
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 20565–20598
November 4-9, 2025 ©2025 Association for Computational Linguistics

Overcoming Black-box Attack Inefficiency with Hybrid and Dynamic Select
Algorithms

Abhinay Shankar Belde, Rohit Ramkumar, Jonathan Rusert
Department of Computer Science

Purdue University, Fort Wayne
{belda01, ramkr01, jrusert}@pfw.edu

Abstract

Adversarial text attack research plays a cru-
cial role in evaluating the robustness of NLP
models. However, the increasing complex-
ity of transformer-based architectures has dra-
matically raised the computational cost of at-
tack testing, especially for researchers with
limited resources (e.g., GPUs). Existing pop-
ular black-box attack methods often require
a large number of queries, which can make
them inefficient and impractical for researchers.
To address these challenges, we propose two
new attack selection strategies called Hybrid
and Dynamic Select, which better combine the
strengths of previous selection algorithms. Hy-
brid Select merges generalized BinarySelect
techniques with GreedySelect by introducing
a size threshold to decide which selection al-
gorithm to use. Dynamic Select provides an
alternative approach of combining the gener-
alized Binary and GreedySelect by learning
which lengths of texts each selection method
should be applied to. This greatly reduces the
number of queries needed while maintaining
attack effectiveness (a limitation of BinarySe-
lect). Across 4 datasets and 6 target models,
our best method(sentence-level Hybrid Select)
is able to reduce the number of required queries
per attack up 25.82% on average against both
encoder models and LLMs, without losing the
effectiveness of the attack.

1 Introduction

Adversarial attacks have been useful for studying
the robustness of NLP models. Black-box world-
level attacks often follow a two-step approach, first
selecting a word or token to modify and then modi-
fying that word to cause the target NLP model to
fail (with further constraints). Selection algorithms
can play a pivotal role in the computational over-
head of adversarial attacks. GreedySelect (Hsieh
et al., 2019; Li et al., 2020b), a widely adopted
method, iteratively evaluates each word in the text
to determine its contribution to the classifier’s de-

cision. By removing/masking the word with the
highest probability drop, GreedySelect achieves
high precision. However, its word-by-word ap-
proach often results in high query counts, limiting
its efficiency.

As NLP models continue to grow in size, high
query counts can translate to attacks taking a large
of amount of time per text. This inefficiency fur-
ther affects researchers or users who do not have
access to high-end GPU’s to carry out attacks. Fur-
thermore, an increased time in attack execution,
reduces the ability for researchers to adequately
test their models.

To address these challenges, BinarySelect
(Ghosh and Rusert, 2025) adopted a divide-and-
conquer strategy inspired by binary search. By
partitioning the input into two segments and eval-
uating the probability change caused by exclud-
ing each segment, BinarySelect aimed to narrow
down the search space when selecting an influential
word. While BinarySelect helped reduced the num-
ber of queries compared to GreedySelect in some
instances, it caused a drop in attack effectiveness.

Building on these foundations, this paper pro-
poses hybrid approaches that integrate query-
efficient methods like BinarySelect with GreedyS-
elect’s effectiveness. These strategies aim to bal-
ance attack efficacy and computational efficiency,
addressing critical gaps identified in prior litera-
ture and offering a solution to improve adversarial
attack performance.

Our research makes the following contributions:

1. New Selection Algorithms (Hybrid and Dy-
namic Select). We propose two new algo-
rithms that extend BinarySelect and GreedyS-
elect. Hybrid Select uses N-nary partitioning
up to a threshold before switching to GreedyS-
elect, while Sentence-Level Hybrid is a special
case that partitions by sentence. Dynamic Se-
lect instead learns which N values are most
effective for different text lengths, adapting

20565

Figure 1: Visualization of HybridSelect. This figure illustrates the HybridSelect algorithm, which combines
GreedySelect and N-narySelect techniques for efficient query optimization. The process begins with segmenting
the input text X into smaller components. The GreedySelect method evaluates individual segments iteratively
to determine their influence, identifying the most impactful word for replacement. Concurrently, N-narySelect
partitions the text hierarchically, dividing it into n-segments (e.g., N = 3), and evaluates subqueries using a
classifier f(X). Probabilities are calculated, and the segment with the largest probability drop is selected. Segments
below the threshold are finalized, ensuring an optimal balance between exploration and computational efficiency.

the strategy automatically. We also evalu-
ate their combination (Hybrid + Dynamic),
highlighting where it helps and where it fails.
Across 4 datasets and 6 models, one variant of
Sentence-Level Hybrid reduces query counts
by up 25.82% (e.g., 484→ 362 queries (Ta-
ble 1)) while preserving attack success. Un-
like prior works that focus on improving the
replacement stage, our contribution advances
the selection step and generalizes to many
greedy-based attacks (e.g., TextFooler, BERT-
Attack, PWWS)1.

2. Evaluate Methods Across Multiple
Datasets and Dimensions: We evaluate
our methods on adversarial attacks against
both encoder models (DistilBert and De-
BERTa) and LLMs (GPT2, GPTNeo, T5,
and Llama3) across four standard adversarial
attacks classification datasets of various
sizes: IMDB, Yelp, AG News, and Rotten
Tomatoes. Additionally, we conduct several
ablation studies to find and demonstrate the
strongest hyperparameters and confirm the

1We share our code for reproducibil-
ity: https://github.com/08Abhinay/
Hybrid-Dynamic-Select

effectiveness and efficiency of our methods.

Overall, our proposed methods improve effi-
ciency over previous methods like GreedySelect
while maintaining efficacy, which was not achieved
by previous methods such as BinarySelect.

2 Proposed Approaches

Our proposed approaches focus on the domain
of black-box attacks (sometimes noted as grey-
box). That is, following previous research (Li et al.,
2021a; Hsieh et al., 2019; Alzantot et al., 2018a;
Gao et al., 2018), we assume information about the
model, such as weights and architecture, are not
known. The attack can pass a query to the model,
which returns a prediction with a probability.

The goal of the attacker is to modify an input
text, such that it causes a target model to fail, but
retains its original meaning to humans (Li et al.,
2020a; Garg and Ramakrishnan, 2020b). In this
research, we focus on the domain of text classi-
fication. Often black-box word-level text attacks
consist of 2 stages: selection and modification. In
selection, the attacker finds the word or token that
the classifier is relying on the most for its decision.
In modification, the token found in the selection
step is modified in such a way to keep the noted

20566

https://github.com/08Abhinay/Hybrid-Dynamic-Select
https://github.com/08Abhinay/Hybrid-Dynamic-Select

goals. This can be character level modification or
word level by replacing the token with less known
synonyms. If the attack does not succeed after the
modification, the selection method finds the next
influential word and the process continues.

In this research, our objective is to improve the
efficiency of attacks via the selection step by bal-
ancing the efficiency of BinarySelect and the at-
tack effectiveness of GreedySelect. We first define
GreedySelect and BinarySelect and then our own
approaches.

2.1 Baseline Selection Algorithms

Baseline selection. Greedy Select (and its varia-
tions such as Importance Score) is one of the most
widely used method for black-box text attacks (For-
mento et al., 2023; Jin et al., 2020; Li et al., 2020a;
Garg and Ramakrishnan, 2020b; Ren et al., 2019;
Hsieh et al., 2019; Li et al., 2019; Gao et al., 2018).
Greedy Select removes one word at a time, queries
the classifier, and keeps the word whose omission
produces the largest drop in the target-class prob-
ability. Because it probes every token, it is highly
effective but also query-intensive (one query per
word just to find the first salient token). Binary Se-
lect (Ghosh and Rusert, 2025) eases this burden by
applying a binary-search heuristic: the sentence is
repeatedly split in half, and the half whose removal
hurts the classifier most is subdivided until only a
single word remains. This strategy cuts the query
cost dramatically on long texts but—by discard-
ing half of the context at each step—can overlook
subtle but important words, leaving a small effec-
tiveness gap relative to Greedy Select.

To bridge that gap we introduce N-nary Select,
which generalises Binary Select from two to N
segments. Starting with the full input X and its
score f(X), we partition X into N disjoint seg-
ments {X1, . . . , XN}. For each segment we com-
pute ∆i = f(X) − f(X \Xi) and recurse on the
segment with the largest ∆i. The recursion stops
when a single-word segment is reached; that word
is deemed most influential. By tuning N , the al-
gorithm interpolates smoothly between the thor-
oughness of Greedy Select (N = |X|) and the
speed of Binary Select (N = 2), allowing us to
find a sweet-spot that is both query-efficient and
consistently effective across text lengths and model
architectures.

2.2 Proposed Selection Methods

Though N-nary Select is more flexible than Binary-
Select, our experiments show, it still suffers from
issues found in BinarySelect. Namely, on small
texts, the model is better off leveraging GreedySe-
lect as the division of texts can cause extra unneces-
sary queries. Thus, we propose Hybrid Select and
Dynamic Select to address this.

2.2.1 Hybrid Select

Hybrid Select combines N-nary Select with
GreedySelect by setting a length threshold t. The
full algorithm can be found in Algorithms 2–9.
Specifically, Hybrid Select first follows N-nary
Select and continuously partitions the texts into
N partitions. Once the length of the current par-
tition falls below t, the algorithm transitions to
word-level greedy exploration to pinpoint the most
impactful words. The threshold t is set as a per-
centage of the original text length. For example, if
the original text is 200 words in length and t is set
to 10%, then once the partitioned texts contain 20
words or less, the algorithm switches to GreedySe-
lect. This combination of N-nary segmentation and
word-level precision balances computational effi-
ciency with attack effectiveness. A visualization of
this method can be found in Figure 1.

Sentence Level Hybrid Select: Another issue with
the N-nary Select algorithm is that splitting the
text in N separate segments can cause sentences
to split and meaning affected. Thus, we also pro-
pose a special case of the Hybrid N-nary Select
methodology which splits the original text at the
sentence level (Alg 7). This variation sets N = S,
where S is the number of sentences in the original
text. The method then follows the standard Hy-
brid procedure: if any sentence segment remains
longer than the threshold t, it continues N-nary
splitting; once the length drops below t, it switches
to GreedySelect. In practice, this means the method
first identifies the most influential sentence via N-
nary Select, and then pinpoints the most influential
words within that sentence via GreedySelect.

The hybrid nature of this approach enables it
to leverage coarse-grained sentence segmentation
for rapid narrowing, followed by fine-grained word
exploration for precision. It is particularly effective
in scenarios where sentence boundaries provide a
natural structure to the input text.

20567

2.2.2 Dynamic Select
We also propose an algorithm which leverages
GreedySelect and N-nary Select on the texts they
are the most effective on. That is, we find the opti-
mal N value based on the length of the input text
in words and then use this in the attack. As shown
in Appendix D, these values are calculated from a
separate validation set in the same dataset. Initially,
the maximum input length in the validation set is
identified. Based on this length, 5 length bins are
created. For each length bins, the optimal N value
is selected based on the minimum query count in
the validation set. This mapping of length bins to
the optimal N value is applied to the target data.

2.2.3 Hybrid + Dynamic Select
Finally, we aim to combine the strengths of both
Hybrid Select and Dynamic Select into one method-
ology Hybrid + Dynamic Select. This method com-
bines both algorithms by first using Dynamic Select
to find the optimal N and then passing that N to
the Hybrid Select methodology. Specifically, the
algorithm will automatically choose the N value
based on the binning rules shown in Algorithm 2.

2.3 Replacement Methodology
As our proposed improvements focus on the se-
lection algorithm, we leverage a simple replace-
ment algorithm leveraged by previous research
(Ren et al., 2019). We leverage Wordnet (Miller,
1994) to obtain synonyms of selected words and
try to replace the word and check the change in
probability. We begin with the most similar syn-
onym (as given by Wordnet) and continue checking
every synonym until either the classifier fails or all
have been checked. If the classifier did not fail, we
choose the synonym that causes the highest drop
in target label probability. We also perform exper-
iments to see if utilizing a transformer model for
masked language modeling replacement would im-
prove the attack effectiveness or efficiency (similar
to previous research (Li et al., 2020b; Garg and
Ramakrishnan, 2020b)). These can be found in
Section C.3.

3 Experimental Setup

To evaluate Hybrid Select and Dynamic Select in
the adversarial attack setting, we test all noted se-
lection methods as parts of attacks2 against two

2This research utilized some combination of Nvidia V100,
A100, A10, and A30 GPUs. Each attack combination took
roughly 30 minutes.

encoder-based models Distilbert (Sanh et al., 2020)
and DeBERTa (He et al., 2021) and 4 LLM mod-
els GPT2 (Radford et al., 2019), GPTNeo (Black
et al., 2021), T5 (Raffel et al., 2020), and Llama3
(AI@Meta, 2024). These models are tested in vari-
ous amounts across 4 standard attack datasets (Li
et al., 2020b; Jin et al., 2020): three binary senti-
ment datasets (IMDB, Yelp Polarity, Rotten Toma-
toes) and one multi-class news dataset AG News.
IMDB and Yelp contain longer texts on average
(215 and 157 words respectively) than AG News
(43 words) and Rotten Tomatoes (20 words). We
expect our methods to naturally perform better on
longer texts due to the larger disadvantage GreedyS-
elect has (it must perform len(text) queries always
at the beginning of an attack). Following previous
attack research, we randomly sample 1000 exam-
ples from each dataset to attack and keep these
1000 consistent across combinations.
Metrics: We use the following metrics to evaluate
our approaches in the attack:

1. Attack Success Rate (ASR) (Equation 1 -
A standard metric in attack research. This helps
measure the effectiveness of the attack.

ASR =
OriginalAcc. − AttackAcc.

OriginalAcc.
(1)

2. Average Queries - To measure increase in
attack efficiency from our proposed methods, we
measure the number of queries needed for an attack
on average. These queries indicate how many calls
to the target classifier are needed. We focus on only
the successful attacks, following prior research (Liu
et al., 2023).

3. Average Similarity. To ensure adversarial
examples remain semantically close to the original
text, we use cosine similarity between sentence em-
beddings from all-mpnet-base-v2 (Reimers
and Gurevych, 2020), a Sentence-BERT model
fine-tuned on semantic textual similarity and NLI
tasks. This model offers a strong balance of effi-
ciency and accuracy, achieving high correlation
with human judgments (Spearman ρ ≈ 0.865)
while being lightweight. Its robustness to surface-
level edits and fast inference makes it ideal for mea-
suring semantic preservation during attack-time.

4. Average Perturbation Amount - A similar
motivation to similarity, the average perturbation
amount measures how much of the original text
was modified. As with the above, we calculate this
for successful attacks.

20568

DistilBERT (OA = 92) DeBERTa (OA = 94) GPT-2 (OA = 94) GPT-Neo (OA = 93) T5 (OA = 90) Llama3 (OA = 92)

Selection Method N ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ

Binary - 98 484 71 372 90 652 98 583 98 480 98 547

Greedy - 99 425 70 303 90 593 98 462 99 412 98 430

N-Nary
3 98 461 70 372 93 614 98 537 99 455 100 492

6 98 569 71 447 92 831 99 643 99 496 98 581

Hybrid

2 98 427 70 333 99 507 98 485 99 391 98 458

3 98 392 70 302 98 475 97 457 99 392 100 427

6 98 398 70 360 99 533 99 555 99 422 98 504

Sent. Hybrid

2 98 368 71 303 98 430 97 456 98 384 97 459

3 98 362 71 302 98 443 98 445 98 368 97 454

6 98 373 71 295 98 428 97 430 98 359 97 436

Dynamic - 98 456 70 384 98 552 98 553 99 429 98 497

Dynamic + Hybrid - 99 395 71 312 69 463 73 467 99 376 98 415

Selection Method N Sim. Pert. Sim. Pert. Sim. Pert. Sim. Pert. Sim. Pert. Sim. Pert.

Binary - 91 9 92 8 84 13 90 12 89 11 91 10

Greedy - 91 7 92 7 85 12 91 8 90 8 92 7

N-Nary
3 91 8 91 8 84 14 90 11 89 11 91 10

6 91 7 92 7 85 13 91 9 90 9 92 8

Hybrid

2 92 9 92 8 89 12 90 11 89 11 91 10

3 92 8 91 8 89 11 90 11 89 11 91 10

6 92 7 92 7 90 9 91 9 90 9 92 8

Sent. Hybrid

2 91 9 91 9 89 11 90 11 89 12 90 11

3 91 9 90 8 89 11 90 11 89 11 90 10

6 91 9 91 7 90 10 91 10 89 11 90 10

Dynamic - 91 8 82 19 89 11 90 11 90 9 91 9

Dynamic + Hybrid - 91 8 82 19 89 11 90 11 90 9 91 9

Table 1: Results for different methods on the IMDB dataset where ASR is attack success rate, AvgQ is the average
queries by the successful attacks, Sim. is the similarity of text to the original, and Pert. is the percentage of text
modified. A t of 10% was used for all Hybrid methods. Bold values indicate the best for that column, underline
indicates second best.

Number of words to modify: BinarySelect intro-
duced a parameter k which indicated how many
words were allowed to be modified at most. In our
experiments, we let k be equal to the number of
words (or ALL in BinarySelect). We do perform
more experiments on various restrictions of k in
Section C.4.

4 Results and Discussions

Tables 1, 2, 3, and 4 present the evaluation of our
attack strategies on IMDB, Yelp, AG News, and
Rotten Tomatoes, respectively. For each dataset,
we evaluate six target models—DistilBERT, De-
BERTa, GPT-2, GPT-Neo, T5, and Llama3—and
report four core metrics: attack success rate (ASR),
average number of queries for successful attacks
(AvgQ), semantic similarity to the original input
(Sim.), and the percentage of tokens modified
(Pert.). Alongside the baseline methods (Binary

and Greedy), we evaluate fixed N-Nary splitting
(N ∈ {2, 3, 6}) and our four novel algorithms: Hy-
brid, Sentence-Level Hybrid, Dynamic-N, and
Dynamic-N + Hybrid. All Hybrid-based strategies
apply a fixed pruning threshold of t = 10%, which
our preliminary experiments indicated provides a
strong trade-off between efficiency and effective-
ness. We explore these parameter choices more
thoroughly in Sections C.1 and C.4. Our overarch-
ing objective remains to minimize queries and edits
while reducing model confidence, and to demon-
strate that our strategies scale reliably across model
architectures, dataset lengths, and attack goals.

4.1 Attacks Versus Encoder Models

First we analyze the attacks against two
encoder-style target models, DistilBERT and De-
BERTa. On both models the Hybrid family con-
sistently trims the number of queries without af-
fecting the attack success. DistilBERT, shows

20569

DistilBert (OA = 97) DeBERTa (OA = 99) GPT2 (OA = 96) GPTNeo (OA = 97) T5 (OA = 97)

Selection Method N ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ

Binary - 97 400 98 467 97 461 96 368 69 602

Greedy - 98 329 95 462 96 355 97 323 74 525

N-Nary
3 97 374 95 469 96 426 96 342 71 605

6 98 448 95 469 97 501 97 405 76 882

Hybrid

2 98 363 95 472 97 386 100 302 69 531

3 98 346 96 497 96 367 96 289 69 543

6 98 331 96 570 97 433 97 342 72 795

Sent. Hybrid

2 97 327 95 403 95 380 95 312 68 549

3 97 319 96 511 95 382 95 307 69 559

6 97 325 96 639 95 383 95 307 68 560

Dynamic - 97 378 96 525 96 428 96 337 68 581

Dynamic+ Hybrid - 97 319 96 462 96 370 96 282 70 543

Selection Method N Sim. Pert. Sim. Pert. Sim. Pert. Sim. Pert. Sim. Pert.

Binary - 86 13 81 18 84 15 87 13 76 22

Greedy - 86 11 82 15 86 12 87 11 76 20

N-Nary
3 86 12 81 18 85 14 87 12 76 22

6 87 10 83 15 86 12 88 11 76 20

Hybrid

2 87 12 81 18 84 15 87 13 76 22

3 87 12 81 17 85 14 87 12 76 21

6 88 10 83 15 86 12 88 10 77 19

Sent. Hybrid

2 87 12 81 18 84 14 86 13 74 23

3 87 12 81 18 84 15 86 12 74 23

6 87 12 81 17 85 14 87 11 75 22

Dynamic - 86 12 80 18 85 14 87 12 76 21

Dynamic + Hybrid - 86 12 80 18 85 13 87 12 76 21

Table 2: Results for different methods on the Yelp dataset where ASR is attack success rate, AvgQ is the average
queries by the successful attacks, Sim. is the similarity of text to the original, and Pert. is the percentage of text
modified. A t of 10% was used for all Hybrid methods. Bold values indicate the best for that column, underline
indicates second best.

more vulnerability to attacks and the largest query
reductions.For IMDB, the sentence-level Hybrid
with N = 3 drops the average query budget
from 425 to 362 while holding the success rate
at 98%. Similarly, for Yelp, Hybrid N = 3 (or
Dynamic + Hybrid) reduces the queries to 319 with
a 97% success rate.

We find efficiency improvements against De-
BERTa as well, despite its higher original ac-
curacy. For example, a sentence-level Hybrid
with N = 2 reduces queries by about 13 % on
Yelp, and on AG News the word-level Hybrid
with N = 3 reduces the average down from 154
to 138—again with little change in ASR. Even
on Rotten Tomatoes, where baseline queries are

already low, Sentence-level Hybrid requires only
49–54 requests versus the Greedy baseline’s 60,
confirming the strength of the method across across
text lengths and model sizes.

Examining the similarity and perturbation scores,
we find that the efficiency gains come at little cost
to text quality. On IMDB, Greedy achieves the
highest similarity score for DistilBERT (91 %) with
only 8 % of tokens edited; Hybrid N = 3 fol-
lows within a single point—90 % similarity—while
touching 10 % of the text. DeBERTa mirrors that
story: Greedy peaks at 92 % similarity and an 8 %
perturbation rate, whereas Hybrid N = 3 stays
level on similarity and rises only to 10 % edited

20570

DistilBert (OA = 95) DeBERTa (OA = 96) GPT2 (OA = 95) GPTNeo (OA = 93) T5 (OA = 95) Llama3 (OA = 96)

Selection Method N ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ

Binary - 73 153 77 171 71 180 71 167 67 191 66 184

Greedy - 73 153 78 154 72 156 71 153 67 171 67 155

N-Nary
3 72 161 77 163 71 171 70 157 65 182 66 176

6 76 253 79 241 75 264 75 243 72 297 69 259

Hybrid

2 72 140 77 142 71 150 70 139 67 162 66 153

3 72 138 77 138 71 146 70 134 66 159 66 152

6 76 220 78 209 75 229 75 215 71 262 69 228

Sent. Hybrid

2 72 160 77 166 71 171 70 158 73 179 66 182

3 73 164 77 162 71 168 71 162 66 180 66 175

6 73 172 76 169 72 181 71 169 67 197 66 185

Dynamic - 72 169 77 167 71 171 70 159 66 182 66 176

Dynamic + Hybrid - 72 141 77 140 71 146 70 135 67 157 66 151

Selection Method N Sim. Pert. Sim. Pert. Sim. Pert. Sim. Pert. Sim. Pert. Sim. Pert.

Binary - 74 27 73 29 75 30 77 28 73 31 72 31

Greedy - 74 26 74 28 75 27 77 26 74 29 72 28

N-Nary
3 74 27 74 29 75 29 77 27 73 30 72 30

6 74 26 74 27 76 28 77 25 75 29 72 28

Hybrid

2 74 27 72 29 75 30 77 27 73 30 72 31

3 74 28 73 30 75 29 77 27 74 30 72 31

6 74 27 73 27 76 8 78 25 75 28 72 29

Sent. Hybrid

2 74 27 72 29 75 29 77 27 74 29 72 31

3 74 28 73 28 75 29 78 27 73 31 72 31

6 75 27 73 28 75 28 78 26 75 29 72 29

Dynamic - 73 32 73 22 75 29 77 27 74 29 72 30

Dynamic + Hybrid - 73 32 74 33 75 29 77 27 73 30 72 30

Table 3: Results for different methods on the AGNews datasetwhere ASR is attack success rate, AvgQ is the average
queries by the successful attacks, Sim. is the similarity of text to the original, and Pert. is the percentage of text
modified. A t of 10% was used for all Hybrid methods. Bold values indicate the best for that column, underline
indicates second best.

tokens. In short, the encoders let us trade a mod-
est 2 % increase in edits for a double-digit drop in
queries.

4.2 Attacks Versus LLMs

We find similar efficiency improvements against
the LLMs—GPT-2, GPT-Neo, T5, and Llama3.
However, the gains depend on both model robust-
ness and dataset length. On the sprawling IMDB
corpus, the Hybrid agenda is outperforms the rest
of the models: for GPT-2, word-level Hybrid with
N = 3 reduces queries by 20 % (593→475) and
lifts the success rate from 90 % to 98 %. Further-
more, it boosts similarity from 83 % to roughly
88–89 % while reducing perturbations from 15 %
to 13 %. GPT-Neo and T5 show milder query re-
ductions, yet the sentence-level Hybrid with N = 6
still shaves about fifty requests apiece and leaves
similarity unchanged in the high-80s. Llama3

is particularly revealing: its baseline already sits
at 98 % success and 90 % similarity, yet Hybrid
N = 3 nudges success to a perfect 100 % while
keeping similarity above 89 % and slightly lower-
ing the number of edits.

We find success for Yelp as well depending on
the model examined. Greedy remains a strong base-
line for GPT-2, but on GPT-Neo the Hybrid N = 3
variant reduces queries by 11 % (323→289) with
little to no loss of ASR and with similarity still
around 86 %. Dynamic + Hybrid sees greater re-
ductions, maintaining the same similarity and a
modest 14 % perturbation rate. T5 is the single
hold-out: its success plateau of ∼74 % appears
insensitive to selection strategy; however, Hybrid
does not worsen quality, holding similarity near
75 % and perturbation near 23 %.

We find that the length plays a role in effi-
ciency gain. On short news snippets (AG News)

20571

DistilBert (OA = 83) DeBERTa (OA = 91) GPT2 (OA = 85) GPTNeo (OA = 84) T5 (OA = 89)

Selection Method N ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ ASR AvgQ

Binary - 78 54 90 64 95 53 95 51 89 63

Greedy - 78 50 91 60 95 49 95 48 90 58

N-Nary
3 78 52 90 61 95 50 95 48 90 61

6 78 58 92 68 94 55 95 54 92 69

Hybrid

2 78 38 89 49 95 39 95 38 89 48

3 77 38 89 49 95 38 95 36 89 48

6 78 42 93 54 94 40 95 39 91 56

Sent. Hybrid

2 78 38 90 65 95 55 95 53 90 65

3 77 38 90 65 95 53 95 51 90 64

6 78 42 92 71 94 58 95 57 91 72

Dynamic - 78 50 91 63 95 51 95 48 90 61

Dynamic + Hybrid - 78 37 91 63 95 38 95 36 90 48

Selection Method N Sim. Pert. Sim. Pert. Sim. Pert. Sim. Pert. Sim. Pert.

Binary - 80 16 75 19 79 17 80 16 77 19

Greedy - 79 17 76 19 80 16 80 15 77 18

N-Nary
3 81 16 76 19 79 17 80 16 77 19

6 81 15 77 18 80 14 81 14 78 18

Hybrid

2 80 15 75 19 78 17 80 16 77 19

3 80 15 74 20 79 17 79 15 77 19

6 80 14 76 18 80 14 81 14 77 18

Sent. Hybrid

2 79 16 75 19 78 17 80 16 77 19

3 80 15 76 19 79 16 80 16 77 19

6 80 15 76 18 80 15 81 14 78 18

Dynamic - 82 14 76 20 79 16 80 15 78 18

Dynamic + Hybrid - 82 14 76 20 79 16 80 15 78 18

Table 4: Results for different methods on the RottenTomatoes dataset where ASR is attack success rate, AvgQ is the
average queries by the successful attacks, Sim. is the similarity of text to the original, and Pert. is the percentage of
text modified. A t of 10% was used for all Hybrid methods. Bold values indicate the best for that column, underline
indicates second best.

and single-sentence reviews (Rotten Tomatoes) ev-
ery method achieves success in under 200 and 60
queries respectively; here the Hybrid advantage is
measured in tens rather than hundreds of queries.
The quality metrics are also closer. AG News simi-
larity is in the low-70s for all models, with pertur-
bations around 25–30 %. Hybrid N = 3 matches
Greedy’s similarity while removing one or two
points off the perturbation rate on several models,
suggesting its pruning step discards non-essential
words. Rotten Tomatoes sees stronger results: sim-
ilarities range 72–79 % and perturbations sit be-
tween 16 % and 22 %. Dynamic + Hybrid tops Dis-
tilBERT at 79 % similarity while tying Greedy for
the lowest perturbation rate (16 %).

4.3 Overall Obversations

Across model families the pattern is consistent: the
encoders are easiest to attack and preserve the qual-
ity of the text (high-80s to low-90s similarity with
≤10 % edits), GPT-style decoders trail by a few
points but improve once Hybrid pruning is enabled,
and T5 lags modestly yet never degrades further
with the new strategies. Importantly, no Hybrid
variant inflates perturbation beyond the baseline
range; where similarity dips—such as Dynamic on
DeBERTa + IMDB—it does so in tandem with a
visibly higher 21 % edit rate, flagging an edge case
rather than a systemic flaw.

Overall we find that Hybrid Select, with a simple

20572

Method N Original Accuracy Attack Accuracy ASR Avg Query Avg Query (For Atk Success)

N-Nary Select

3

92

1.5 98 475 461
6 1.3 98 585 569
12 1.3 98 706 691
24 0.4 99 747 732

Table 5: N-Nary results for larger N on the IMDB Dataset. Bold indicates the best value for each column, underline
indicates second best.

10 % pruning heuristic, applied either at the word
level with N = 3 or at the sentence level for very
long documents, consistently lowers the query cost
of gradient-free attacks without sacrificing mean-
ing. For DistilBERT and DeBERTa the reduction
is typically 10–15 %, while for the larger LLMs
it can exceed 20 % on the largest corpora and still
deliver equal or higher success rates. At the same
time the semantic-similarity scores stay within one
point of the best baselines, and perturbation rates
remain flat—confirming that the extra efficiency
comes from smarter search, not heavier rewrites.

4.4 Additional Result Comparisons to
previous Greedy Based Attacks

We further compare our proposed methods to 2
greedy based attacks PWWS (Ren et al., 2019) and
CLARE (Li et al., 2021b). We find our selection
methods to be far more efficient, requiring 1/4 or
less amount of queries but less subtle than these
previous attacks, using 2 to 4 times amount of per-
turbation rates. The full table of results and further
discussion can be found in Appendix B.

5 Ablation Studies

We perform further experiments to better under-
stand our proposed methods. Each experiment
expands on specific hyper-parameters or choices in
the overall algorithm. Due to space, the full results
of the studies can be found in Appendix C. We
provide a short summary of the findings.

Effect of N in N-Nary Algorithm: We explore
multiple increasing N values of 12 and 24 on the
IMDB dataset against DistilBert (seen in Table 5).
Keeping in mind N , we see a slight increase in
overall ASR (from 98 to 99) with N = 24. We find
for N = 3, the lowest Avg Query count of 475 how-
ever, followed by 6 (585), 12 (706), and 24 (747).

Impact of Split Threshold t for Hybrid N-nary:
We analyze various split thresholds for the Hybrid
algorithm beyond 10%, including 5%, 20%, 30%,

and 40% on the IMDB dataset against DistilBert.
We find that 5% and 10% provide the best query
counts across various N choices, with an increase
in query count as the threshold rises.

Impact of Word Replacement Strategies: We
test our algorithm with a BERT mask and replace
method used by other attacks, but found no
significant improvement in the attack effectiveness
or efficiency.

Impact of k: We also explore how various the
hyper-parameter k (introduce by BinarySelect) af-
fects the overall results. We find consistent ob-
servations with previous research. As k increases,
average query count increases as does ASR.

6 Conclusion

Our study introduces a family of selection strate-
gies—Hybrid, Sentence-Level Hybrid, Dynamic-N,
and Dynamic-N + Hybrid—that strike an effective
balance between efficiency and semantic fidelity in
black-box text attacks. Across all four datasets and
six model types, our methods consistently reduce
query counts, sometimes by more than 20%, with-
out compromising attack success or text quality.

In particular, we find that word-level Hybrid with
N=3 offers the best overall trade-off, especially
for long-form datasets like IMDB, while sentence-
level variants perform better on lengthy inputs such
as Yelp. Even on compact datasets like AG News
and Rotten Tomatoes, Hybrid strategies retain their
advantage, trimming redundant edits while preserv-
ing meaning.

Overall, these results validate that a simple, fixed
pruning heuristic—anchored in flexible, recursive
search—can deliver scalable and transferable im-
provements across diverse models and datasets.
Our methods offer a principled yet practical ap-
proach for adversarial attacks where query effi-
ciency and semantic clarity are both essential.

20573

7 Limitations

Here we note the limitations of our study for future
researchers and users to consider:

1. Lack of Human Validation in Replacement
Evaluation: While our results demonstrate
the effectiveness of N-Nary Select, we did
not incorporate human validation to assess the
relevance of selected words or phrases. This
limitation stems from the focus on classifier
feedback rather than human interpretability.
Classifiers often prioritize features that differ
from human-perceived importance, making it
challenging to evaluate the semantic quality
of replacements directly. Future work could
explore incorporating human evaluations or
applying these methods to tasks where hu-
man feedback is readily available, providing
additional insights into the interpretability of
selected replacements.

2. Focus on Selection Efficiency Over Replace-
ment Diversity: Our algorithms prioritize se-
lection efficiency by minimizing query counts
and achieving higher Attack Success Rates
(ASR). However, this focus may come at the
expense of exploring diverse replacement op-
tions. Certain adversarial attacks might ben-
efit from introducing more diverse perturba-
tions to maximize model degradation. Future
researchers could expand on our work by bal-
ancing selection efficiency with replacement
diversity to explore its impact on attack ro-
bustness.

8 Ethical Considerations

Ethical considerations are critical in adversarial re-
search due to potential misuse. While our methods
could be exploited for harmful purposes, such as
bypassing security systems or spreading misinfor-
mation, they also offer significant benefits. Our
work provides valuable insights into attack strate-
gies that can guide the development of stronger
defenses.

By making our code publicly available, we en-
courage transparency and collaboration in the re-
search community. This enables researchers with
limited resources to contribute to advancements in
both attack and defense strategies.

Although focused on adversarial attacks, our
findings support defense-oriented research by help-
ing design models resilient to such attacks. We

advocate for the responsible use of our work to
enhance model robustness and security.

References
AI@Meta. 2024. The llama 3 herd of models.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018a. Generating natural language adversarial ex-
amples.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018b. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Chuyun Deng, Mingxuan Liu, Yue Qin, Jia Zhang,
Hai-Xin Duan, and Donghong Sun. 2022. ValCAT:
Variable-length contextualized adversarial transfor-
mations using encoder-decoder language model. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1735–1746, Seattle, United States. Association
for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Diyi Dou.
2018. Hotflip: White-box adversarial examples for
text classification. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, pages 31–36.

Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-Ung
Lee, Claudia Schulz, Mohsen Mesgar, Krishnkant
Swarnkar, Edwin Simpson, and Iryna Gurevych.
2019. Text processing like humans do: Visually
attacking and shielding NLP systems. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1634–1647, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Brian Formento, Chuan Sheng Foo, Luu Anh Tuan, and
See Kiong Ng. 2023. Using punctuation as an ad-
versarial attack on deep learning-based NLP systems:
An empirical study. In Findings of the Association
for Computational Linguistics: EACL 2023, pages
1–34, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers.

20574

http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/1804.07998
http://arxiv.org/abs/1804.07998
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/2022.naacl-main.125
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://aclanthology.org/2023.findings-eacl.1
https://aclanthology.org/2023.findings-eacl.1
https://aclanthology.org/2023.findings-eacl.1
http://arxiv.org/abs/1801.04354
http://arxiv.org/abs/1801.04354

Shankar Garg and Ganesh Ramakrishnan. 2020a. Bae:
Bert-based adversarial examples for text classifica-
tion. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing,
pages 6174–6181.

Siddhant Garg and Goutham Ramakrishnan. 2020b.
Bae: Bert-based adversarial examples for text classi-
fication.

Shatarupa Ghosh and Jonathan Rusert. 2025. BinarySe-
lect to improve accessibility of black-box attack re-
search. In Proceedings of the 31st International Con-
ference on Computational Linguistics, pages 10960–
10976, Abu Dhabi, UAE. Association for Computa-
tional Linguistics.

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti,
and N. Asokan. 2018. All you need is "love": Evad-
ing hate speech detection. Proceedings of the 11th
ACM Workshop on Artificial Intelligence and Secu-
rity.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei
Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. 2019. On
the robustness of self-attentive models. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1520–1529, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Robin Jia, Aditi Raghunathan, and Percy Liang. 2019.
Certified robustness to adversarial word substitutions.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4145–4155.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
8018–8025.

Thai Le, Jooyoung Lee, Kevin Yen, Yifan Hu, and Dong-
won Lee. 2022. Perturbations in the wild: Leveraging
human-written text perturbations for realistic adver-
sarial attack and defense. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022,
pages 2953–2965, Dublin, Ireland. Association for
Computational Linguistics.

Yibin Lei, Yu Cao, Dianqi Li, Tianyi Zhou, Meng Fang,
and Mykola Pechenizkiy. 2022. Phrase-level textual
adversarial attack with label preservation. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2022, pages 1095–1112, Seattle, United
States. Association for Computational Linguistics.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2021a.
Contextualized perturbation for textual adversarial

attack. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5053–5069, Online. Association for
Computational Linguistics.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2021b.
Contextualized perturbation for textual adversarial
attack. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5053–5069, Online. Association for
Computational Linguistics.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. Textbugger: Generating adversarial text
against real-world applications. Proceedings 2019
Network and Distributed System Security Symposium.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020a. BERT-ATTACK: Adversar-
ial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202, Online. Association for Computational
Linguistics.

Siyu Li, Yuan Zhang, Lei Hou, Juanzi Liu, and Zhiyuan
Li. 2020b. Bert-attack: Adversarial attack against
bert using bert. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6193–6202.

Han Liu, Zhi Xu, Xiaotong Zhang, Feng Zhang, Feng-
long Ma, Hongyang Chen, Hong Yu, and Xianchao
Zhang. 2023. Hqa-attack: toward high quality black-
box hard-label adversarial attack on text. Advances
in Neural Information Processing Systems, 36:51347–
51358.

George A. Miller. 1994. WordNet: A lexical database
for English. In Human Language Technology: Pro-
ceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4512–4525.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial exam-
ples through probability weighted word saliency. In

20575

http://arxiv.org/abs/2004.01970
http://arxiv.org/abs/2004.01970
https://aclanthology.org/2025.coling-main.728/
https://aclanthology.org/2025.coling-main.728/
https://aclanthology.org/2025.coling-main.728/
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
https://doi.org/10.18653/v1/P19-1147
https://doi.org/10.18653/v1/P19-1147
https://doi.org/10.18653/v1/2022.findings-acl.232
https://doi.org/10.18653/v1/2022.findings-acl.232
https://doi.org/10.18653/v1/2022.findings-acl.232
https://doi.org/10.18653/v1/2022.findings-naacl.83
https://doi.org/10.18653/v1/2022.findings-naacl.83
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103

Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1085–
1097, Florence, Italy. Association for Computational
Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856–865, Melbourne, Australia. Association
for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Behav-
ioral testing of nlp models with checklist. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4902–4912.

Sahar Sadrizadeh, Ljiljana Dolamic, and Pascal
Frossard. 2022. Block-sparse adversarial attack to
fool transformer-based text classifiers. In ICASSP
2022 - 2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 7837–7841.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Naomi Saphra and Adam Lopez. 2018. Pathologies of
neural models make interpretations difficult. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1751–
1756.

Boxin Wang, Chejian Xu, Xiangyu Liu, Yu Cheng, and
Bo Li. 2022. SemAttack: Natural textual attacks via
different semantic spaces. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 176–205, Seattle, United States. Association
for Computational Linguistics.

Haotian Wang, Yuxuan Wang, and Rui Ren. 2020. Nat-
ural language adversarial defense through synonym
encoding. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
pages 6189–6198.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018.
Generating natural adversarial examples.

Qian Zhu, Feng Shi, Junbo Zhao, and Guoqing Zhang.
2021. Towards improving adversarial training of nlp
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 690–701.

20576

https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.1109/ICASSP43922.2022.9747475
https://doi.org/10.1109/ICASSP43922.2022.9747475
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/2022.findings-naacl.14
https://doi.org/10.18653/v1/2022.findings-naacl.14
http://arxiv.org/abs/1710.11342

Algorithm 1: Notation

1: Classifier: f(·) returns per-class probabilities.
2: Inputs: text x; target/attack class index y; dataset ID ds.
3: Query/score: f(x)[y] denotes the probability of class y for x.
4: Branching: N (N-ary split factor); T (search tree over spans).
5: Budget: k (max replacements; −1 means unlimited).
6: Replace source: replace ∈ {wordnet, bert}.
7: Counters: q (total queries), ∆q (queries this step).
8: Misc: p0 (initial f(x)[y]); xcur (current text).

Algorithm 2: DynN (Automatic N Selection)

1: Input: length L = |x|, dataset id ds
2: Output: split factor N
3: Load dataset-specific length bins {([ℓi, ui], Ni)}i for ds
4: for each bin ([ℓ, u], N) do
5: if ℓ < L ≤ u then
6: return N
7: end if
8: end for
9: return 2 {fallback}

Algorithm 3: WordNetReplace (single-position synonym trial)

1: Input: f, x, y, p0, i {index i to try replacing}
2: Output: success flag s, updated text xcur, prob p, queries ∆q
3: w ← token at position i in x; S ←WordNet synonyms of w
4: if S = ∅ then
5: return (false, x, p0, 0)
6: end if
7: best_prob← p0; best_x← x; ∆q ← 0
8: for each s ∈ S do
9: x′ ← x with token i replaced by s

10: p← f(x′)[y]; ∆q ← ∆q + 1
11: if argmax f(x′) ̸= y then
12: return (true, x′, p, ∆q)
13: end if
14: if p < best_prob then
15: best_prob← p; best_x← x′

16: end if
17: end for
18: return (false, best_x, best_prob, ∆q)

20577

Algorithm 4: BERTReplace (single-position masked-LM trial)

1: Input: f, x, y, p0, i; masked LM MLM; top-M candidates
2: Output: success flag s, updated text xcur, prob p, queries ∆q
3: Get top-M candidate tokens S ← MLM(x, i) {mask token i}
4: if S = ∅ then
5: return (false, x, p0, 0)
6: end if
7: best_prob← p0; best_x← x; ∆q ← 0
8: for each s ∈ S do
9: x′ ← x with token i replaced by s

10: p← f(x′)[y]; ∆q ← ∆q + 1
11: if argmax f(x′) ̸= y then
12: return (true, x′, p, ∆q)
13: end if
14: if p < best_prob then
15: best_prob← p; best_x← x′

16: end if
17: end for
18: return (false, best_x, best_prob, ∆q)

Algorithm 5: N_Nary_Select_Iter (segment scoring)

1: Input: f, x, y,N, T
2: Output: token index i (if leaf), queries ∆q, updated tree T
3: ∆q ← 0
4: if root of T not set then
5: create root with span covering all of x and prob f(x)[y]; ∆q ← ∆q + 1
6: end if
7: u← lowest-probability non-explored node in T
8: Split u’s span into N equal subspans {s1, . . . , sN}
9: for each subspan sj do

10: form x(−sj) by dropping sj from x; compute pj ← f(x(−sj))[y]
11: ∆q ← ∆q + 1; attach/refresh child node for sj with prob pj
12: end for
13: Choose child c with the largest drop f(x)[y]− pj
14: if c is a single-token span then
15: mark c explored; return (its token index, ∆q, T)
16: else
17: set u← c and repeat the split/score steps until a single-token child is chosen
18: return (token index of final child, ∆q, T)
19: end if

20578

Algorithm 6: N_Nary_Select_Segment (descend until size threshold)

1: Input: f, x, y,N, T , τ {τ = split_threshold_percentage of |x|}
2: Output: a promising segment [a, b], queries ∆q, updated T
3: ∆q ← 0
4: if root of T not set then
5: create root with span covering x and prob f(x)[y]; ∆q ← ∆q + 1
6: end if
7: u← lowest-probability non-explored node in T
8: while span_length(u) > τ · |x| do
9: Split u into N equal subspans {s1, . . . , sN}

10: for each subspan sj do
11: pj ← f(x(−sj))[y]; ∆q ← ∆q + 1; update child node prob
12: end for
13: u← argminsj pj {child yielding largest drop}
14: end while
15: return (segment of u, ∆q, T)

Algorithm 7: HybridSentence_WNR (Sentence-level→ Token-level)

1: Input: f, x, y, ds,m,Nman, k,replace
2: Output: success flag, xcur, q, final prob p
3: p0 ← f(x)[y]; q ← 1; xcur ← x
4: Tokenize x into sentences {sj}
5: In batch, for each j: compute pj ← f(x without sj)[y]; q ← q + |{sj}|
6: Pick s←argminj pj {largest drop}
7: N ← if m = auto then DynN(|s|,ds) else Nman

8: Initialize T rooted at span covering s
9: while true do

10: (i,∆q, T)← N_Nary_Select_Iter(f, xcur, y,N, T); q ← q +∆q
11: (s, xcur, p,∆q)←WordNetReplace(f, xcur, y, p0, i); q ← q +∆q; k ← k − 1
12: if s = true then
13: return (true, xcur, q, p)
14: end if
15: if k = 0 or no unexplored node in T then
16: return (false, xcur, q, p0)
17: end if
18: end while

20579

Algorithm 8: HybridDynN_WNR (Token-level Hybrid)

1: Input: f, x, y, ds,m,Nman, k,replace
2: Output: success flag, xcur, q, final prob p
3: N ← if m = auto then DynN(|x|, ds) else Nman

4: p0 ← f(x)[y]; q ← 1; xcur ← x; T ← ∅
5: while true do
6: (i,∆q, T)← N_Nary_Select_Iter(f, xcur, y,N, T); q ← q +∆q
7: {(Optional) extra greedy scoring around i using batched token removals to refine choice}
8: (s, xcur, p,∆q)←WordNetReplace(f, xcur, y, p0, i); q ← q +∆q; k ← k − 1
9: if s = true then

10: return (true, xcur, q, p)
11: end if
12: if k = 0 or no unexplored node in T then
13: return (false, xcur, q, p0)
14: end if
15: end while

Algorithm 9: HybridPure_WNR (No Sentence Stage / Pure Hybrid)

1: Input: f, x, y, ds,m,Nman, k,replace, τ {τ=threshold fraction}
2: Output: success flag, xcur, q, final prob p
3: N ← if m = auto then DynN(|x|, ds) else Nman

4: p0 ← f(x)[y]; q ← 1; xcur ← x; T ← ∅
5: while true do
6: ([a, b],∆q, T)← N_Nary_Select_Segment(f, xcur, y,N, T , τ); q ← q +∆q
7: if [a, b] = ∅ then
8: return (false, xcur, q, p0)
9: end if

10: {Greedy per-token scoring within chosen segment (batched removal)}
11: For each t ∈ [a, b]: form x(−t) by dropping token t; compute pt ← f(x(−t))[y]
12: q ← q + (b− a+ 1); i← argmint∈[a,b] pt
13: if replace = wordnet then
14: (s, xcur, p,∆q)←WordNetReplace(f, xcur, y, p0, i)
15: else
16: (s, xcur, p,∆q)← BERTReplace(f, xcur, y, p0, i)
17: end if
18: q ← q +∆q; k ← k − 1
19: if s = true then
20: return (true, xcur, q, p)
21: end if
22: if k = 0 or no unexplored node in T then
23: return (false, xcur, q, p0)
24: end if
25: end while

20580

A Related Work

Adversarial text attacks have emerged as a critical
area of research for testing the robustness of Nat-
ural Language Processing (NLP) models against
manipulative inputs. These attacks, spanning vari-
ous levels such as character, word, phrase, sentence,
and multi-level manipulations, aim to exploit vul-
nerabilities in NLP systems. Early work, such as
HotFlip (Ebrahimi et al., 2018), introduced white-
box attacks by leveraging gradient-based strategies
to replace words and deceive classifiers. White-
box attacks, which have complete access to model
information, including weights and architecture
(Sadrizadeh et al., 2022; Wang et al., 2022), are ef-
ficient in identifying impactful perturbations due to
their comprehensive model knowledge. However,
black-box attacks have gained prominence for their
practicality in real-world scenarios where only con-
fidence levels or predicted labels are accessible (Le
et al., 2022; Jin et al., 2020). Foundational work,
such as Generating Natural Language Adversar-
ial Examples (Alzantot et al., 2018b), pioneered
black-box techniques by utilizing word saliency
scores to craft adversarial examples, demonstrating
the feasibility of attacking models without direct
access to their internals.

At the character level, adversarial methods ma-
nipulate individual characters to disrupt tokeniza-
tion processes. Techniques include adding or re-
moving whitespace (Gröndahl et al., 2018), re-
placing characters with visually similar alterna-
tives (Eger et al., 2019), or shuffling characters
(Li et al., 2019). Word-level attacks focus on
synonym replacements, leveraging resources like
Word Embeddings (Hsieh et al., 2019), WordNet
(Ren et al., 2019), and Mask Language Models
(Li et al., 2020a) to identify substitutes that main-
tain semantic coherence while deceiving classifiers.
Phrase-level approaches replace multiple consec-
utive words (Deng et al., 2022; Lei et al., 2022),
while sentence-level techniques generate adversar-
ial text to exploit model weaknesses (Ribeiro et al.,
2018; Zhao et al., 2018). Multi-level attacks com-
bine these methods for more comprehensive per-
turbations (Formento et al., 2023). Though our
research focuses on word-level attacks, the method-
ology can extend to character or phrase-level at-
tacks seamlessly.

Transformer-based models like BERT have re-
vealed new vulnerabilities in NLP systems. For
example, BAE: BERT-Based Adversarial Examples

for Text Classification (Garg and Ramakrishnan,
2020a) and BERT-ATTACK (Li et al., 2020b) high-
light how contextual embeddings can be exploited.
These attacks underscore the need for enhanced
defenses, particularly as adversarial attacks evolve.
Defensive strategies like adversarial training have
emerged as a popular countermeasure, incorporat-
ing adversarial examples during training to bolster
robustness. For instance, Natural Language Adver-
sarial Defense through Synonym Encoding (Wang
et al., 2020) and Towards Improving Adversarial
Training of NLP Models (Zhu et al., 2021) demon-
strate promising advancements. However, chal-
lenges persist in achieving generalizable defenses
that can withstand novel attacks.

To further address robustness, behavioral testing
frameworks such as Beyond Accuracy: Behavioral
Testing of NLP Models with CheckList (Ribeiro
et al., 2020) have been introduced. These method-
ologies systematically evaluate model performance
under diverse adversarial scenarios, emphasizing
the importance of comprehensive testing to un-
cover potential weaknesses. Nevertheless, achiev-
ing a balance between attack success rates, query
efficiency, and interpretability remains a signifi-
cant challenge. Research like Pathologies of Neu-
ral Models Make Interpretations Difficult (Saphra
and Lopez, 2018) highlights the difficulty of inter-
preting adversarial perturbations, while Certified
Robustness to Adversarial Word Substitutions (Jia
et al., 2019) explores trade-offs between computa-
tional efficiency and robustness guarantees.

B Comparison with Previous Greedy
Attacks

We additionally compare our proposed selection
methods with two other attacks which leverage
a variation of GreedySelect: PWWS (Ren et al.,
2019) and CLARE (Li et al., 2021a). The results
can be found in Table 6. As can be observed,
both PWWS and CLARE use a significantly higher
amount of queries. For example on IMDB, PWWS
uses over 4 times as many queries as our most effi-
cient method (Sentence Level Hybrid) and CLARE
uses 81 times as many. CLAREs higher use of
queries allow for a higher ASR and Similarity and
PWWS achieves higher similarity and lower per-
turbation rate on average. This highlights another
tradeoff between efficiency and subtlety of attack,
as our methods require 2 to 4 times more perturba-
tion rates.

20581

DistilBert DeBERTa

Method N ASR AvgQ Sim. Pert. ASR AvgQ Sim. Pert.
IM

D
B

PWWS - 100 1498 96 5 56 1391 96 4

CLARE - 100 29460 98 1 51* 22637 98 1

Hybrid 3 98 392 91 8 70 302 91 8

Sent. Hybrid 3 98 362 90 9 71 302 90 9

Dynamic - 98 456 90 8 70 384 82 19

Dynamic + Hybrid - 99 395 90 8 71 312 82 19

Y
el

p

PWWS - 99 934 94 6 97 985 92 8

CLARE - 100 20194 97 3 99 22107 96 3

Hybrid 2 98 363 87 12 95 472 81 18

Sent. Hybrid 2 97 327 87 12 95 403 81 18

Dynamic - 97 378 86 12 96 525 80 18

Dynamic + Hybrid - 97 319 86 12 96 462 80 18

A
G

N
ew

s

PWWS - 62 338 88 20 63 333 89 22

CLARE - 97 8113 91 8 92 8541 91 8

Hybrid 3 72 138 74 28 77 138 73 30

Sent. Hybrid 3 73 164 74 28 77 162 73 28

Dynamic - 72 169 73 32 77 167 73 22

Dynamic + Hybrid - 72 141 73 32 77 140 74 33

R
ot

te
n

To
m

at
oe

s

PWWS - 86 139 86 12 81 147 84 13

CLARE - 100 1605 88 7 100 1668 87 7

Hybrid 2 78 38 80 15 89 49 75 19

Sent. Hybrid 2 78 38 79 16 90 65 75 19

Dynamic - 78 50 82 14 91 63 76 20

Dynamic + Hybrid - 78 37 82 14 91 63 76 20

Table 6: Results for different methods on the noted datasets where ASR is attack success rate, AvgQ is the average
queries by the successful attacks, Sim. is the similarity of text to the original, and Pert. is the percentage of text
modified. A t of 10% was used for all Hybrid methods. Bold values indicate the best for that column, underline
indicates second best. * - Clare - IMDB was limited to 25000 query budget due to hardware constraints.

C Ablation Studies

To better understand the individual contributions
of each component in our proposed attack strate-
gies, we performed a series of ablation experiments.
These experiments isolate the effects of selection
algorithms. In the following, we provide a detailed
analysis of the results.

C.1 Effect of N in N-Nary Algorithm

The N-Nary Select approach introduces hierarchi-
cal splitting, and we assess the impact of varying
n (e.g., 3-Nary, 6-Nary, 12-Nary, 24-Nary). Lower
values of n balance efficiency and effectiveness,
achieving high attack success rates (ASR) with
moderate query counts. For instance, on the IMDB
dataset, 3-Nary Select achieves an ASR of 98%
with an average query count of 475, while 24-Nary
achieves a similar ASR with 747 queries. This

20582

Figure 2: Query count versus Split Threshold t for Hy-
brid N-nary.

Figure 3: k (number of words allowed to be modified)
versus ASR for base N-nary Select Algorithms. Results
are consistent with previous BinarySelect work.

highlights a trade-off between finer granularity and
computational overhead.

On the AGNews dataset, where text length is
shorter, higher n values show diminishing returns.
For example, 6-Nary achieves no significant im-
provement in ASR over 3-Nary but increases the
average query count by over 17%. These results un-
derscore the importance of selecting an appropriate
n based on dataset characteristics.

Among the algorithms evaluated, the 3-nary Se-
lect consistently achieves the best balance between
query efficiency and attack accuracy. It performs
well at lower split thresholds, with fewer queries
required to achieve successful attacks compared to
Binary and 6-nary searches.

C.2 Impact of Split Threshold t for Hybrid
N-nary

We analyze the impact of varying split thresholds
on the performance of the hybrid Select algorithms
(Binary, 3-nary, and 6-nary) as shown in Figure 2.

As shown in the Figure 2, lower split thresholds,
such as 5% and 10%, consistently result in reduced

average query counts for successful attacks. This is
particularly evident in the 3-nary algorithm, which
demonstrates the highest query efficiency across
most thresholds. The finer-grained splits enabled
by lower thresholds allow for more precise identifi-
cation of impactful word substitutions, minimizing
the number of queries required.

In contrast, higher split thresholds, such as 30%
and 40%, generate larger segments that demand
more exploration to identify optimal substitutions.
While this approach captures more context, it sig-
nificantly increases the query count, making it less
efficient compared to finer splits.

Among the algorithms, the 6-nary algorithm ex-
hibits slightly higher query counts at lower thresh-
olds but maintains comparable attack accuracy.
Meanwhile, the Binary Select consistently per-
forms the least efficiently across all thresholds, re-
quiring the highest query counts due to its limited
segmentation and exploration capabilities.

C.3 Word Replacement Strategies
Alongside Wordnet replacement, we also explored
a BERT focused replacement method by using
mask-infill method where we mask the most in-
fluential word and find a replacement candidate (up
to 5) using BERT. Table 12 (Appendix E) shows
the results for N-Nary attack in IMDB using BERT
replacement. From the results, there are no signifi-
cant improvements when compared to the Wordnet
replacement method.

C.4 The Impact of k on Query Count and
Attack Success Rate (ASR)

We also evaluate how varying k (number of words
allowed for replacement) affects query count and
attack success rate (ASR) across standalone n-
nary search methods (Binary, 3-Nary, 6-Nary, and
Greedy) and the hybrid method with segmenta-
tion thresholds. Both K and segmentation thresh-
olds present a trade-off between query efficiency
and ASR. Figure 3 shows how ASR changes as k
changes.

In both standalone and hybrid methods, smaller
k values (e.g., k = 3) reduce query counts as fewer
replacements are allowed, narrowing the search
space. For instance, at k = 3, the 3-Nary method
achieves the lowest query count. However, smaller
k values limit ASR, as the restricted replacement
budget fails to significantly degrade the model’s
accuracy. Across methods, ASR at k = 3 remains
modest.

20583

As k increases, query counts rise proportionally
across all methods. At k = 15, ASR improves
significantly as more words are replaced, allow-
ing for more impactful attacks. The Greedy al-
gorithm achieves the highest ASR at this config-
uration, though it requires more queries. Among
n-nary methods, 3-Nary consistently strikes the
best balance between query efficiency and ASR,
while 6-Nary incurs the highest query counts due
to its complex segmentation.

C.5 Dynamic-N Bins
Table 10 (Appendix D) contains the length bins and
their corresponding Optimal-N values for IMDB,
Yelp, and AGNews dataset. Based on the maxi-
mum length of the input text in validation dataset,
5 length bins are created and their corresponding
optimal N values are obtained based on the query
count. From the table, the n-value of 3 seems to
be more optimal for most text length bins for the
IMDB and Yelp datasets, 2 for AGNews. This also
matches the results for hybrid and standalone meth-
ods, as the n-value of 3 has been shown to perform
better in most cases.

20584

D Length Bins and their Optimal-N

Length Bin n
1 - 200 3

200 - 400 3
400 - 600 3
600 - 800 2
800 - max 6

Table 7: IMDB

Length Bin n
1 - 135 3

135 - 270 3
270 - 405 3
405 - 540 2
540 - max 6

Table 8: Yelp

Length Bin n
1 - 23 2

23 - 46 2
46 - 69 2
69 - 92 2

92 - max 2

Table 9: AGNews

Table 10: Length bins and their Optimal-N

E IMDB Tables

Table 11: Results Summary for N-nary Algorithm and Baseline(Binary and Greedy) with WordNet Replacement
Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%) ASR (%)

ALL Binary 92.0 504 484 1.7 98

Greedy 92.0 433 425 1.2 99

3-Nary 92.0 475 461 1.5 98

6-Nary 92.0 585 569 1.3 99

3 Binary 92.0 48 32 80.4 13

Greedy 92.0 238 215 75.0 18

3-Nary 92.0 46 35 81.1 12

6-Nary 92.0 52 38 80.1 13

5 Binary 92.0 66 42 75.9 17

Greedy 92.0 247 216 67.5 27

3-Nary 92.0 64 45 74.3 19

6-Nary 92.0 71 50 73.9 20

15 Binary 92.0 141 82 58.2 37

Greedy 92.0 279 250 40.9 56

3-Nary 92.0 133 83 54.5 41

6-Nary 92.0 139 90 56.2 39

20585

Table 12: Results Summary for N-Nary and Greedy Algorithms using BERT replacement stategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%) ASR (%)

ALL Binary 92 504 483 1.8 98

Greedy 92 432 422 1.4 99

3-Nary 92 473 458 1.5 98

6-Nary 92 582 570 1.3 99

3 Binary 92 47 31 80.4 13

Greedy 92 238 214 75.0 18

3-Nary 92 46 33 81.0 12

6-Nary 92 52 37 80.1 13

5 Binary 92 66 41 75.9 17

Greedy 92 247 215 67.5 26

3-Nary 92 64 44 74.3 19

6-Nary 92 71 50 73.9 20

15 Binary 92 141 82 58.2 37

Greedy 92 279 249 40.9 55

3-Nary 92 133 83 54.4 41

6-Nary 92 138 89 56.2 39

Table 13: Results Summary for Hybrid Algorithm at Sentence Level (5% Split Threshold) with WordNet Replace-
ment Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Avg Query (For Fail) Attack Accuracy (%) ASR (%)

ALL Binary 92 375 363 998 1.8 98

3-Nary 92 364 1053 1053 1.6 98

6-Nary 92 392 380 974 1.9 98

3 Binary 92 51 37 53 79.2 14

3-Nary 92 49 32 52 80.3 13

6-Nary 92 50 34 52 79.9 13

5 Binary 92 66 44 71 74.6 17

3-Nary 92 65 43 71 74.2 18

6-Nary 92 66 43 71 74.8 17

15 Binary 92 126 78 157 55.6 40

3-Nary 92 124 79 156 54.3 41

6-Nary 92 126 83 156 54.2 41

Table 14: Results Summary for Hybrid Algorithm at Sentence Level (10% Split Threshold) with WordNet Replace-
ment Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Avg Query (For Fail) Attack Accuracy (%) ASR (%)

ALL Binary 92 378 368 943 1.7 98

3-Nary 92 371 363 865 1.5 98

6-Nary 92 387 374 945 2.1 98

3 Binary 92 54 38 56 79.9 14

3-Nary 92 51 34 54 80.2 13

6-Nary 92 50 34 52 79.6 14

5 Binary 92 70 46 75 75.1 17

3-Nary 92 68 43 73 74.5 18

6-Nary 92 66 44 71 74.3 18

15 Binary 92 129 81 160 55.5 40

3-Nary 92 128 81 159 54.8 41

6-Nary 92 125 81 156 54.1 41

20586

Table 15: Results Summary for Hybrid N-Nary 5% Split Threshold with WordNet Replacement Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Avg Query (For Fail) Attack Accuracy (%) ASR (%)

ALL Binary 92 435 425 1251 1.2 99

3-Nary 92 405 388 1363 1.6 98

6-Nary 92 414 403 1200 1.3 98

3 Binary 92 49 35 51 80.3 13

3-Nary 92 49 37 51 80.2 13

6-Nary 92 50 35 52 80.5 13

5 Binary 92 65 43 70 75.5 17

3-Nary 92 65 44 70 75.2 18

6-Nary 92 65 43 70 75.0 18

15 Binary 92 127 80 155 57.5 38

3-Nary 92 124 78 154 56.2 39

6-Nary 92 123 79 152 55.3 40

Table 16: Results Summary for Hybrid N-Nary 10% Split Threshold with WordNet Replacement Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Avg Query (For Fail) Attack Accuracy (%) ASR (%)

ALL Binary 92 437 427 1117 1.3 99

3-Nary 92 406 392 1320 1.4 98

6-Nary 92 413 398 1327 1.5 98

3 Binary 92 57 38 60 80.9 12

3-Nary 92 49 35 51 80.5 13

6-Nary 92 49 33 52 80.5 13

5 Binary 92 73 47 78 75.3 18

3-Nary 92 65 43 70 75.2 18

6-Nary 92 65 43 70 74.9 18

15 Binary 92 133 83 163 58.4 37

3-Nary 92 124 77 153 56.8 39

6-Nary 92 123 79 152 55.3 40

Table 17: Results Summary for Hybrid N-Nary (20% Split Threshold) with WordNet Replacement Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Avg Query (For Fail) Attack Accuracy (%) ASR (%)

ALL Binary 92 442 429 1526 1.1 99

3-Nary 92 409 399 1279 1.1 99

6-Nary 92 431 418 1302 1.3 98

3 Binary 92 74 49 77 80.6 13

3-Nary 92 71 45 74 80.2 13

6-Nary 92 88 66 92 79.1 14

5 Binary 92 89 56 97 75.0 18

3-Nary 92 86 55 94 74.3 18

6-Nary 92 106 75 114 72.8 21

15 Binary 92 145 91 177 57.1 38

3-Nary 92 141 90 173 56.0 39

6-Nary 92 160 114 192 54.2 41

20587

Table 18: Results Summary for Hybrid N-Nary 30% Split Threshold with WordNet Replacement Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Avg Query (For Fail) Attack Accuracy (%) ASR (%)

ALL Binary 92 457 448 1136 1.2 99

3-Nary 92 409 395 1430 1.2 99

6-Nary 92 432 420 1302 1.3 98

3 Binary 92 102 73 107 79.8 13

3-Nary 92 71 45 74 80.2 13

6-Nary 92 88 66 92 79.1 14

5 Binary 92 117 82 125 74.1 19

3-Nary 92 86 55 94 74.3 18

6-Nary 92 106 75 114 72.8 21

15 Binary 92 168 117 204 53.8 42

3-Nary 92 141 90 173 56.1 39

6-Nary 92 160 114 192 54.3 41

Table 19: Results Summary for Hybrid N-Nary 40% Split Threshold with WordNet Replacement Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Avg Query (For Fail) Attack Accuracy (%) ASR (%)

ALL Binary 92 459 449 1167 1.3 99

3-Nary 92 426 411 1324 1.5 98

6-Nary 92 432 418 1479 1.2 99

3 Binary 92 102 72 107 79.8 13

3-Nary 92 123 88 129 78.7 14

6-Nary 92 88 66 92 79.1 14

5 Binary 92 117 82 125 74.0 19

3-Nary 92 136 102 146 71.6 22

6-Nary 92 106 75 114 72.7 21

15 Binary 92 168 117 204 53.9 42

3-Nary 92 186 140 223 50.3 45

6-Nary 92 160 114 192 54.4 41

Table 20: Results Summary for 5% Hybrid Threshold (Dyn-N + Hybrid) with WordNet Replacement Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%) ASR (%)

ALL DynN+Hyb 92 408 390 1.6 98

3 DynN+Hyb 92 22 15 81.0 12

5 DynN+Hyb 92 35 23 74.5 19

15 DynN+Hyb 92 90 52 54.4 41

Table 21: Results Summary for 10% Hybrid Threshold (Dyn-N + Hybrid) with WordNet Replacement Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%) ASR (%)

ALL DynN+Hyb 92 403 395 1.2 99

3 DynN+Hyb 92 22 16 80.9 12

5 DynN+Hyb 92 35 24 74.5 19

15 DynN+Hyb 92 90 52 54.5 41

Table 22: Results Summary for 20% Hybrid Threshold (Dyn-N + Hybrid) with WordNet Replacement Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%) ASR (%)

ALL DynN+Hyb 92 406 391 1.5 98

3 DynN+Hyb 92 22 16 81.0 12

5 DynN+Hyb 92 35 23 74.5 19

15 DynN+Hyb 92 90 52 54.6 41

20588

Table 23: Results Summary for 30% Hybrid Threshold (Dyn-N + Hybrid) with WordNet Replacement Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%) ASR (%)

ALL DynN+Hyb 92 405 392 1.5 98

3 DynN+Hyb 92 22 15 80.9 12

5 DynN+Hyb 92 35 23 74.5 19

15 DynN+Hyb 92 90 51 54.5 41

Table 24: Results Summary for 40% Hybrid Threshold (Dyn-N + Hybrid) with WordNet Replacement Strategy

K (No. of Words) Algorithm Original Accuracy (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%) ASR (%)

ALL DynN+Hyb 92 404 388 1.3 99

3 DynN+Hyb 92 22 16 80.9 12

5 DynN+Hyb 92 35 24 74.5 19

15 DynN+Hyb 92 90 52 54.6 41

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Binary 92 90.5 471 456 1.5

3 Binary 92 11 47 33 81

5 Binary 92 17.5 65 45 74.5

15 Binary 92 37.6 133 83 54.4

Table 25: Results Summary for Dynamic-N

20589

F Yelp Tables

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Binary 97 98 401 400 2

Greedy 97 98 327 329 2

3-Nary 97 98 375 374 2

6-Nary 97 98 448 449 2

3 Binary 97 11 46 32 86

Greedy 97 13 155 103 84

3-Nary 97 11 43 32 86

6-Nary 97 11 49 35 86

5 Binary 97 17 66 43 80

Greedy 97 21 166 106 76

3-Nary 97 18 61 42 79

6-Nary 97 17 69 46 80

15 Binary 97 41 139 87 57

Greedy 97 52 207 155 45

3-Nary 97 42 133 86 55

6-Nary 97 39 138 88 58

Table 26: Performance results for N-Nary in Yelp

K (No. of words) Replacement Strategy Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL BERT (top_k = 5)

Binary 97 94.6 403 402 2.4

Greedy 97 94.9 326 328 2.1

3-Nary 97 94.6 375 374 2.4

6-Nary 97 95.3 449 449 1.7

3 BERT (top_k = 5)

Binary 97 11 46 33 86

Greedy 97 13.1 155 103 83.9

3-Nary 97 11.4 43 32 85.6

6-Nary 97 11.2 50 36 85.8

5 BERT (top_k = 5)

Binary 97 16.9 66 44 80.1

Greedy 97 21.4 166 106 75.6

3-Nary 97 17.6 61 41 79.4

6-Nary 97 16.6 69 47 80.4

15 BERT (top_k = 5)

Binary 97 40.5 139 88 56.5

Greedy 97 52.1 207 155 44.9

3-Nary 97 42.4 132 85 54.6

6-Nary 97 39.1 138 89 57.9

Table 27: Performance results for BERT replacement strategy in Yelp

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Dyn-N 97 98 379 378 2

3 Dyn-N 97 11 44 33 86

5 Dyn-N 97 18 62 43 79

15 Dyn-N 97 42 133 86 55

Table 28: Performance results for Dynamic-N in Yelp

20590

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Avg Query for fail Attack Accuracy (%)

ALL Binary 97 98 366 368 305 2

3-Nary 97 98 347 345 414 2

6-Nary 97 98 335 332 475 2

3 Binary 97 11 47 33 49 86

3-Nary 97 12 45 32 47 85

6-Nary 97 12 47 33 49 86

5 Binary 97 17 64 43 69 80

3-Nary 97 17 62 42 66 80

6-Nary 97 17 63 42 67 80

15 Binary 97 40 130 85 161 57

3-Nary 97 39 127 81 158 58

6-Nary 97 42 126 83 158 56

Table 29: Performance results for N-Nary in Hybrid(5%) in Yelp

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Avg Query for fail Attack Accuracy (%)

ALL Binary 97 97 364 363 410 2

3-Nary 97 97 347 346 404 2

6-Nary 97 97 334 331 475 2

3 Binary 97 11 50 34 53 86

3-Nary 97 11 46 33 47 86

6-Nary 97 12 47 34 48 85

5 Binary 97 17 68 41 73 81

3-Nary 97 17 62 42 66 80

6-Nary 97 17 63 42 67 80

15 Binary 97 38 131 83 162 59

3-Nary 97 39 125 79 157 58

6-Nary 97 42 125 83 157 55

Table 30: Performance results for N-Nary in Hybrid(10%) in Yelp

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Avg Query for fail Attack Accuracy (%)

ALL Binary 97 95 366 365 413 2

3-Nary 97 95 348 349 268 2

6-Nary 97 95 336 333 472 2

3 Binary 97 12 61 40 64 85

3-Nary 97 11 58 37 61 86

6-Nary 97 12 70 40 74 85

5 Binary 97 17 79 44 87 80

3-Nary 97 18 75 45 81 80

6-Nary 97 18 88 52 96 79

15 Binary 97 37 139 81 174 60

3-Nary 97 37 136 81 170 60

6-Nary 97 39 147 87 187 58

Table 31: Performance results for N-Nary in Hybrid(20%) in Yelp

20591

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Avg Query for fail Attack Accuracy (%)

ALL Binary 97 95 368 366 465 2

3-Nary 97 95 347 349 267 2

6-Nary 97 95 336 333 427 2

3 Binary 97 12 82 46 87 85

3-Nary 97 11 58 37 61 86

6-Nary 97 12 70 40 74 85

5 Binary 97 18 98 53 109 79

3-Nary 97 18 75 45 81 80

6-Nary 97 18 88 52 96 79

15 Binary 97 39 154 92 197 58

3-Nary 97 37 136 81 170 60

6-Nary 97 39 147 87 187 58

Table 32: Performance results for N-Nary in Hybrid(30%) in Yelp

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Avg Query for fail Attack Accuracy (%)

ALL Binary 97 95 367 366 418 2

3-Nary 97 95 356 354 400 2

6-Nary 97 95 337 335 441 2

3 Binary 97 12 82 46 87 85

3-Nary 97 12 95 53 101 85

6-Nary 97 13 70 41 74 84

5 Binary 97 18 98 53 109 79

3-Nary 97 19 110 62 122 78

6-Nary 97 18 88 51 96 79

15 Binary 97 39 154 92 197 58

3-Nary 97 41 165 102 213 56

6-Nary 97 39 147 87 187 58

Table 33: Performance results for N-Nary in Hybrid(40%) in Yelp

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL DynN+Hyb 97 95 321 320 2

3 DynN+Hyb 97 12 22 17 86

5 DynN+Hyb 97 18 35 25 79

15 DynN+Hyb 97 42 95 60 55

Table 34: Performance results for Dynamic-N+Hybrid with Split Threshold 5% in Yelp

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL DynN+Hyb 97 95 321 319 2

3 DynN+Hyb 97 12 22 18 86

5 DynN+Hyb 97 18 34 25 79

15 DynN+Hyb 97 42 95 60 55

Table 35: Performance results for Dynamic-N+Hybrid with Split Threshold 10% in Yelp

20592

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL DynN+Hyb 97 95 321 319 2

3 DynN+Hyb 97 12 22 17 86

5 DynN+Hyb 97 18 34 25 79

15 DynN+Hyb 97 42 95 59 55

Table 36: Performance results for Dynamic-N+Hybrid with Split Threshold 20% in Yelp

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL DynN+Hyb 97 95 321 319 2

3 DynN+Hyb 97 12 22 18 86

5 DynN+Hyb 97 18 35 25 79

15 DynN+Hyb 97 42 95 60 55

Table 37: Performance results for Dynamic-N+Hybrid with Split Threshold 30% in Yelp

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL DynN+Hyb 96.91 94.9 323 321 2

3 DynN+Hyb 97 11.4 22 17 86

5 DynN+Hyb 97 17.6 34 25 79

15 DynN+Hyb 96.91 41.8 94 59 55

Table 38: Performance results for Dynamic-N+Hybrid with Split Threshold 40% in Yelp

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Binary 97 94 328 327 3

3-Nary 97 93.6 321 316 3.4

6-Nary 97 94.2 337 332 2.8

3 Binary 97 11.4 46 31 85.6

3-Nary 97 11.3 45 29 85.7

6-Nary 97 11.3 47 34 85.7

5 Binary 97 17.3 64 41 79.7

3-Nary 97 17.4 62 42 79.6

6-Nary 97 17.1 65 44 79.9

15 Binary 97 40 127 83 57

3-Nary 97 40.4 126 81 56.6

6-Nary 97 39.9 130 86 57.1

Table 39: Performance results for Hybrid algorithm(5%) at Sentence Level in Yelp

20593

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Binary 97 94 328 327 3

3-Nary 97 94.2 321 320 2.8

6-Nary 97 93.9 331 325 3.1

3 Binary 97 11 47 30 86

3-Nary 97 11.7 46 30 85.3

6-Nary 97 11.4 46 34 85.6

5 Binary 97 17.7 65 42 79.3

3-Nary 97 17.9 62 43 79.1

6-Nary 97 17.6 63 44 79.4

15 Binary 97 39.3 127 82 57.7

3-Nary 97 40.1 124 78 56.9

6-Nary 97 39.7 127 84 57.3

Table 40: Performance results for Hybrid algorithm(10%) at Sentence Level in Yelp

20594

G AGNews Tables

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Binary 95 73 185 154 25

Greedy 95 73 185 154 25

3-Nary 95 72 202 162 26

6-Nary 95 76 304 253 23

3 Binary 95 7 50 44 88

Greedy 95 7 50 44 88

3-Nary 95 7 33 29 88

6-Nary 95 6 37 29 89

5 Binary 95 12 61 53 83

Greedy 95 12 61 53 83

3-Nary 95 11 49 34 85

6-Nary 95 10 53 39 85

15 Binary 95 35 117 89 60

Greedy 95 35 117 89 60

3-Nary 95 31 118 81 64

6-Nary 95 26 116 77 69

Table 41: Performance results for N-Nary in AGNews

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Binary 95 73 178 140 26

3-Nary 95 72 178 139 26

6-Nary 95 77 275 220 23

3 Binary 95 6 18 16 89

3-Nary 95 7 18 16 88

6-Nary 95 6 16 12 89

5 Binary 95 9 32 26 86

3-Nary 95 11 31 20 85

6-Nary 95 10 28 20 85

15 Binary 95 32 96 63 63

3-Nary 95 33 96 62 64

6-Nary 95 28 89 56 68

Table 42: Performance results for AGNews with Hybrid 5%

20595

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Binary 95 72 178 140 27

3-Nary 95 72 178 138 27

6-Nary 95 76 277 221 23

3 Binary 95 6 18 15 89

3-Nary 95 7 18 16 88

6-Nary 95 6 16 12 89

5 Binary 95 9 32 25 86

3-Nary 95 11 31 21 85

6-Nary 95 11 28 20 85

15 Binary 95 32 96 63 63

3-Nary 95 33 96 62 64

6-Nary 95 28 89 55 69

Table 43: Performance Metrics for AGNews with Hybrid 10%

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Binary 95 74 178 141 26

3-Nary 95 72 178 138 27

6-Nary 95 76 278 224 23

3 Binary 95 6 18 16 89

3-Nary 95 7 18 16 88

6-Nary 95 6 16 13 89

5 Binary 95 9 32 27 86

3-Nary 95 11 31 21 85

6-Nary 95 11 28 21 85

15 Binary 95 33 97 64 63

3-Nary 95 33 96 63 64

6-Nary 95 28 89 56 69

Table 44: Performance results for AGNews with Hybrid 20%

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Binary 95 74 179 141 27

3-Nary 95 72 179 139 27

6-Nary 95 76 277 220 23

3 Binary 95 6 18 16 89

3-Nary 95 7 18 16 88

6-Nary 95 6 16 12 89

5 Binary 95 9 32 26 86

3-Nary 95 11 31 21 85

6-Nary 95 10 28 20 85

15 Binary 95 33 97 64 63

3-Nary 95 33 96 63 64

6-Nary 95 28 89 56 69

Table 45: Performance results for AGNews with Hybrid 30%

20596

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Binary 95 74 179 141 27

3-Nary 95 73 178 140 26

6-Nary 95 76 277 218 23

3 Binary 95 6 18 15 89

3-Nary 95 7 18 17 88

6-Nary 95 6 16 12 89

5 Binary 95 9 32 26 86

3-Nary 95 11 31 22 85

6-Nary 95 10 28 20 85

15 Binary 95 33 97 64 64

3-Nary 95 33 96 63 64

6-Nary 95 28 89 56 69

Table 46: Performance results for AGNews with Hybrid 40%

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Dyn N 95 74 209 169 27

3 Dyn N 95 7 33 28 88

5 Dyn N 95 11 49 35 85

15 Dyn N 95 26 116 77 69

Table 47: Performance results for AGNews with Dynamic-N

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Dyn N + Hyb 95 72 179 141 27

3 Dyn N + Hyb 95 7 18 16 88

5 Dyn N + Hyb 95 11 31 21 85

15 Dyn N + Hyb 95 26 89 55 69

Table 48: Performance results for AGNews with Dynamic N + Hybrid(5%) algorithm

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL Dyn N + Hyb 95 73 179 141 27

3 Dyn N + Hyb 95 7 18 16 88

5 Dyn N + Hyb 95 10 31 21 85

15 Dyn N + Hyb 95 26 89 56 69

Table 49: Performance results for AGNews with Dynamic N + Hybrid(10%) algorithm

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL DynN+Hyb 95 73 179 140 27

3 DynN+Hyb 95 7 18 17 88

5 DynN+Hyb 95 10 31 22 85

15 DynN+Hyb 95 26 89 55 69

Table 50: Performance results for AGNews with Dynamic N + Hybrid(20%) algorithm

20597

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL DynN+Hyb 95 72 178 141 26

3 DynN+Hyb 95 7 18 16 88

5 DynN+Hyb 95 10 31 20 85

15 DynN+Hyb 95 26 89 55 69

Table 51: Performance results for AGNews with Dynamic N + Hybrid(30%) algorithm

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Attack Accuracy (%)

ALL DynN+Hyb 95 72 178 140 27

3 DynN+Hyb 95 7 18 16 88

5 DynN+Hyb 95 10 31 21 85

15 DynN+Hyb 95 26 89 55 69

Table 52: Performance results for AGNews with Dynamic N + Hybrid(40%) algorithm

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Avg Query for fail Attack Accuracy (%)

ALL Binary 95 72 200 160 304 26

3-Nary 95 70 201 164 303 25

6-Nary 95 73 218 172 338 26

3 Binary 95 6 34 25 34 89

3-Nary 95 7 34 29 34 88

6-Nary 95 6 35 27 35 89

5 Binary 95 9 50 37 51 86

3-Nary 95 11 49 36 50 84

6-Nary 95 10 52 38 53 85

15 Binary 95 33 117 84 135 62

3-Nary 95 30 117 80 134 65

6-Nary 95 30 119 81 137 65

Table 53: Performance results for AGNews with Sentence level + Hybrid(10%)

K (No. of words) Algorithm Original Accuracy (%) ASR (%) Avg Query Avg Query (For Atk Success) Avg Query for fail Attack Accuracy (%)

ALL Binary 95 73 191 153 292 26

3-Nary 95 73 191 153 291 26

6-Nary 95 73 189 154 285 26

3 Binary 95 6 34 24 35 89

3-Nary 95 7 34 27 34 88

6-Nary 95 6 33 25 34 89

5 Binary 95 10 49 34 50 85

3-Nary 95 10 48 35 49 85

6-Nary 95 10 49 34 51 85

15 Binary 95 32 112 80 128 63

3-Nary 95 32 111 80 126 63

6-Nary 95 32 112 79 130 63

Table 54: Performance results for AGNews with Sentence level + Hybrid(20%)

20598

