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Abstract

Recent advances in large language models
(LLMs) have shown potential in clinical text
summarization, but their ability to handle
long patient trajectories with multi-modal data
spread across time remains underexplored.
This study systematically evaluates several
state-of-the-art open-source LLMs, their Re-
trieval Augmented Generation (RAG) vari-
ants and chain-of-thought (CoT) prompting on
long-context clinical summarization and pre-
diction. We examine their ability to synthesize
structured and unstructured Electronic Health
Records (EHR) data while reasoning over tem-
poral coherence, by re-engineering existing
tasks, including discharge summarization and
diagnosis prediction from two publicly avail-
able EHR datasets. Our results indicate that
long context windows improve input integra-
tion but do not consistently enhance clinical
reasoning, and LLMs are still struggling with
temporal progression and rare disease predic-
tion. While RAG shows improvements in hallu-
cination in some cases, it does not fully address
these limitations. Our work fills the gap in long
clinical text summarization, establishing a foun-
dation for evaluating LLMs with multi-modal
data and temporal reasoning. 1

1 Introduction

Electronic Health Records (EHRs) encapsulate a
wide range of multi-modal data, such as vital signs,
laboratory results, radiology findings, and free text
clinical notes (Mohsen et al., 2022; Li et al., 2022;
Belden et al., 2017). Organized across various
timestamps, they reflect the dynamic nature of pa-
tient care. In clinical settings, particularly for older
patients in intensive care units (ICUs) with multiple
encounters, chronic conditions, and complex treat-
ment plans, EHRs become especially lengthy and

1Code is available at: https://github.
com/LARK-NLP-Lab/longitudinal_clinical_
summarization.

Figure 1: An illustration of the longitudinal patient trajectory
summarization process from multi-modal EHRs. Key causal
relationships among medical observations and interventions
are highlighted, leading to the final physician diagnosis.

intricate. Clinicians reviewing these long patient
histories face significant cognitive burden, often
leading to inaccurate decisions such as diagnostic
errors (Dymek et al., 2021; Singh et al., 2017). Au-
tomated summarization can help improve care con-
tinuity and decision-making (Dymek et al., 2021;
Adams et al., 2021; Gao et al., 2023a; Laxmisan
et al., 2012; Pivovarov and Elhadad, 2015; Liang
et al., 2019), but the volume and complexity of
EHRs pose challenges, requiring models that han-
dle diverse and evolving clinical data.

As shown in Figure 1, summarizing longitudi-
nal patient trajectories requires not only extracting
temporally ordered events from multi-modal data,
but also reasoning over how earlier findings trig-
ger downstream actions. For instance, abnormal
blood pressure and elevated white cell count raise
suspicion of inflammation, prompting a chest CT;
the CT then confirms an aortic dissection, which
leads to intubation and ventilatory support, ulti-
mately consolidated in the physician’s diagnostic
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note. Capturing these event-to-action links is what
we mean by temporal reasoning, and it is critical
for preserving clinical causality in the patient tra-
jectory.

Our work evaluates large language models
(LLMs) for summarizing complex, longitudinal
EHRs, capturing full patient trajectories rather
than isolated clinical snapshots. While LLMs
have shown promise in clinical NLP tasks (Sil-
cox et al., 2024; Wachter and Brynjolfsson, 2024;
Garcia et al., 2024; Adams et al., 2024; Gao
et al., 2022), existing evaluations primarily focus
on short-context settings and task-specific fine-
tuning. Clinical summarization benchmarks, such
as discharge summarization (“Discharge Me”(Xu
et al., 2024a)) and diagnosis generation from
progress notes (“ProbSum”(Gao et al., 2023a)),
evaluate LLMs on isolated segments of patient
records rather than full hospital trajectories. While
Retrieval-Augmented Generation (RAG) has been
applied to clinical tasks like diagnosis prediction
and discharge summarization (Xu et al.; Gao et al.,
2023b; Lewis et al., 2020; Myers et al., 2024; Lyu
et al., 2024), its effectiveness for long, temporally
rich clinical narratives remains unclear.

This work addresses two key gaps: (1) current
evaluations rarely test long-context LLMs in zero-
shot settings, leaving their inherent capabilities
and limitations in complex medical reasoning un-
known; and (2) most clinical benchmarks focus
on single time-point summaries, overlooking the
demands of longitudinal patient care. We system-
atically evaluate LLMs on full patient trajectories
to assess their ability to process temporally evolv-
ing, multi-modal clinical data.

In this paper, we focus on two public EHR
datasets: Medical Information Mart for Inten-
sive Care (MIMIC-III) (Johnson et al., 2020)
and EHRShot (Wornow et al., 2023). We eval-
uate five state-of-the-art LLMs and their RAG
variants: Mistral-7B-Instruct-v0.1 (Jiang et al.,
2023), Llama3-8B-Instruct (AI@Meta, 2024),
Qwen2.5-7B (Yang et al., 2024), DeepSeek-R1-
Distill-Qwen-32B (DeepSeek-AI et al., 2025)
and Llama2-13B-chat-hf (Touvron et al., 2023).
Our work advances clinical LLM summarization
through the following contributions:
• We reformulate discharge summarization,

progress note summarization, and diagnosis
classification into new long-context tasks
requiring temporal reasoning, aligned with real
clinical workflows.

• Our tasks integrate structured and unstructured
data across multiple timestamps, enabling analy-
sis of modality and temporal context effects.

• We compare direct generation, retrieval-
augmented generation and chain-of-thought
(CoT) prompting (Wei et al., 2022) approaches
for handling long clinical documents.

In the absence of benchmarks combining multi-
modal inputs, temporal structure, and clinical work-
flow alignment, our study provides a first step to-
ward evaluating LLMs in real-world longitudinal
summarization. The results highlight key limita-
tions and suggest directions for more temporally
grounded and clinically usable models.

2 Related Work

Clinical text summarization Existing work in-
cludes discharge summarization (Xu et al., 2024a;
Lyu et al., 2024), diagnosis summarization (Gao
et al., 2023a, 2022; Liang et al., 2019), hospi-
tal course summarization (Adams et al., 2021,
2024). While these tasks inherently involve multi-
document summarization by human physicians,
NLP formulations typically treat them as single-
document summarization or multi-document sum-
marization with fixed timestamps (e.g. at the time
the patient is discharged).

Tabular reasoning LLMs face challenges when
reasoning over structured tabular inputs, where
tasks often require precise comparisons or aggrega-
tions. Zhang et al. (2024) demonstrated the poten-
tial of LLMs for table manipulation in real usage
scenarios, while Ashury-Tahan et al. (2025) intro-
duced a benchmark showing that models remain
sensitive to table formatting. These works high-
light open problems in extending LLM reasoning
to structured clinical data.

Temporal reasoning Recent studies emphasize
the challenges LLMs face in modeling temporal
data. Xiong et al. (2024) showed that LLMs can ac-
quire temporal reasoning with a graph framework
and targeted prompting, while Tan et al. (2023)
provided systematic benchmarks exposing weak-
nesses and biases in handling temporal entailment
and event prediction. Hu et al. (2025) introduced
a time-aware agent for temporal knowledge graph
question answering, demonstrating the benefit of
explicitly encoding temporal constraints. Comple-
mentarily, the MenatQA dataset (Wei et al., 2023)
highlights systematic failures of LLMs on diverse
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temporal reasoning tasks. Together, these works
underscore the need for dedicated benchmarks and
modeling strategies to strengthen LLMs’ temporal
comprehension, which directly impacts the han-
dling of longitudinal clinical data.

LLMs for long clinical documents Directly pro-
cessing the long document input can lead to “lost-
in-the-middle” problem (Liu et al., 2024). As a
result, RAG has been the default when handling
long clinical documents, evidenced by its supe-
rior performance in diagnosis prediction, discharge
summarization and information extraction (Myers
et al., 2024; Lyu et al., 2024; Lopez et al., 2025).
Due to the task setup, these works have only in-
vestigated single modality EHRs with long input
length.

Our work addresses this problem by extending
RAG and CoT-based approaches to multi-modal
EHR summarization and clinical prediction, incor-
porating both structured (tabular) and unstructured
(clinical notes) data to enhance the completeness
and accuracy of patient trajectory summaries. We
evaluate how well LLMs and their RAG setups
can capture and preserve temporal and causal re-
lationships across patient’s hospital stay, bridging
the gap between isolated document processing and
comprehensive longitudinal understanding.

3 Dataset and Tasks

We use two complementary datasets, MIMIC-III
and EHRShot, to evaluate LLMs’ clinical reason-
ing. They differ in three key aspects: 1) Modali-
ties: MIMIC-III includes both structured data and
clinical notes, while EHRShot contains only struc-
tured data. 2) Output type: MIMIC-III tasks focus
on generating short summaries of patient progress
or discharge status, whereas EHRShot involves
classification-based diagnosis prediction. 3) De-
cision time span: MIMIC-III targets immediate
ICU-related summaries, while EHRShot predicts
diagnoses within a year of discharge, emphasizing
long-term forecasting based on prior visits. Despite
these differences, both datasets address longitudi-
nal patient information, requiring models to reason
over time and synthesize complex clinical histories.

3.1 MIMIC-III

MIMIC-III is a publicly available dataset compris-
ing de-identified health records from over 40,000
ICU patients. For this study, we focus on a sub-
set of patients with hospital stays exceeding 72

hours to ensure sufficient context for evaluating
long-document summarization and temporal rea-
soning. Unlike prior MIMIC-III studies, our se-
lected cohort emphasizes complex, multi-day ICU
stays where accurate summaries are most impact-
ful. This setup allows us to assess LLMs’ ability to
handle prolonged and evolving clinical narratives.

We use both structured and unstructured data.
Specifically, we extract chart events (vital signs,
ventilator settings), lab events (e.g., white blood
cell counts), input events (e.g., IV infusions, feed-
ings), and medications. These features reflect key
aspects of clinical decision-making and support
rich, temporally grounded summarization tasks.

Discharge Summarization Discharge sum-
maries are a crucial part of a patient’s hospital care
process, providing a comprehensive overview of
their hospital stay and key clinical events. It is
usually written by the physician after the patient
is discharged, and contains three main sections:
DIAGNOSIS: a list of diagnoses requiring an
understanding of the patient’s clinical progression
up to discharge; BRIEF HOSPITAL COURSE:
clinical summary of treatments, interventions,
and significant events during hospitalization;
DISCHARGE INSTRUCTIONS: post-discharge
guidance, including medication plans, dietary
recommendations and follow-up care.

Discharge Summarization has been explored in
several studies, including (Xu et al., 2024b) and
(Ando et al., 2022), often focusing on specific sec-
tions like the Brief Hospital Course or discharge
instructions. In this paper, we generate all three
sections by extracting and chronologically order-
ing structured and unstructured data from a hospital
admission. We limit input to the last 24 hours to
prevent overloading the LLM while prioritizing the
most relevant information for discharge, consider-
ing the generally long hospital stays (≥3 days). We
also test a 48-hour window to capture a broader
clinical context.

We design four input settings to evaluate LLMs
on multi-modal and temporal reasoning: NOTE

ONLY where input only contains clinical notes,
TABULAR ONLY where input only contains tab-
ular data, SHUFFLED TABULAR where we shuffled
the tabular data by their timestamps, COMBINED

where we combined both notes and tabular data,
sorted by their timestamps.

Assessment and Plan (A&P) Generation Daily
progress notes are the documents where physicians
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Symbol Definition

Di Progress note for day i
Xi Input data used to generate the progress note

for day i

Method Input Data for Day i

Baseline Xi = EHRi (No prior progress notes)
Single-Day
Context

Xi = (EHRi, Di−1) (Includes previous
day’s note)

Multi-Day
Context

Xi = (EHRi, D1, D2, ..., Di−1) (Includes
all previous notes)

Figure 2: Illustration of the A&P generation workflow (top)
and a comparison of input data formulations (bottom).

record diagnoses, treatments, and clinical status,
providing key insights into a patient’s condition
throughout their hospital stay. A progress note
typically consists of four sections: Subjective, Ob-
jective, Assessment and Plan (Weed et al., 1968;
Wright et al., 2014). The Subjective and Objective
sections serve as the “evidence” and observation
of the patient on that day, with Subjective com-
prising unstructured free text describing symptoms,
status, and treatment, while Objective consists of
structured tabular data like lab results and charted
values. In contrast, the Assessment and Plan sec-
tions capture the physician’s reasoning and clinical
hypothesis based on this evidence, with diagnoses
and treatment plans listed. To assess LLM abilities
in summarizing longitudinal data, the Assessment
and Plan sections provide a great testbed, requiring
integration of information from multiple days, cap-
turing the evolution of the patient’s condition, and
synthesizing key clinical evidence into a concise
yet comprehensive summary.

The setup of the task is illustrated in Figure 2,
which explains the three input methods: the NO

PRIOR CONTEXT (BASELINE) method uses only
the current day’s structured EHR data, the SINGLE-
DAY CONTEXT method adds the previous day’s

Figure 3: The token length of input data used for A&P
generation across days and methods (left), as well as that
of input data used for Discharge Summarization across time
windows and modalities(right).

progress note for limited historical context, and the
MULTI-DAY CONTEXT method incorporates all
prior progress notes for a more comprehensive pa-
tient history. For day i, the input includes progress
notes up to i − 1 (depending on the method), but
the note for i is excluded and compared to the gen-
erated version. This setup reflects the real clinical
workflow, where physicians reference prior notes
when writing new ones.

How long is the input in MIMIC? Figure 3
shows input lengths across tasks and settings. For
discharge summarization, inputs average 500 to-
kens (24-hour window) and 1,940 tokens (48-hour
window). In contrast, the Assessment and Plan
(A&P) generation task involves much longer inputs
due to the inclusion of prior progress notes and
structured data. The No Context baseline starts
with a relatively high token count (3,125 tokens
on Day 1) but remains the shortest overall. Single-
Day Context, which adds the previous day’s note,
increases input length to 5,375 tokens. Multi-Day
Context, which accumulates all prior notes, shows
the steepest token growth, reaching nearly 10,000
tokens by Day 4 and averaging 6,875 tokens.

3.2 Diagnosis Prediction from EHRShot

EHRShot (Wornow et al., 2023) is a longitudinal
dataset comprising fully structured EHR data from
6,739 patients at Stanford Medicine, with over 41
million clinical events. In contrast to MIMIC-III,
which contains a mix of structured and unstructured
data, EHRShot offers a clean, structured-only set-
ting, allowing for controlled evaluation of temporal
reasoning in longitudinal patient records.

We include EHRShot to complement the
MIMIC-based summarization tasks in two impor-
tant ways. First, EHRShot focuses on future pre-
diction—each task requires predicting whether a
patient will receive one of six diagnoses (e.g., HY-
PERTENSION, PANCREATIC CANCER, ACUTE MI)
within one year after discharge. This differs from
our MIMIC tasks, which emphasize retrospective
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summarization of observed hospital stays. Second,
its purely structured nature allows us to isolate mod-
els’ abilities to handle temporal patterns in tabular
data without the added complexity of clinical lan-
guage. Together, these contrasts offer a broader
assessment of LLM capabilities in modeling tem-
poral EHR information across different modalities
and predictive targets.

The six diagnosis tasks vary in prevalence
from common conditions like HYPERLIPIDEMIA

(31.85%) to rarer ones like CELIAC (3.46%). In-
puts have a mean token length of 1,989 (σ: 1,270),
with a median of 1,851, and an average of 74
unique measurements per patient. More statistics
are provided in Appendix A.2.

First entry: Urea Nitrogen is 26 mg/dL. Hematocrit is
34.20%. Hemoglobin is 12.20 g/dL. 12 minutes later: Glu-
cose is 214 mg/dL. Lactate is 2.40 mmol/L. 3 minutes later:
Hemoglobin is 13.00 g/dL. Lactate is 2.40 mmol/L. pO2 is
441 mm Hg. 1 hour later: 100.00 ml of 0.9% Normal Saline
is administered. Neosynephrine-k is administered. 49 min-
utes later: Radiology note: 12:48 PM CHEST (PORTABLE
AP) Clip Reason: line placement, r/o PTx Admitting Diagno-
sis: HEAD BLEED; MEDICAL CONDITION: 68-year-old
man s/p MVA significant head trauma, intubated s/p r sub-
clavian triple lumen placement...

Table 1: An example of a patient’s compiled data, including
relative timestamp (minutes and hours since previous recorded
data), structured data converted into narrative format as well
as unstructured note data.

3.3 Representing multi-modal, longitudinal
patient data

We convert structured EHR data into natural lan-
guage to enable LLM-based summarization, fol-
lowing prior table-to-text approaches (Gao et al.,
2024; Yu et al., 2023). As in Table 1, each
measurement is verbalized using simple templates
(e.g., [MEASUREMENT] IS [VALUE][UNIT]), grouped
by timestamp, and temporally ordered using rela-
tive time references. Medications and input events
follow a similar format (e.g., “is administered”).

To reduce redundancy from repeated or copy-
pasted entries, we deduplicate records across
modalities and retain only the most recent entry
when multiple identical values appear within a
short time window. Clinical notes are filtered simi-
larly. For EHRShot, structured inputs are divided
into six hour chunks and repetitive phrases are re-
moved. Appendix A.1.

4 Methods

We evaluate five LLMs with varying context capac-
ities. LLaMA2-13B and Mistral-7B support up to
4K tokens, while LLaMA3-8B allows for 8K. To
test long-context capabilities, we include Qwen2.5-
7B and DeepSeek-R1 (32B), both of which support
input lengths up to 128K tokens. While we did
explore biomedical LLMs (PMC-LLaMa, BioGPT,
BioMistral), their performance was extremely poor,
so we did not include them in this paper.

4.1 Approaches

We compare a baseline direct generation, structured
RAG and CoT event extraction approach. The key
difference between these approaches lies in how
they handle long temporal contexts. Direct gen-
eration processes the entire input at once but may
suffer from the lost-in-the-middle problem, where
relevant information buried in long documents is
overlooked. In contrast, RAG segments temporal
information into retrievable chunks, which helps
manage long sequences but may disrupt temporal
dependencies between events. For CoT event ex-
traction, the long context is first compressed into a
series of clinical events, over which the model then
summarizes.

1). Direct Generation. The patient’s chronolog-
ical data, formatted according to the specific task
requirements, is provided to the model as a direct
input without any additional structural modifica-
tions. This serves as a baseline to assess the capa-
bility of current state-of-the-art language models in
processing and generating clinical summaries from
raw sequential data, without the aid of task-specific
adaptations or architectural enhancements.

2). RAG. For this setup, we choose the same
selection as models used for direct generation,
with the exception of DeepSeek, as it is consid-
erably larger than the other LLMs (32B parameters
vs 7-13B) yet fails to outperform these smaller
models. This combination of high computational
cost and suboptimal performance led us to exclude
DeepSeek for RAG. Myers et al. (2024) studied the
quality of embeddings in medical RAG and found
BGE (Xiao et al., 2023) yielded the highest per-
formance. Thus, we adopt BGE embeddings and
apply them to all LLM RAG setups in our work.
Additionally, the queries presented in the paper are
slightly modified and used to perform query opti-
mization. Hyperparameter optimization is carried
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out on the standard RAG hyperparameters chunk
size, chunk overlap and top-k retrieved documents.

3). Event Extraction via CoT prompting. As
an alternative to retrieval or direct generation, we
introduce a CoT prompting approach that incorpo-
rates a clinical reasoning step before summariza-
tion. LLMs are prompted to first identify tempo-
rally ordered clinical events from the input data,
which are appended to the original input as struc-
tured context for generation. This intermediate step
emphasizes salient clinical signals and reduces in-
put noise, helping the model focus on meaningful
patterns.

We develop our prompt with guidance from re-
cent studies showing that LLMs perform better on
clinical tasks when given clear, structured instruc-
tions tailored to the specific goal. For example,
Wang et al. (2023) finds that prompts targeting spe-
cific event types like symptoms, lab results, treat-
ments, and medical decisions help models focus
on clinically meaningful information and improve
event detection. Yuan et al. (2023) also shows that
when complex tasks are broken into smaller reason-
ing steps, especially for understanding how events
are ordered over time, models tend to produce more
consistent and accurate outputs. Figure 4 illustrates
the CoT prompt design for A&P generation task.

We experiment with seven temporal input con-
figurations for event extraction: using only the
current day’s data, combining it with previ-
ous days (FORWARD), or with subsequent days
(BACKWARD), each spanning 1, 3, or all available
days. We apply these settings to a development
batch of 20 patients and found that, within each
respective group of experiments, the FORWARD

setting using all previous days and the BACKWARD

setting using one following day produced the best
results. Based on these findings, we report per-
formance under three representative temporal con-
texts: +0 (Current Day Only, baseline), +N (For-
ward Context with all prior days), and –1 (Back-
ward Context with one following day).

Experiment settings. For all LLMs, we run their
8-bit quantized version. We set the output token
length as 1,000, but almost all tasks output is signif-
icantly shorter than this limit. For RAG setup, we
used Langchain (Chase, 2022) with Faiss (Douze
et al., 2024) for semantic retrieval in a vector
database. We perform hyperparameter tuning with
chunk size between [250, 750], top k between
[10, 50], chunk overlap between [50,200]. The

Chain-of-Thought Prompt for ICU Daily Event
Extraction

ICU DAILY EVENT EXTRACTION TASK
Analyze this structured ICU data by identifying criti-
cal clinical events, paying special attention to numer-
ical values and their progression. Only report values
showing meaningful change or clinical significance.
For repeated values, mention only those demonstrat-
ing changes.
{Input Text}
Identify (with direct references to data points when
possible):
1. Major symptoms or changes (new, worsening, im-

proving) – Specify relevant numerical changes.
2. Critical test results (labs, imaging, etc.) – High-

light significant abnormal or normal values.
3. Important treatments or interventions – Clearly

link to the preceding clinical data.
4. Significant care team decisions – Support with

relevant clinical data.
5. Major medical decisions or diagnoses – Reference

pertinent clinical observations.
Response Format:
### Day X Key Events ###
- [Time] | [Event Description] (Explanation for identi-
fying this event)

Example Model Output

### Day 3 Key Events ###
- 2178-02-11 09:50:00 | Blood pressure readings of
88/46 mmHg (This low blood pressure reading is con-
cerning and may require additional fluid resuscitation
or adjustment of vasoactive medications.)

Figure 4: Chain-of-Thought prompting template and example
output used for ICU daily event extraction from structured
EHR data for A&P generation.

detailed results of hyperparameter searching are in
Appendix A.4. All experiments are run on 2 H100
94GB GPUs.

4.2 Evaluation

On MIMIC, we report standard summarization eval-
uation metrics that capture string overlap and se-
mantics similarity. ROUGE-L (Lin, 2004) mea-
sures string overlap, while BERTScore (Zhang
et al., 2019) assesses maximum token pairwise
similarity. We use SapBERT as the backend for
BERTScore due to its superior performance in
biomedical entity representation (Liu et al., 2020).
On EHRShot, given that the diagnosis prediction
tasks are essentially binary classification, we report
macro-averaged accuracy and F-scores.

5 Results

The results are organized by task: Discharge Sum-
marization and Assessment and Plan Generation
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Setting Model ROUGE-L BERTScore

Direct
Gen

Mistral 16.28 ±12.83 65.23 ±13.38
Llama3 11.82 ±14.42 55.35 ±22.48
Qwen 15.28 ±5.38 63.98 ±13.50
DeepSeek 13.51 ±5.04 63.64 ±13.86
Llama2 15.34 ±5.90 63.82 ±11.44

RAG

Mistral 15.04 ±2.34 65.89 ±5.69
Llama3 15.90 ±2.00 64.38 ±4.81
Qwen 17.91 ±2.35 65.25 ±4.77
Llama2 16.98 ±1.59 67.20 ±6.21

Table 2: Results on discharge summarization, comparing the
direct generation and RAG approaches across all models.

Section Method ROUGE-L BERTScore

Dx Direct Gen 3.42 ± 4.34 50.07 ± 10.78
CoT Prompt 2.95 ± 3.48 48.46 ± 11.00

HC Direct Gen 12.28 ± 3.13 62.51 ± 5.95
CoT Prompt 9.98 ± 3.84 59.60 ± 7.32

DI Direct Gen 12.07 ± 3.90 60.05 ± 9.09
CoT Prompt 10.83 ± 4.58 60.52 ± 7.86

Table 3: Mistral performance on the three sections of dis-
charge summarization (Dx: Diagnosis, HC: Hospital course,
DI: Discharge Instruction), comparing direct generation ap-
proach with the event extraction CoT.

performed on MIMIC-III and Diagnosis Prediction
on EHRShot. Additionally, prompt optimization
was carried out on all tasks, using a small sample
set (Appendix A.6).

Figure 5: Average f1 results across modalities and time win-
dows (on direct generation)

Discharge Summarization. Table 2 presents re-
sults from comparison between the Direct Gener-
ation and RAG approaches. Qwen achieves the
highest ROUGE-L score of 17.91 using RAG. In
general, most LLMs record a performance increase
in their RAG variants, the biggest of which is
Llama3’s, with an increase of 4.08 on ROUGE-L.
Mistral is the exception, with a minor performance
decrease of -1.24. DeepSeek reports mediocre per-
formance despite its larger size.

Table 3 shows the section-wise analysis of Mis-

tral comparing direct generation and CoT meth-
ods, where CoT event extraction performs slightly
worse than direct generation in most sections.
Other LLMs exhibit similar trends, so we report
Mistral only for brevity. In Appendix 8, we provide
more section-wise analysis on Discharge Summ
task. Results further confirm the challenge of
LLMs reasoning over patient trajectories.

Figure 5 shows the effects of the four modalities
(notes + tabular data, notes only, tabular only and
shuffled tabular) and two context window sizes
(24 and 48 hours) on performance. For the 24
hour window, the pure note modality dominates,
performing best on Mistral, Qwen, DeepSeek and
Llama2. Llama3 is the outlier and reports the best
performance on the combined and shuffled tabular
modalities. In the 48h window, trends are less clear,
but most models still favor notes.

Temporal order appears unhelpful, as shuffled
tabular data performs slightly better than chrono-
logical tabular data, likely because the data is near
the discharge state, where patients’ clinical condi-
tions stabilize, leading to fewer changes over time.
A& P Generation. Table 4 shows that adding prior
context (Single- or Multi-Day) improves perfor-
mance across all models, particularly for ROUGE
scores. Llama3 performs best on direct genera-
tion, especially in Single- and Multi-Day Contexts,
but is outperformed by Qwen and Mistral on RAG.
However, Multi-Day Context does not always yield
performance gains over Single-Day, suggesting
models struggle with longer patient histories. RAG
generally improves performance, particularly for
Mistral and Qwen, but its impact varies across mod-
els: Llama3 performs better without retrieval.

This task specifically requires clinical reasoning
over past captured data (evidence) to summarize
patient progression and plan for treatment, yet the
relatively low ROUGE and BERTScore values indi-
cate that models still struggle with temporal reason-
ing and integrating historical context effectively.

Table 5 presents results of the event extraction
CoT method. CoT did not yield improvements
over direct generation or RAG approaches across
ROUGE-L or BERTScore. This suggests that,
while the event extraction step offers interpretabil-
ity and control, it may not directly enhance gen-
eration quality when applied in a pipeline without
further model adaptation. We view this as a useful
diagnostic approach that could be further refined or
integrated with instruction tuning in future work.
Diagnosis Prediction. We evaluate Mistral and
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Setting
Direct Generation RAG

Mistral Llama3 Qwen Mistral Llama3 Qwen

RL BS RL BS RL BS RL BS RL BS RL BS

No Prior 17.70±3.79 68.16±6.91 16.60±3.39 72.01±6.04 15.15±3.53 72.17±4.51 17.15±5.60 68.57±6.16 15.48±3.60 73.78±4.50 15.60±3.60 72.16±4.63

Single-Day 26.11±11.68 71.63±10.86 33.16±10.68 80.10±8.93 20.74±4.19 78.01±4.95 29.50±12.46 74.23±7.79 22.09±5.51 78.80±4.96 25.42±8.08 79.27±5.37

Multi-Day 23.32±13.05 72.41±9.47 32.42±12.14 80.42±8.81 21.60±5.23 78.41±4.81 27.40±10.08 73.55±8.46 21.42±6.81 78.96±5.42 25.36±7.50 80.28±4.68

Table 4: Performance of Direct Generation and RAG methods on A&P generation across models and input settings. RL =
ROUGE-L score; BS = BERTScore computed using SapBERT embeddings.

Figure 6: Correlation of token length and average performance across all tasks and metrics

Model Metric CURRENT DAY FORWARD+N BACKWARD-1

Mistral
ROUGE-L 19.85±10.87 20.82±12.02 20.10±11.15

BERTScore 68.63±11.56 69.69±10.82 69.35±9.67

Llama3
ROUGE-L 31.56±16.56 31.34±16.93 28.40±14.78

BERTScore 77.89±12.48 76.17±14.74 74.66±16.31

Qwen
ROUGE-L 20.41±4.39 20.69±4.65 20.70±4.70

BERTScore 77.44±4.17 77.61±4.27 77.10±4.40

Table 5: Event extraction CoT results on A&P generation
task across settings.

Direct Gen RAG
Mistral Qwen Mistral Qwen

Acute MI
Accuracy 52.84 62.72 63.03 65.50
F1 33.45 2.58 11.83 16.87

Celiac Disease
Accuracy 62.96 96.05 95.04 95.30
F1 2.60 0.00 0.00 9.52

Hyperlipidemia
Accuracy 58.02 68.15 66.09 63.03
F1 30.33 1.53 12.74 7.45

Hypertension
Accuracy 64.44 69.38 68.81 68.81
F1 26.53 6.06 8.7 8.7

Lupus
Accuracy 66.42 95.06 94.79 94.81
F1 10.53 0.00 0.00 0.00

Pancreatic Cancer
Accuracy 73.83 78.52 78.86 79.05
F1 13.11 2.25 0.00 0.00

Table 6: Results on the binary diagnosis prediction task using
EHRShot data (macro-average).

Figure 7: Expert review scores for Qwen direct generation
and RAG on Discharge Summarization

Qwen for this task based on their prior performance
(results shown in Table 6). Both models prioritize
majority class predictions, leading to inflated ac-
curacy but severely low F1-scores. RAG improves
accuracy but does not meaningfully enhance recall

or F1-score.
The task remains highly challenging, especially

for rare diseases, where models struggle to predict
positive cases. Qwen achieves high accuracy but
an F-score of zero for celiac disease and lupus,
reflecting severe class imbalance. It mostly predicts
negatives, occasionally misclassifying positives but
failing to identify true cases. Given that 96.54% of
celiac and 95.56% of lupus cases are true negatives,
its accuracy (96.05% and 95.06%) is barely lower
than predicting all negatives.

Overall Performance Figure 6 illustrate how
input length impacts model performance across
different LLMs, considering their varying context
windows. Qwen (128K context), shows a slight
positive correlation, suggesting that longer inputs
may improve its performance. In contrast, Mistral
and Llama2 (both 4K context), decline as input
length increases, likely due to exceeding their opti-
mal processing capacity. Llama3 (8K context), re-
mains stable with minimum impact from the length.
Models with shorter contexts struggle with longer
inputs, while larger-context models handle them
better, though benefits remain inconsistent.

6 Discussion

Another critical aspect to consider is running time
and memory usage. All 7B LLMs require approxi-
mately 15GB of GPU RAM for direct generation.
RAG demands significantly more memory, peaking
at 32–33GB, nearly twice that of direct generation.
For Qwen, it takes 18-20 minutes to run RAG on
one progress note with prior context input, while
direct generation takes 10 minutes on average. On
EHRShot where input is shorter, diagnosis predic-
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Approach Task CIT ACC THR USE ORG CMP SUC SYN

Direct
Gen

DS 1.00±0 1.82±1.21 1.42±0.64 1.70±0.93 2.48±0.99 4.08±0.75 2.96±0.92 3.5±0.71
A&P 2.13±0.89 3.19±1.15 2.66±0.87 3.51±0.88 3.46±0.86 3.84±0.8 3.03±0.92 3.76±0.66

RAG DS 1.06±0.24 1.68±0.88 1.52±0.79 1.66±0.94 2.4±1.01 3.92±0.78 2.78±0.76 3.5±0.71
A&P 2.35±1.02 3.96±0.98 3.46±0.76 4.07±0.81 3.71±0.9 4.11±0.74 3.00±0.91 3.61±0.7

Table 7: esults of the PDSQI-9 evaluation on discharge summarization (DS) and Assessment and Plan generation (A&P).
Abbreviations: CIT = citations, ACC = accuracy_extractive, THR = thoroughness, USE = usefulness, ORG = organization,
CMP = comprehensibility, SUC = succinctness, SYN = synthesis_abstraction. Definitions of scoring criteria could be found
in (Croxford et al., 2025).

tion takes just 3–4 seconds. For other LLMs with
smaller context window, they run quicker.

Having established the computational feasibility
of these models, we next turn to how their outputs
are evaluated for clinical quality.

LLM-As-Judge The Provider Documentation
Summarization Quality Instrument (PDSQI-9) is a
clinically validated framework that specifies nine
dimensions of summarization quality for the eval-
uation of LLM summarization (Croxford et al.,
2025). In addition to clinician evaluation, Crox-
ford et al. (2025) implemented and validated an
LLM-as-Judge based on this framework, using
GPT-o3, and showed that the approach is strongly
correlated with clinician ratings. In our study, we
adapt their released rubric and prompting protocol
within our HIPAA-compliant Azure OpenAI envi-
ronment. We did not introduce any task-specific
tuning beyond template filling. This setup was used
to score Qwen-generated discharge summaries and
A&P sections and served as a scalable complement
to traditional automated metrics. Table 7 shows
the evaluation results: RAG generally outperforms
Direct Generation, particularly in accuracy, thor-
oughness, and usefulness, with the strongest results
seen in the A&P task. Across both approaches,
A&P summaries score higher than DS, suggesting
that model performance improves when the task
involves structured, focused inputs (A&P) rather
than broad, comprehensive records (discharge sum-
maries). Comprehensibility is consistently strong,
indicating good clarity, while succinctness remains
middling, showing redundancy issues. The weakest
category across all conditions is citations, where
scores remain low, highlighting a major gap in
source attribution. Overall, RAG with A&P pro-
duces the most balanced and reliable summaries.

Expert error analysis To provide a more nu-
anced perspective, we also consulted with a senior
board-certified Emergency Department physician
for qualitative review. This assessment was not

intended to yield quantitative results, but rather
to capture how physicians perceive the gener-
ated summaries and to identify areas for improve-
ment beyond automated scores. We focus specif-
ically on discharge summarization and sample
10 pairs of RAG and Direct Generation output
from Qwen, as it reached relatively high perfor-
mance on automated metrics. The evaluation crite-
ria were adapted from PDSQI-9, but streamlined
and combined with categories from prior clini-
cal text evaluation studies: OVERALL ACCURACY

(factual correctness), HALLUCINATION,OMISSION,
READABILITY, CLINICAL RELEVANCE and SPECI-
FICITY (Singhal et al., 2023; Xu et al., 2024a;
Ben Abacha et al., 2023; Aljamaan et al., 2024;
Croxford et al., 2025; Williams et al., 2024). The
results of this analysis are given in Figure 7, and
the annotation guidelines can be found in Table 20.
While PDSQI-9 consolidates certain aspects (e.g.,
“accuracy” combines factual correctness and hal-
lucination), our interest lies in examining these
dimensions at a more granular level. For example,
we evaluate OVERALL ACCURACY and HALLUCI-
NATION separately to better capture different error
types.

Overall, RAG performs slightly better, with
fewer hallucinations and more clinically relevant
summaries. However, both methods still strug-
gle—often prioritizing less relevant diagnoses,
oversimplifying summaries, and failing to discard
outdated or disproven diagnoses. These issues high-
light ongoing challenges with temporal reasoning.

7 Conclusion

We evaluated LLMs on long-context clinical sum-
marization and prediction using two public EHR
datasets. Current models struggle with accurate
summarization and temporal reasoning, making it
hard to interpret medical event sequences. While
RAG offers some improvement, overall perfor-
mance remains inadequate, highlighting the need
for further progress.
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Limitations

This study focused on current LLMs’ capabilities
on the task of clinical summarization for long con-
text documents including temporal information.
We evaluated several different models, including
Qwen, Llama 3 and DeepSeek, but we acknowl-
edge that this selection is by no means comprehen-
sive and could have limited our analysis. It also
does not contain any closed-source LLMs, as the
use of these models with MIMIC and EHRShot
data is prohibited by Data Use Agreements. Due to
the dearth of publicly available EHR datasets, we
were only able to include data from two sources:
MIMIC-III and EHRShot.

Our human evaluation was constrained by real-
world clinical scheduling limitations, allowing us
to consult only one emergency department (ED)
physician. Furthermore, we did not formally val-
idate our proposed survey instrument, though the
survey questions were aggregated from established
prior work (see Table 20 for the literature these
questions came from). Our goal is to leverage do-
main experts to better understand LLM limitations,
and we plan to expand human evaluation efforts
in future studies to provide a more comprehensive
assessment.

Ethical Statement

This study utilizes de-identified patient data
from publicly available datasets (MIMIC-III and
EHRShot), ensuring that no identifiable patient in-
formation is used. As a result, our work does not
involve human subjects research and poses no risk
to patient privacy or confidentiality.

Additionally, our study is purely retrospective
and computational, focusing on evaluating LLMs
for clinical summarization. The models analyzed
do not interact with real-world clinical workflows
and are not used for actual medical decision-
making. Therefore, there is no potential harm to
patients or healthcare providers as a result of this
research.

Our goal is to assess and improve LLM capabil-
ities for handling complex clinical data, with the
long-term aim of developing safe, explainable, and
effective AI tools to support healthcare profession-
als in the future. However, we acknowledge that

applying existing LLMs in clinical workflows car-
ries real risks, including privacy leakage, algorith-
mic biases, and the potential for incorrect decisions.
Addressing these challenges is critical for ensuring
the safe and ethical deployment of AI in healthcare.
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A Appendix

A.1 More Preprocessing Details
In addition to the preprocessing steps outlined in
section 3.3, we attempt, as far as possible, to only
include laboratory measurements and vital sign val-
ues that fall outside the normal range. These values
are more likely to indicate a problem the patient
is facing and are thus more salient. For lab mea-
surements, we only keep those values flagged as
"abnormal". For chart or vital sign values, there
exists a warning flag, which is either 0 or 1. How-
ever, some values have an NaN value instead. We
exclude values with the flag set to 0, but keep those
with 1 or NaN, since it is unknown whether the
value corresponding to the NaN type is abnormal
or not without a deeper medical analysis.

A.2 EHRShot Statistics

Figure 8: Additional statistics on the EHRShot dataset. Num-
ber of distinct measurements given above, with the token
length distribution below.

Figure 8 reports detailed statistics of EHRShot
cohort, regarding the input token length and num-
ber of distinct clinical measurements. The prompt
token lengths exhibit a wide range, with a mean
of 1,989 tokens and a standard deviation of 1,270
tokens. The distribution is right-skewed, with a
minimum of 178 tokens and a maximum of 5,919
tokens, while the median (50th percentile) is 1,851
tokens.
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Model Sec. CUI ROUGE-L BERTScore

Llama2
Dx 3.87 ± 5.23 4.01 ± 3.17 52.21 ± 11.59
HC 7.07 ± 4.89 12.26 ± 3.50 61.99 ± 6.12
DI 10.28 ± 7.67 13.02 ± 5.18 63.04 ± 11.68

Mistral
Dx 5.46 ± 10.07 3.42 ± 4.34 50.07 ± 10.78
HC 8.64 ± 5.98 12.28 ± 3.13 62.51 ± 5.95
DI 9.09 ± 6.90 12.07 ± 3.90 60.05 ± 9.09

Table 8: Discharge Summarization: Llama2 and Mistral Per-
formance Across Sections: Diagnosis (Dx), Hospital Course
(HC), and Discharge Instructions (DI).

For distinct measurement types per patient, the
data is also highly variable, with a mean of 74
and a standard deviation of 48. The number of
distinct measurements ranges from 1 to 351, with
a median of 66 and an interquartile range from 39
(25th percentile) to 100 (75th percentile).

Both distributions highlight significant variation
in input complexity, reinforcing the need for mod-
els to handle long-context dependencies and multi-
modal data effectively.

A.3 More results on direct generation, RAG
and CoT performance comparison

Table 7 compares Llama2 and Mistral models
across three discharge sections: Diagnosis (Dx),
Hospital Course (IIC), and Discharge Instructions
(DI). Table 8 reports performance on A&P gen-
eration, comparing direct generation and RAG
approaches for Mistral, Llama3, Qwen, and
DeepSeek. Table 9 focuses on Mistral’s discharge
summarization, comparing direct generation with a
Chain-of-Thought prompting method.

A.4 Hyperparameter searching results

In this section, we report our hyperparameter tun-
ing on the RAG setup for all LLMs. Table 11 covers
the hyperparameter selection. All tuning is done
on Discharge Summarization and A&P generation
tasks using a small held-out set (n=5). The best
set of parameters is used for official experiments
reported in the main text. The results of hyperpa-
rameter finetuning on Discharge Summarization
and A&P generation are given in Tables 12 and 13
respectively.

A.5 Event extraction COT prompt for
discharge summarization

The prompt used for event extraction on the dis-
charge summarization task is provided in Figure
9.

Model Metric No Prior Single-Day Multi-Day

Direct Generation

Mistral

CUI 21.60 ± 6.47 34.06 ± 12.15 30.55 ± 13.48

ROUGE 17.70 ± 3.79 26.11 ± 11.68 23.32 ± 13.05

BERTScore 68.16 ± 6.91 71.63 ± 10.86 72.41 ± 9.47

Average 35.82 ± 5.72 43.93 ± 11.56 42.09 ± 12

Llama3

CUI 21.83 ± 6.51 45.35 ± 10.45 43.55 ± 12.00

ROUGE 16.60 ± 3.39 33.16 ± 10.68 32.42 ± 12.14

BERTScore 72.01 ± 6.04 80.10 ± 8.93 80.42 ± 8.81

Average 36.81 ± 4.80 52.87 ± 10.02 52.13 ± 10.98

Qwen

CUI 21.84 ± 5.68 33.8 ± 6.63 33.96 ± 6.56

ROUGE 15.15 ± 3.53 20.74 ± 4.19 21.6 ± 5.23

BERTScore 72.17 ± 4.51 78.01 ± 4.95 78.41 ± 4.81

Average 36.38 ± 4.57 44.18 ± 5.26 44.65 ± 5.53

DeepSeek

CUI 22.58 ± 6.63 34.45 ± 9.26 34.15 ± 10.00

ROUGE 16.16 ± 3.15 21.84 ± 5.65 21.07 ± 5.42

BERTScore 74.97 ± 3.66 78.29 ± 4.61 78.35 ± 5.12

Average 37.90 ± 4.48 44.86 ± 6.51 44.52 ± 9.51

RAG

Mistral

CUI 22.65 ± 7.94 35.01 ± 12.40 34.17 ± 10.57

ROUGE 17.15 ± 5.60 29.50 ± 12.46 27.40 ± 10.08

BERTScore 68.57 ± 6.16 74.23 ± 7.79 73.55 ± 8.46

Average 36.12 ± 6.57 46.24 ± 10.88 45.04 ± 9.70

Llama3

CUI 20.33 ± 5.59 32.02 ± 5.93 31.60 ± 8.38

ROUGE 15.48± 3.60 22.09 ± 5.51 21.42 ± 6.81

BERTScore 73.78 ± 4.50 78.80 ± 4.96 78.96 ± 5.42

Average 36.53 ± 4.56 44.3 ± 5.47 43.99 ± 6.87

Qwen

CUI 22.07± 6.23 37.3 ± 8.83 37.21± 8.15

ROUGE 15.6 ± 3.6 25.42 ± 8.08 25.36 ± 7.5

BERTScore 72.16 ± 4.63 79.27 ± 5.37 80.28 ± 4.68

Average 37.46 ± 4.82 47.33 ± 7.43 47.45 ± 6.78

Table 9: Performance comparison on A&P generation, ag-
gregated over the patient’s entire hospital stay. For readers
interested in a more detailed breakdown, we refer them to the
Fig 10, where we provide per-day performance results for a
subset of patients with a length of stay of at least 5 days.

A.6 RAG and direct generation prompt
optimization

We optimized the prompts and queries used for
RAG systems on all tasks. Both prompts and
queries are similar in terms of its instruction, the
only difference is that queries for RAG has the
"Retrieve" component.

Tables 14,15,16,17,18 present all prompts and
queries for MIMIC tasks.

A.7 Impact of context length on consecutive
patient data

Figure 10 illustrates the impact of incorporating
prior-day context on F1 scores for patient note gen-
eration. The x-axis represents consecutive relative
days within a patient’s hospital stay, where Day 0
corresponds to the first day of admission and serves
as the ground truth (i.e., no evaluation is performed
on this day). The y-axis shows the average F1 score
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Section Method CUI ROUGE-L BERTScore

Dx Direct Gen 5.46 ± 10.07 3.42 ± 4.34 50.07 ± 10.78
CoT Prompt 2.80 ± 5.04 2.95 ± 3.48 48.46 ± 11.00

HC Direct Gen 8.64 ± 5.98 12.28 ± 3.13 62.51 ± 5.95
CoT Prompt 7.78 ± 5.89 9.98 ± 3.84 59.60 ± 7.32

DI Direct Gen 9.09 ± 6.90 12.07 ± 3.90 60.05 ± 9.09
CoT Prompt 9.42 ± 8.19 10.83 ± 4.58 60.52 ± 7.86

Table 10: Mistral performance on the three sections of dis-
charge summarization (Dx: Diagnosis, HC: Hospital course,
DI: Discharge Instruction), comparing direct generation ap-
proach with the event extraction CoT. Including CUI f-score.

Experiment Top-K Chunk Size Chunk Overlap

Exp 1 10 500 100
Exp 2 20 750 100
Exp 3 50 500 50
Exp 4 20 250 100
Exp 5 50 750 200

Table 11: Hyperparameter configurations for each ex-
periment.

across a subset of 10 patients with a length of stay
of at least 5 days.

Since Day 0 (Day 1 in the figure) is not evaluated,
its F1 score is set to 1.0 for all methods to ensure
a clear visual comparison with subsequent days.
The results demonstrate that incorporating prior-
day context improves performance over time. The
Single-Day Context and Multi-Day Context meth-
ods achieve substantially higher F1 scores than the
No Prior Context method, particularly on Day 2
and Day 3, suggesting that leveraging past infor-
mation helps generate more accurate and coherent
patient notes. However, after Day 3, the perfor-
mance of the Multi-Day Context method begins to
decline, indicating that while longer historical con-
text can be beneficial, it may introduce additional
noise or redundant information.

Overall, these findings highlight that considering
prior context enhances the accuracy of generated
patient notes, with Single-Day Context yielding the
highest performance in later days, while Multi-Day
Context shows initial improvements but exhibits
diminishing returns over time.

A.8 More results for using ground-truth
progress notes vs. generated progress
notes on A&P Generation

This section presents further results comparing
ground-truth progress notes and model-generated
progress notes as input for A&P Generation. Our
analysis evaluates how using prior ground-truth
notes versus LLM-generated notes impacts the

Model Metric Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Mistral
ROUGE-L 6.14 6.18 5.93 6.10 6.37
BERTScore 8.41 8.12 8.37 8.35 8.03
CUI 51.03 50.82 51.12 52.56 51.34

Llama3
ROUGE-L 7.37 7.43 6.95 7.07 6.90
BERTScore 9.23 9.78 9.56 9.19 9.32
CUI 55.45 56.90 56.25 55.89 56.67

Qwen
ROUGE-L 6.41 6.97 6.95 6.60 7.11
BERTScore 9.72 9.62 9.68 9.66 10.09
CUI 55.76 56.34 55.42 55.90 56.21

Llama2
ROUGE-L 7.56 7.13 7.59 7.42 6.64
BERTScore 10.22 10.21 9.96 10.16 9.41
CUI 55.67 54.70 54.37 55.80 53.50

Table 12: Hyperparameter Tuning for Discharge Sum-
maries Results (averaged across sections)

Model Metric Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Mistral
ROUGE-L 21.07 17.72 15.74 20.30 15.52
BERTScore 71.42 70.03 68.81 71.45 69.95
CUI 28.05 21.94 20.63 27.92 19.97

Llama3
ROUGE-L 16.73 17.54 16.74 17.11 16.58
BERTScore 71.46 71.66 71.02 71.11 71.60
CUI 22.52 23.88 23.40 23.71 22.50

Qwen
ROUGE-L 19.13 21.13 20.39 18.59 20.62
BERTScore 70.29 69.34 70.98 70.22 70.03
CUI 27.28 30.17 28.87 28.04 29.87

Table 13: Hyperparameter Tuning for A&P Generation

overall quality, coherence, and accuracy of the gen-
erated A&P sections.

Table 19 presents results on all LLMs direct gen-
eration. Overall, there are performance decreases
when moving from using generated progress notes
as context input. The results highlight key dif-
ferences in information retention and propagation,
where models using ground-truth progress notes
tend to maintain better clinical consistency, while
those using generated notes may accumulate errors
over multiple days, leading to drift and halluci-
nation in longitudinal patient summaries. These
findings emphasize the need for robust calibration
and error correction mechanisms when relying on
LLM-generated progress notes for iterative sum-
marization.

Additionally, we include Figure 11 to show the
impact of incorporating prior-day context on the
composition of generated patient notes. The figure
illustrates how different methods—ranging from
no prior-day context (Method -1) to single-day
(Method 1) and multi-day context (Method 2)—af-
fect the alignment between generated elements
(GEN), ground truth elements (GT), and common
elements across multiple admissions. As the num-
ber of prior days included increases, we observe
changes in the proportion of correctly retained
ground truth elements and newly generated con-
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What is the patient’s main diagnosis?
The patient’s primary diagnosis is: (Llama2)
Identify the primary reason for the patient’s hospital admission: (Llama3)
Instruct: Given a search query, retrieve relevant passages that answer the query.
Query: patient’s primary diagnosis. (Mistral)
The patient has been diagnosed with: (Qwen)

Table 14: Queries used for retrieving the primary diagnosis. Highest performing on models bolded with respective
model in parentheses.

Summarize the hospital course for this patient in a concise and accurate way.
(Qwen)
The patient’s hospital course included the following:
Provide a brief hospital course, including key events and treatments.
(Mistral, Llama3)
Instruct: Given a search query, retrieve relevant passages that answer the query.
Query: Brief hospital course.
What were the key events and outcomes during the patient’s hospital stay?
(Llama2)

Table 15: Queries used for retrieving the hospital course. Highest performing on models bolded with respective
model in parentheses.

tent, highlighting the role of historical context in
improving consistency and completeness in patient
note generation. Additionally, the inclusion of prior
context reduces the number of newly generated el-
ements, indicating a shift away from generating
potentially extraneous or less relevant content.

However, the degree of improvement varies
across different admissions, suggesting that some
cases benefit more from historical context than oth-
ers, potentially due to differences in case complex-
ity or the structure of prior notes. Furthermore, the
differences between generated and ground truth el-
ements become more pronounced as days progress,
highlighting the challenge of maintaining consis-
tency in patient notes over time. Overall, the find-
ings suggest that incorporating multi-day context
enhances the accuracy and stability of generated
patient notes, reducing hallucinated content while
preserving clinically relevant information.

A.9 Break-down results behind Figure 5

Recall that Figure 5 aggregates all metrics for LLM
direct generation on discharge summarization. To
provide comprehensive results analysis, we include
Figure 12 for 24h window and 48h window. The
trends of performance changing across different
modalities are consistent with the Figure 5.

A.10 Details about human evaluation

Last but not least, we present the full survey ques-
tions aggregated from existing work in Table 20.
We would like to emphasize that this survey has not
been validated, rather, it selects the criteria after

consulting with a physician regarding what they
value in LLM generated text and findings from
prior work, as cited in the table. These questions
allow us to evaluate the accuracy, faithfulness, read-
ability, and clinical relevance of LLM-generated
text, providing a structured framework for assess-
ing their strengths and limitations in a clinical set-
ting.
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Given the input EHR data, generate discharge instructions for this patient. (All models)
What are the discharge instructions for the patient?
Write a summary of the discharge plan, including medications, follow-up visits, and
patient care instructions.
Instruct: Given a search query, retrieve relevant passages that answer the query.
Query: discharge instructions.
What follow-up care and medications are recommended for the patient after discharge?

Table 16: Queries used for retrieving the discharge instructions. Highest performing on models bolded with
respective model in parentheses.

Given the patient EHR data, write the Assessment section of a clinical progress note. The Assessment should include
a brief description of both passive and active diagnoses. Clearly state why the patient is admitted to the hospital
and describe the active problem for the day, along with any relevant comorbidities the patient has.
Provide the Assessment section of the patient’s progress note, including active and passive diagnoses, admission reasons,
the patient’s active problems for the day, and relevant comorbidities.
What are the patient’s active and passive diagnoses? Why was the patient admitted to the hospital?
What are the active medical problems for the day? Include relevant comorbidities.
Retrieve passages that explain the patient’s active and passive diagnoses, reasons for admission, active problems
for the day, and relevant comorbidities. (Mistral, Qwen)
Instruct: Generate a concise Assessment section for the patient’s progress note. Include a summary of active and
passive diagnoses, admission reasons, the patient’s current active problems, and any comorbidities. (Llama3)

Table 17: Queries used for retrieving the Assessment section of a progress note. Highest performing on models
bolded with respective model in parentheses.

Chain-of-Thought Prompt for 48h Discharge Sum-
mary Event Extraction

DISCHARGE EVENT EXTRACTION TASK An-
alyze the following data from the final 48 hours of
the hospital stay and identify key clinical events that
are most relevant for summarizing the course of treat-
ment and informing discharge planning. {chronol-
ogy_text} Only include events that reflect:
1. Significant changes in symptoms or status (e.g.,

improvements, worsening, new findings).
2. Clinically important test results (especially abnor-

mal values that lead to certain treatments).
3. Major treatments or interventions (e.g., med-

ication changes, procedures, escalation/de-
escalation).

4. Care team decisions that indicate readiness for
discharge or change in care goals.

5. Events linked to the final diagnosis or that inform
follow-up care.

Response Format: ### Day X Key Events ### -
[Time]: [Description] (Reasoning)

Example Model Output

### Day 1 Key Events ### - **2159-03-12 08:00**:
Stable Vital Signs (BP 120/70 mmHg, HR 88 bpm,
RR 18 breaths/min, Temp 98.6°F). This indicates
overall stability and readiness for discharge.

Figure 9: Chain-of-Thought prompting template and example
output used for discharge summary event extraction based on
the final 48 hours of hospitalization.

Figure 10: Impact of prior-day context on F1 score across
consecutive days
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Figure 11: Comparison of generated patient notes across different methods of incorporating prior-day context. Each subplot
represents a different patient admission, with bars indicating the composition of generated notes across Days 2, 3, and 4. The
stacked bars show the proportion of common elements (overlapping between ground truth and generated notes), GT elements
(present in the ground truth but missing in generated notes), and GEN elements (newly generated content not found in the ground
truth). Method -1 (no prior-day context), Method 1 (single prior-day context), and Method 2 (multi-day context) demonstrate
how historical context influences the balance between accurate retention and newly introduced information.
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Given the patient EHR data, write the Plan section of a clinical progress note. The Plan should be organized into multiple
subsections, each corresponding to a specific medical problem. Provide a detailed treatment plan for each problem, outlining
proposed or ongoing interventions, medications, and care strategies.
Generate the Plan section of the patient’s progress note. Provide detailed treatment plans for specific medical problems,
including proposed or ongoing interventions, medications, and care strategies.
What are the proposed treatment plans for the patient’s active medical problems? Include details on interventions,
medication regimens, and care strategies.
Retrieve passages that outline treatment strategies for medical problems, including medications, interventions,
and care strategies.
(Mistral, Qwen)
Instruct: Write the Plan section of the progress note. Organize it into subsections for each medical problem.
Provide detailed plans for treatments, interventions, medications, and care strategies. (Llama3)

Table 18: Queries used for retrieving the Plan section of a progress note. Highest performing on models bolded with
respective model in parentheses.

GT GEN
Model Metric No Prior Single-Day Multi-Day No Prior Single-Day Multi-Day

Mistral

CUI 21.60±6.47 34.06±12.15 30.55±13.48 21.60±6.47 22.30±16.13 22.82±16.47
ROUGE-L 17.70±3.79 26.11±11.68 23.32±13.05 17.70±3.79 17.57±13.47 17.90±13.59
BERTScore 68.16±6.91 71.63±10.86 72.41±9.47 68.16±6.91 70.51±11.60 71.50±9.66
Average 35.82 43.93 42.09 35.82 36.79 37.41

Llama3

CUI 21.83±6.51 45.35 ± 10.45 43.55±12.00 21.83±6.51 40.89±13.61 40.50±13.29
ROUGE-L 16.60±3.39 33.16±10.68 32.42±12.14 16.90±3.85 28.86±12.8 29.34±13.30
BERTScore 72.01±6.04 80.10±8.93 80.42±8.81 72.33±5.48 79.68±10.07 80.48±9.56
Average 36.81 52.87 52.13 37.05 49.81 50.11

Qwen

CUI 21.84±5.68 34.27±7.18 34.32±6.65 21.84±5.68 30.10±6.70 29.55±6.50
ROUGE-L 15.35±3.10 77.50±5.37 21.85±4.99 15.18±3.00 18.21±4.28 17.55±4.07
BERTScore 72.57±4.92 20.69±4.37 77.88±4.86 72.97±4.83 78.39±4.11 77.61±4.52
Average 36.87 44.15 44.68 37.12 42.23 41.57

DeepSeek

CUI 22.58±6.63 34.45±9.26 34.15±10.00 22.58±6.63 27.33±7.69 27.93±7.46
ROUGE-L 16.16±3.15 21.84±5.65 21.07±5.42 16.16±3.15 17.37±3.86 16.88±3.88
BERTScore 74.97±3.66 78.29±4.61 78.35±5.12 74.97±3.66 77.90±4.36 77.93±4.79
Average 37.90 44.86 44.52 37.90 40.87 40.91

Table 19: Comparison of ground-truth (GT, same results we report in main text) and generated (GEN) settings on
assessment and plan generation (results of direct generation approach shown)
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Figure 12: Metric breakdown across modalities for the 24 hour time window (on direct generation discharge summarization).
SapBERT = BERTScore with SapBERT emebddings.
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Physician Evaluation of LLM-Generated Clinical Summaries
Thank you for participating in this evaluation. Please assess the LLM-generated text based on the following criteria
using the 5-point Likert scale provided for each question.
Scale Definitions (from 1-5):
1 Strongly Disagree; 2 Disagree; 3 Neutral; 4 Agree; 5 Strongly Agree

Category Evaluation Question Score (1-5)

Overall Accuracy (Xu
et al., 2024a; Singhal et al.,
2023; Ben Abacha et al.,
2023; Croxford et al., 2025;
Johri et al., 2025)

How well does the generated text align with the actual clinical data?
The summary is factually correct and accurately represents the original data.
No major distortions or misinterpretations of key clinical facts.

Hallucination (Faithful-
ness) (Ben Abacha et al.,
2023; Singhal et al., 2023;
Aljamaan et al., 2024; Johri
et al., 2025)

To what extent does the LLM generate information faithfully?
The generated text does not introduce any fabricated, misleading, or incorrect
information.
All statements in the summary can be traced back to the original document.

Omission (Croxford et al.,
2025; Ben Abacha et al.,
2023)

Did the model include all important clinical details?
The generated summary includes all clinically important details.
No missing critical pieces of information relevant to patient care.

Readability (Xu et al.,
2024a)

How easy is the generated text to read and comprehend?
The text is well-structured, clear, and easy to understand.
Uses appropriate medical terminology without excessive complexity.

Clinical Relevance (Useful-
ness) (Singhal et al., 2023;
Johri et al., 2025)

How useful is the content for clinical decision-making?
The information provided is highly relevant to the clinical task.
Avoids unnecessary or unrelated details.

Specificity (Level of De-
tail) (Williams et al., 2024)

Does the summary maintain an appropriate level of detail?
The text balances between a high-level summary and necessary details.
Avoids being overly vague or excessively detailed.

Table 20: Physician evaluation survey
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