:
- You may extract information with any number of columns and rows. However , all columns
should have the same number of values.
- Make the JSON self -explanatory. Use descriptive column names , add context where needed
, and include units in column names to prevent ambiguity.
- Avoid creating columns with empty or NaN values.

Figure 15: System prompt used for constructing augmenting table (Steps 1 and 2) on TATQA.
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Report:
NOTE 5 - PROPERTY AND EQUIPMENT
The Company owned equipment recorded at cost , which consisted of the following as of
December 31, 2019 and 2018:
Depreciation expense was $80 ,206 and $58 ,423 for the years ended December 31, 2019 and
2018, respectively
Tables:
row_id | filledcolumnname | 2019 | 2018
0 | computer equipment | 137763 | 94384
1 | furniture and fixtures | 187167 | 159648
2 | subtotal | 324930 | 254032
3 | less accumulated depreciation | 148916 | 104702
4 | property and equipment , net | 176014 | 149330

Question: What is the ratio of depreciation expense to accumulated depreciation of
property and equipment in 2019?
Analysis:
Solution outline:
1. Find the amount of depreciation expense and accumulated depreciation of property and
equipment in 2019.
2. Calculate the ratio.
Further analysis:
For step 1, the accumulated depreciation is mentioned in the table in row 3. But the
depreciation expense is missing from the table. So we need to extract it from the report
.
Step 2 can be done with a SQL query.
Final output:
{" depreciation_expense_2019 ": ["$80 ,206"]}

Figure 16: A demonstration of the in-context example used for constructing augmenting table (Steps 1 and 2) on
TATQA.
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Report:
NOTE 5 - PROPERTY AND EQUIPMENT The Company owned equipment recorded at cost , which
consisted of the following as of December 31, 2019 and 2018: Depreciation expense was
$80 ,206 and $58 ,423 for the years ended December 31, 2019 and 2018, respectively
Tables:
CREATE TABLE t1(

row_id int ,
filledcolumnname text ,
2019 int ,
2018 int)

/*
All rows of the table:
SELECT * FROM t1;
row_id filledcolumnname 2019 2018
0 computer equipment 137763 94384
1 furniture and fixtures 187167 159648
2 subtotal 324930 254032
3 less accumulated depreciation 148916 104702
4 property and equipment , net 176014 149330
*/

CREATE TABLE t2(
row_id int ,
depreciation_expense_2019 int)

/*
All rows of the table:
SELECT * FROM t2;
row_id depreciation_expense_2019
0 80206
*/

Q: What is the ratio of depreciation expense to accumulated depreciation of property and
equipment in 2019?

SQL: Reasoning process:
We need following steps to answer the question:
1. Get the depreciation expense in 2019 from t2.
2. Get the accumulated depreciation in 2019 from t1, which is in row 3.
3. Calculate the ratio.
Final SQL query:
```
SELECT

(SELECT `depreciation_expense_2019 ` FROM t2 WHERE `row_id ` = 0) /
CAST(( SELECT `2019` FROM t1 WHERE `row_id ` = 3) AS REAL)
AS depreciation_ratio

FROM t1
LIMIT 1
```
Units: ""

Figure 17: A demonstration of the in-context example used for SQL generation (Step 3) on TATQA.
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Task Procedure:
1. Assess the Given Table and Question: Determine whether the provided table contains
all the required information to answer the question.
2. Extract Missing Information from Report:

- If the existing table is sufficient , simply output "None"
- If the existing table lacks essential information , extract the required data from

the report in the following JSON format: `{"column_name ": [value1 , ...], ...}`

Each example is given in the following structure:
- Report: Contents of the report that may contain additional information.
- Tables: Contents of the table , with columns separated by " | " and rows by "\n".
- Question: The specific question that needs to be answered.

Response Format:
Begin your response with "Analysis :" and include:
- Solution formula: Write a formula to calculate the answer.
- Further analysis: Determine for each variable in the formula whether it is available
in the table or needs to be extracted from the report.
- Final output: For variables not in the table , extract them from report in JSON format
as described above; if all variables are in the table , output "None".

Notes:
- Make the JSON self -explanatory. Use descriptive column names and include units in
column names to prevent ambiguity.

Figure 18: System prompt used for constructing augmenting table (Steps 1 and 2) on FINQA.

Report:
purchases of equity securities 2013 during 2014 , we repurchased 33035204 shares of our
common stock at an average price of $ 100.24 .
[b] effective january 1 , 2014 , our board of directors authorized the repurchase of up
to 120 million shares of our common stock by december 31 , 2017 .
Tables:
row_id | period | total number ofsharespurchased[a] | averageprice paidpershare | total
number of sharespurchased as part of apublicly announcedplan or program [b] | maximum
number ofshares that may yetbe purchased under the planor program [b]
0 | oct . 1 through oct . 31 | 3087549 | 107.59 | 3075000 | 92618000
1 | nov . 1 through nov . 30 | 1877330 | 119.84 | 1875000 | 90743000
2 | dec . 1 through dec . 31 | 2787108 | 116.54 | 2786400 | 87956600
3 | total | 7751987 | 113.77 | 7736400 | n/a

Question: what percent of the share repurchases were in the fourth quarter?
Analysis:
Solution formula:
share_repurchase_fourth_quarter / share_repurchase_whole_year
Further analysis:
share_repurchase_fourth_quarter is in row 3 of the table
share_repurchase_whole_year is not in the table , so we need to extract it from the
report
Final output:
{" share_repurchase_whole_year ": [33035204]}

Figure 19: A demonstration of the in-context example used for constructing augmenting table (Steps 1 and 2) on
FINQA.
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Report:
purchases of equity securities 2013 during 2014 , we repurchased 33035204 shares of our
common stock at an average price of $ 100.24 .
[b] effective january 1 , 2014 , our board of directors authorized the repurchase of up
to 120 million shares of our common stock by december 31 , 2017 .
Tables:
CREATE TABLE t1(

row_id int ,
period text ,
total number ofsharespurchased[a] int ,
averageprice paidpershare real ,
total number of sharespurchased as part of apublicly announcedplan or program [b]
int ,
maximum number ofshares that may yetbe purchased under the planor program [b] text)

/*
All rows of the table:
SELECT * FROM t1;
row_id period total number ofsharespurchased[a] averageprice paidpershare
total number of sharespurchased as part of apublicly announcedplan or program [b]
maximum number ofshares that may yetbe purchased under the planor program [b]
0 oct . 1 through oct . 31 3087549 107.59 3075000 92618000
1 nov . 1 through nov . 30 1877330 119.84 1875000 90743000
2 dec . 1 through dec . 31 2787108 116.54 2786400 87956600
3 total 7751987 113.77 7736400 n/a
*/

CREATE TABLE t2(
row_id int ,
share_repurchase_whole_year int)

/*
All rows of the table:
SELECT * FROM t2;
row_id share_repurchase_whole_year
0 33035204
*/

Q: what percent of the share repurchases were in the fourth quarter?
SQL:
Solution formula:
share_repurchase_fourth_quarter / share_repurchase_whole_year
Further analysis:
share_repurchase_fourth_quarter is in row 3, column `total number ofsharespurchased[a]`
of t1
share_repurchase_whole_year is in row 0, column `share_repurchase_whole_year ` of t2
Final SQL query:
```
SELECT

CAST(( SELECT `total number ofsharespurchased[a]` FROM t1 WHERE `row_id ` = 3) AS REAL
) /
(SELECT `share_repurchase_whole_year ` FROM t2 WHERE `row_id ` = 0) * 100

```

Figure 20: A demonstration of the in-context example used for SQL generation (Step 3) on FINQA.
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