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Abstract

The behavior of Large Language Models
(LLMs) when facing contextual information
that conflicts with their internal parametric
knowledge is inconsistent, with no generally
accepted explanation for the expected outcome
distribution. Recent work has identified in au-
toregressive transformer models a class of neu-
rons – called entropy neurons – that produce a
significant effect on the model output entropy
while having an overall moderate impact on
the ranking of the predicted tokens. In this pa-
per, we investigate the preliminary claim that
these neurons are involved in inhibiting context
copying behavior in transformers by looking at
their role in resolving conflicts between contex-
tual and parametric information. We show that
entropy neurons are responsible for suppress-
ing context copying across a range of LLMs,
and that ablating them leads to a significant
change in the generation process. These re-
sults enhance our understanding of the internal
dynamics of LLMs when handling conflicting
information.1

1 Introduction

Large Language Models (LLMs) exhibit remark-
able proficiency in representing, memorizing, and
retrieving vast amounts of information. However,
they often struggle when discrepancies arise be-
tween their learned parametric knowledge (PK)
and the contextual knowledge (CK) provided at
inference (Xie et al., 2024; Jin et al., 2024; Xu et al.,
2024). These conflicts can lead to unpredictable
model behavior, which poses a significant chal-
lenge in real-world applications (Ji et al., 2023).

Although various strategies have been proposed
to mitigate this unpredictable behavior (Shi et al.,

1We make our code and data publicly available
at: https://github.com/Zineddine-Tighidet/Context-Copying-
Modulation
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Figure 1: Schema illustrating how entropy neurons in-
fluence LLMs’ decision-making between the provided
contextual knowledge (CK) and the learned parametric
knowledge (PK). By presenting the model with repet-
itive prompts contradicting its PK, we test whether it
relies on PK or CK. Ablating entropy neurons reveals
their causal role: they inhibit the use of CK (e.g., Italy)
in favor of PK (e.g., France).

2024), the mechanisms that govern how LLMs pri-
oritize and integrate different sources of knowledge
are poorly understood. Understanding these mech-
anisms is crucial, as the resolution of PK–CK con-
flicts directly impacts context-intensive tasks such
as retrieval augmented generation (RAG) and other
applications where accuracy depends on balancing
internal knowledge with external context. Without
a clear regulation process, models may either ig-
nore reliable contextual cues or override their own
parametric knowledge inappropriately.

We investigate the preliminary claim that the
recently discovered entropy neurons (Katz and Be-
linkov, 2023; Gurnee et al., 2024) are involved in
inhibiting context copying behavior (Stolfo et al.,
2024) by looking at their role in resolving conflicts
between CK and PK. These neurons are known
to regulate model entropy while having an overall
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Input Prompt Before (PK) After (CK)

Kentucky’s official language is Japanese. Kentucky’s official language is English Japanese

Antonio Moreno communicates in English. Antonio Moreno communicates in Spanish English

Mac OS X Panther is a product released by Google. Mac OS X Panther is a
product released by

Apple Google

Table 1: Examples where Phi-1.5 switched from using Parametric Knowledge (PK) to Contextual Knowledge
(CK) after ablating entropy neurons.

moderate impact on the ranking of the predicted
tokens. By investigating entropy neurons, we aim
to uncover the mechanisms governing this balance
and provide insights into how LLMs integrate dif-
ferent knowledge sources in practice.

Understanding this balance mechanism is crit-
ical for developing more reliable and grounded
language models. By elucidating how entropy neu-
rons mediate these conflicts, we establish empirical
grounds for targeted interventions that could en-
force more consistent knowledge integration. This
mechanistic understanding enables the develop-
ment of safer models with reduced propensity for
extrinsic and intrinsic hallucinations (Ji et al., 2023;
Bang et al., 2025).

We make the following key findings and contri-
butions:

• Entropy neurons, although representing less
than 2‰ of the feed forward network neurons
in the last transformer layer, play a significant
role in determining the knowledge source to
use. More specifically, they inhibit the natural
LLM’s behavior of repeating the sequences
in the context, i.e. induction (Olsson et al.,
2022).

• We identify the presence of entropy neurons in
a range of models, from 1 billion to 8 billion
parameters, including Pythia-1.4B, Phi-1.5,
Mistral-7B-v0.1, and Llama-3-8B2 and give
some insights on their characteristics.

2 Related Work

The understanding of the mechanisms and knowl-
edge localization within transformers has advanced
through various studies. One line of research has
focused on the PK-based outputs, particularly in
factual settings (Geva et al., 2021; Heinzerling
and Inui, 2021; AlKhamissi et al., 2022; Meng

2In the main paper we show results for Phi-1.5, we provide
the results for other models in the Appendix.

et al., 2023; Geva et al., 2023). These studies hy-
pothesized that LLMs store parametric information
within the Feed Forward Network (FFN) layers,
which function as a key-value memory. This stored
information is subsequently accessed by the Multi-
Head Self-Attention (MHSA) layers. Another body
of work has examined CK-based outputs. These
studies concluded that the processing of CK, unlike
PK, is not localized within the LLM’s parameters
(Monea et al., 2024). Instead, it is facilitated by a
learned mechanism known as induction, which un-
derpins in-context learning and information copy-
ing (Olsson et al., 2022). Despite these advance-
ments, the mechanisms underlying how LLMs reg-
ulate the CK usage in a situation of induction are
not well understood.

3 Background

3.1 Feed Forward Network (FFN)

The structure of the Transformer’s FFN is central
to our study (Vaswani et al., 2017). Given a hidden
state x ∈ Rdmodel from the residual stream after the
MHSA module, the FFN is defined as:

FFN(x) =
∑

i

w
(i)
outσ

(
w

(i)
in · x+ β

(i)
in

)
+ βout, (1)

where WT
out,Win ∈ Rdffn×dmodel are learned

weight matrices, βin and βout are learned biases.
The function σ denotes an element-wise nonlinear
activation function, e.g. ReLU (Agarap, 2019).

A neuron from the first FFN layer is character-
ized by 1) an activation value noted ni ∈ R (i.e.
the output of the activation function σ) and 2) an
output weight vector w(i)

out ∈ Rdmodel .

3.2 Framework and Dataset

We use the knowledge probing framework
(Tighidet et al., 2024), which consists of a dataset
of prompts that are built to contradict the internal
knowledge (i.e. PK) of a given model. It follows a
well-structured format based on repetition, which

20470



makes it convenient for PK/CK analysis. A similar
framework is proposed by Yu et al. (2023) but it
consists of prompts in form of questions rather than
repetitive sequences which is less convenient to
study induction. We provide characteristics about
the dataset in Appendix D.

Each prompt x from the knowledge probing
dataset E consists of a contextual statement about a
subject s (e.g., "Paris"), a relation r (e.g., "capital
of"), and an object ō that contradicts the model’s
internal PK (e.g., "Italy"). The contextual state-
ment is from the CK that is defined below. This
is followed by a repetitive query about s to trigger
the model’s induction mechanism. For example:

Paris is the capital of Italy.

Paris is the capital of

Context Statement

Query Object to predict

If the model responds according to the context state-
ment, it uses CK (e.g. "Italy"). If it responds
based on its learned knowledge, it uses PK (e.g.
"France"). If it outputs neither, the knowledge
source is not defined (ND, e.g. "Spain").

Parametric Knowledge (PK). PK is the informa-
tion the model learned during training, represented
as triplets (s, r, o) where o is the generated object
given a query with a subject s and a relation r (e.g.,
Query: "Paris is the capital of" → Model answer:
"France").

Context Knowledge (CK). CK is the informa-
tion that is contradictory to PK. This involves re-
placing o with another object ō that shares the same
relation r (e.g., "Paris is the capital of Italy"). For
each (s, r) couple, three ō objects are selected,
namely those with the lowest probability. This
selection method ensures the model did not learn
the (s, r, ō) association from its training data.

Not Defined Knowledge (ND). ND includes all
objects not in PK or CK.

Decoding strategy. Following the knowledge
probing framework (Tighidet et al., 2024), we use a
greedy decoding strategy to generate outputs. This
deterministic decoding ensures that the results are
not influenced by sampling noise (e.g., from tem-
perature or beam search variations).

4 Entropy Neurons

4.1 Motivation
Gurnee et al. (2024) and Stolfo et al. (2024) identi-
fied entropy neurons in GPT-2 by considering the 6
neurons with the lowest impact on logits variance
using the LogitVar measure, defined in Eq. 2 and
questioned their high weight norm. Stolfo et al.
(2024) characterize entropy neurons as those that
write into the effective null space of the unembed-
ding matrix WU ∈ RV×dmodel , as measured by ρ
(Eq. 3).

LogitVar. This measure quantifies a neuron’s di-
rect effect on output logits variance. For a neuron
i, it is defined as:

LogitVar(w
(i)
out) = Var

{
w

(t)
U · w(i)

out

||w(t)
U || × ||w(i)

out||
; t ∈ V

}
(2)

where V is the set of tokens in the vocabulary and
w

(t)
U the tth row of WU.

Effective Null Space Projection (ρ). This mea-
sure quantifies how much of a neuron’s output
aligns with directions that minimally impact the
model’s final output, forming the effective null
space of the unembedding matrix WU, denoted
as V0. Details on identifying V0 are in Appendix
E. For a neuron i, it is defined as:

ρi =
||VT

0 w
(i)
out||

||w(i)
out||

. (3)

Why are they called "entropy" neurons? The
term entropy neurons was introduced by Gurnee
et al. (2024), who observed that these neurons influ-
ence the entropy of the model’s output distribution
while affecting minimally the relative ranking of
tokens.

Why are they interesting? Our interest in
these neurons stems from preliminary findings by
Stolfo et al. (2024), which suggest that induction
heads—attention heads associated with context-
copying behavior—causally affect entropy neurons.
This connection raises the intriguing possibility
that entropy neurons may play a role in regulating
copy behavior in transformer models.

4.2 Entropy Neurons Selection
We focus on the last Transformer layer because its
entropy neurons have the most direct impact on
the term logit distribution (through the projection
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(a) GPT-2 (b) Llama-3-8B

Figure 2: Weight norm distribution for entropy neurons vs. other neurons for GPT-2 and Llama-3-8B. Llama-3-8B
entropy neurons’s, in contrast to GPT-2, exhibit a lower weight norm compared to other neurons.

Figure 3: Selected entropy neurons for Phi-1.5 (red).

with the unembedding matrix WU). We use both
LogitVar and ρ (motivated by previous work on
effective null space projections (Stolfo et al., 2024))
to select these neurons.

Figure 3 illustrates all the neurons with their cor-
responding LogitVar and ρ for Phi-1.5, with similar
figures for other models in Figure 7 in the Ap-
pendix. We select neurons with minimal logit vari-
ance impact (LogitVar) and high projection with
WU’s effective null space (ρ). For Phi-1.5, we se-
lect 12 entropy neurons, representing 1.5‰ of the
last layer’s neurons, using a minimalist approach to
pick the fewest neurons with strong characteristics.
Table 4 in the Appendix details hidden dimensions
and selected entropy neuron proportions for all
models.

Although Gurnee et al. (2024) and Stolfo et al.
(2024) observed high weight norm ||w(i)

out|| for en-
tropy neurons (e.g., GPT-2, Figure 2a) and used
it to select entropy neurons, we do not use high
weight norm as a selection criterion. We ob-
serve that for some models, neurons with low

LogitVar(w(i)
out) and high ρi can have relatively low

||w(i)
out|| compared to other neurons, as illustrated in

Figure 2b for Llama-3-8B. Therefore, we consider
LogitVar and ρ as the crucial selection criteria.

5 Mechanistic Study

We present the metrics in 5.1, and describe our
results in 5.2.

5.1 Metrics

We measure the impact of a set of neurons N on
the context copying behavior by turning off these
neurons, through causal interventions, and observ-
ing how the knowledge source (CK, PK or ND)
changes (see Section 3.2 and the schema in Figure
1). In practice, we turn off these neurons by replac-
ing their activation values ni by an average value
µni computed over the knowledge probing dataset
E3. More formally, for each example x ∈ E (see
Section 3.2), KM(x) is the knowledge source used
by the model M, and KM\N (x) is the knowledge
source used by the ablated model M\N given the
input x. Let EK = {x ∈ E|KM(x) = K} and
EK̄ = E \ EK . We define the following metrics:

Global Transition Score (GTS): proportion of
examples for which the knowledge source changes
as we remove the group of neurons N

GTS =
1

|E|
∑

x∈E

I[KM(x) ̸= KM\N (x)], (4)

where I is the indicator function, equal to 1 if the
condition is true and 0 otherwise, and |E| is the car-
dinality of E. A high GTS indicates that ablating N

3We also tested other ablation values and show their Global
Transition Score in Table 6 in the Appendix.

20472



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50

5

10

15

20

25

30
Co

un
t

Entropy neurons
 (Q-value = 99.0)

(a) Global Transition Score (%)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ND

PK

CKKn
ow

le
dg

e 
So

ur
ce

Random Neurons

(b) Conversion Ratio (%)

To CK To ND To PK
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(99.8 ± 0.1)

0.2
(0.1 ± 0.0)

0.3
(0.1 ± 0.1)
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(0.3 ± 0.1)
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From PK 0.4
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0.1
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(c) Transition Scores (%)

Figure 4: Phi-1.5 ablation scores. As a control, we provide the average Transition Score of 100 random ablations
with its corresponding error bars (±3×standard deviation). We also provide the error bars for the entropy neurons
in Figure 4b illustrated on top of the CK, PK, and ND bars.

significantly alters the model’s knowledge source
selection, underscoring the role of N in knowledge
source decision-making.

Conversion Ratio (CR): proportion of examples
where the model switched to a given knowledge
source K ∈ (PK, CK, ND) when we remove N

CR(K) =
1

|EK̄ |
∑

x∈EK̄

I[KM\N (x) = K] (5)

a high CR(K) suggests that ablating N alters a
large proportion of examples towards K, indicating
that N is an inhibitor of the knowledge source K
in the original model M.
Transition Score (TS): proportion of examples
that transition from knowledge source K to knowl-
edge source K ′ as we remove N

TS(K,K′) =
1

|EK |
∑

x∈EK

I[KM\N (x) = K′], (6)

a high TS(K,K ′) indicates that ablating N moves
a large portion of examples with knowledge source
K to knowledge source K ′, suggesting that the
entropy neurons N tend to promote K over K ′.

5.2 Results

Control Distribution: to assess the significance
of the results on entropy neurons E , we build a
control distribution by drawing 100 independent
sets of neurons from the set of non-entropy neurons
with the same cardinality as E .

Entropy neurons significantly influence the
knowledge source of predictions. We investi-
gated the impact of removing entropy neurons on
knowledge source transitions (CK, PK, ND) across
various models. Figure 4a illustrates that ablating
entropy neurons E results in a Global Transition

Score (GTS) at the top 1% of the control distribu-
tion for Phi-1.5. This suggests that entropy neu-
rons play a significant role in the decision-making
process regarding knowledge sources. This obser-
vation holds true for other models (see Figure 10).

Entropy neurons inhibit the induction mech-
anism. After demonstrating that removing en-
tropy neurons triggers transitions between knowl-
edge sources, we further analyzed the destination
of these transitions using the Conversion Ratio
(CR(K)). Figure 4b for Phi-1.5, show a high CR
for CK compared to the control distribution, indi-
cating a significant shift from PK and ND to CK
(highlighted in green) after ablating E . This finding
is corroborated by the Transition Scores presented
in Table 4c for Phi-1.5 (2.5%) and in Table 5 (Ap-
pendix) for Llama-3-8B (6.2%), GPT-2 (3.3%), and
Pythia-1.4B (2%). We show in Table 1 examples
where Phi-1.5 switched from using PK to CK.

6 Conclusion

In this paper, we demonstrated that entropy neurons
play a significant role in modulating the balance
between PK and CK. Ablation studies revealed that
perturbing these neurons leads to significant shifts
in the knowledge source used by the model. Specif-
ically, the GTS for entropy neurons is at the top 1%
of the control distribution, this finding is consistent
for different models up to 8B parameters. More
broadly, identifying entropy neurons as inhibitors
of context copying contributes to a clearer picture
of how LLMs manage conflicting sources of knowl-
edge. This lays the groundwork for future work
on characterizing and interpreting the internal dy-
namics of LLMs, and more specifically helping to
explain when and why models rely on PK vs CK.
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7 Limitations

While our experiments demonstrate that entropy
neurons significantly inhibit context copying behav-
ior in LLMs, our study is limited by an incomplete
understanding of the broader copying regulation
mechanism. Specifically, we focused solely on en-
tropy neurons in the FFN of the final transformer
layer, which may neglect the contributions of other
neuron types and architectural components.

Additionally, although we observed relatively
high Global Transition Scores in most of the mod-
els we studied, their Q-values varies. For instance,
in Phi-1.5, Llama-3-8B, and GPT-2 the Q-value is
around 99 which is less for Mistral-7B-v0.1 and
Pythia-1.4B with 91 and 92.5 respectively. Model
architecture and training could explain this varia-
tion.

Lastly, our study focuses on how entropy neu-
rons contribute to modulating the balance between
parametric and contextual knowledge in a situation
of induction and does not explore why this specific
set of neurons act this way.

Future research should therefore expand the
investigation to include a wider array of neural
components and alternative perturbation methods
to more comprehensively elucidate the underly-
ing processes governing copying regulation. It
should also explore the reasons why entropy neu-
rons specifically contribute to modulating the bal-
ance between CK and PK in situations of induction.
It could also be interesting to explore the role of
these components on other general linguistic tasks
(Tighidet and Ballier, 2022; Kaddour et al., 2023).

8 Ethical Considerations

Our study probes the internal mechanisms of large
language models (LLMs) by manipulating a small
subset of neurons—entropy neurons—that modu-
late the balance between parametric and contextual
knowledge. All experimental data and prompts are
derived from publicly available sources minimizing
any direct privacy or security concerns.

However, we acknowledge that our findings have
some implications. The probing and ablation tech-
niques we describe could be repurposed to inten-
tionally bias or subvert LLM behavior. Specif-
ically, the structured prompts we employ to in-
duce context copying may serve as templates for
adversarial attacks, allowing malicious actors to
manipulate model outputs in subtle but impactful
ways. Similarly, our demonstration that targeted

neuron ablation alters a model’s decision-making
process raises the risk that LLMs could be engi-
neered—intentionally or inadvertently—to priori-
tize deceptive or harmful outputs.

Given these risks, we stress the importance of
applying this work within responsible and well-
governed research contexts. We urge future re-
searchers to incorporate safeguards against misuse,
including robust evaluation pipelines and trans-
parency in experimental intent. To foster repro-
ducibility and critical engagement, we have re-
leased our codebase under an open license while
documenting the limitations of our approach.

References
Abien Fred Agarap. 2019. Deep learning using rectified

linear units (relu). Preprint, arXiv:1803.08375.

Badr AlKhamissi, Millicent Li, Asli Celikyilmaz, Mona
Diab, and Marjan Ghazvininejad. 2022. A review
on language models as knowledge bases. Preprint,
arXiv:2204.06031.

Yejin Bang, Ziwei Ji, Alan Schelten, Anthony
Hartshorn, Tara Fowler, Cheng Zhang, Nicola Can-
cedda, and Pascale Fung. 2025. Hallulens: Llm hal-
lucination benchmark. Preprint, arXiv:2504.17550.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associ-
ations in auto-regressive language models. Preprint,
arXiv:2304.14767.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. Preprint, arXiv:2012.14913.

Wes Gurnee, Theo Horsley, Zifan Carl Guo, Tara Rezaei
Kheirkhah, Qinyi Sun, Will Hathaway, Neel Nanda,
and Dimitris Bertsimas. 2024. Universal neurons in
GPT2 language models. Transactions on Machine
Learning Research.

Benjamin Heinzerling and Kentaro Inui. 2021. Lan-
guage models as knowledge bases: On entity repre-
sentations, storage capacity, and paraphrased queries.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1772–1791, Online.
Association for Computational Linguistics.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

Zhuoran Jin, Pengfei Cao, Hongbang Yuan, Yubo Chen,
Jiexin Xu, Huaijun Li, Xiaojian Jiang, Kang Liu,
and Jun Zhao. 2024. Cutting off the head ends the
conflict: A mechanism for interpreting and mitigating

20474

https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/2204.06031
https://arxiv.org/abs/2204.06031
https://arxiv.org/abs/2504.17550
https://arxiv.org/abs/2504.17550
https://arxiv.org/abs/2304.14767
https://arxiv.org/abs/2304.14767
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2012.14913
https://openreview.net/forum?id=ZeI104QZ8I
https://openreview.net/forum?id=ZeI104QZ8I
https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://arxiv.org/abs/2402.18154
https://arxiv.org/abs/2402.18154


knowledge conflicts in language models. Preprint,
arXiv:2402.18154.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and applications of large language
models. Preprint, arXiv:2307.10169.

Shahar Katz and Yonatan Belinkov. 2023. VISIT: Vi-
sualizing and interpreting the semantic information
flow of transformers. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
14094–14113, Singapore. Association for Computa-
tional Linguistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2023. Locating and editing factual associa-
tions in gpt. Preprint, arXiv:2202.05262.

Giovanni Monea, Maxime Peyrard, Martin Josifoski,
Vishrav Chaudhary, Jason Eisner, Emre Kıcıman,
Hamid Palangi, Barun Patra, and Robert West. 2024.
A glitch in the matrix? locating and detecting lan-
guage model grounding with fakepedia. Preprint,
arXiv:2312.02073.

Neel Nanda and Joseph Bloom. 2022. Transformerlens.
https://github.com/TransformerLensOrg/
TransformerLens.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jack-
son Kernion, Liane Lovitt, and 7 others. 2022. In-
context learning and induction heads. Preprint,
arXiv:2209.11895.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
and 2 others. 2019. Pytorch: An imperative style,
high-performance deep learning library. Preprint,
arXiv:1912.01703.

Dan Shi, Renren Jin, Tianhao Shen, Weilong Dong, Xin-
wei Wu, and Deyi Xiong. 2024. Ircan: Mitigating
knowledge conflicts in llm generation via identify-
ing and reweighting context-aware neurons. In Ad-
vances in Neural Information Processing Systems,
volume 37, pages 4997–5024. Curran Associates,
Inc.

Alessandro Stolfo, Ben Wu, Wes Gurnee, Yonatan Be-
linkov, Xingyi Song, Mrinmaya Sachan, and Neel
Nanda. 2024. Confidence regulation neurons in lan-
guage models. Preprint, arXiv:2406.16254.

Zineddine Tighidet and Nicolas Ballier. 2022. Fine-
tuning a subtle parsing distinction using a probabilis-
tic decision tree: the case of postnominal “that” in
noun complement clauses vs. relative clauses. In

Proceedings of the 20th Annual Workshop of the Aus-
tralasian Language Technology Association, pages
52–61, Adelaide, Australia. Australasian Language
Technology Association.

Zineddine Tighidet, Andrea Mogini, Jiali Mei, Ben-
jamin Piwowarski, and Patrick Gallinari. 2024. Prob-
ing language models on their knowledge source.
Preprint, arXiv:2410.05817.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and
Yu Su. 2024. Adaptive chameleon or stubborn sloth:
Revealing the behavior of large language models in
knowledge conflicts. Preprint, arXiv:2305.13300.

Rongwu Xu, Zehan Qi, Zhijiang Guo, Cunxiang Wang,
Hongru Wang, Yue Zhang, and Wei Xu. 2024.
Knowledge conflicts for llms: A survey. Preprint,
arXiv:2403.08319.

Qinan Yu, Jack Merullo, and Ellie Pavlick. 2023. Char-
acterizing mechanisms for factual recall in language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9924–9959, Singapore. Association for Com-
putational Linguistics.

A Hardware and Software

Experiments were performed using NVIDIA H100
and A100 GPUs, each equiped with 80 GB of
VRAM. The process of generating the outputs with
and without ablations took around 250 GPU hours.
Our codebase was built using PyTorch (Paszke
et al., 2019), the HuggingFace Transformers library
(Wolf et al., 2020) the TransformerLens library
(Nanda and Bloom, 2022), and the knowledge prob-
ing framework (Tighidet et al., 2024).

B License

Llama3-8B weights are released under the license
available at https://llama.meta.com/llama3/
license/. Mistral-7B and Pythia-1.4B weights are
released under an Apache 2.0 license. Phi-1.5 and
GPT-2 weights are released under a MIT license.
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C Weight Pre-processing

To eliminate irrelevant components and other pa-
rameterization degrees of freedom, we utilize a set
of standard weights pre-processing techniques fol-
lowing Nanda and Bloom (2022) and Stolfo et al.
(2024).

Incorporating Layer Norm. Most layer norm
implementations include trainable parameters γ ∈
Rn and β ∈ Rn. To account for these, we "fold"
the layer norm parameters into Win by treating
the layer norm parameters as equivalent to a linear
layer and then combining the adjacent linear layers.
We create effective weights as follows:

Weff = Win · diag(γ), βeff = βin +Win · β
(7)

Finally, we center the reading weights because the
preceding layer norm projects out the all-ones vec-
tor. Thus, we center the weights Weff as follows:

W
′
eff(i, :) = Weff(i, :)− W̄eff(i, :). (8)

Centering Writing Weights. Every time the
model interacts with the residual stream, it applies
a LayerNorm first. Therefore, the components of
Wout and βout that lie along the all-ones direction
of the residual stream have no effect on the model’s
calculations. Consequently, we mean-center Wout

and βout:

W
′
out = Wout(:, i)− W̄out(:, i). (9)

Centering Unembedding. Since softmax is
translation invariant, we also center WU:

W
′
U(:, i) = WU(:, i)− W̄U(:, i) (10)

D Data Characteristics

We provide in Figure 5 the count of used knowledge
sources by model before ablating entropy neurons.
We also provide in Table 3 a sample of examples
from the knowledge probing dataset.

GPT2-small Llama3-8B Mistral-7B Phi-1.5 Pythia-1.4B
0

2000

4000

6000

8000

10000

Co
un

t o
f U

se
d 

Kn
ow

le
dg

e 
So

ur
ce

Knowledge Source
CK
ND
PK

Figure 5: Count of used knowledge sources by each
model before ablation.

E WU’s Effective Null Space

To identify the effective null space V0 of WU, we
start by applying a singular value decomposition
(SVD) on WU:

SVD(WU) = UΣVT, (11)

we then consider the right singular vectors with the
lowest singular values, noted V0, starting from a
sharp drop as shown in Figure 6. We also detail
the effective null space dimension size for all the
studied models in Table 4.
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Figure 6: Unembedding matrix WU singular values,
illustrating the effective null space of WU in red.

F Activations

Model Activation Function Domain
Llama-3-8B SwiGLU: Swish × GLU R
Mistral-7B-V0.1 SwiGLU: Swish × GLU R
Phi-1.5 GELU R
Pythia-1.4B GELU R
GPT-2-Small GELU R

Table 2: FFN hidden layer activation functions for all
the studied models
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Input Prompt Knowledge Source PK Attribute Language Model

Harney County has its capital city in Taiwan. Harney County has its capital city in Burns. ND Oregon Llama3-8B

Lisa Appignanesi has citizenship of Finland. Lisa Appignanesi has citizenship of France. ND the UK Llama3-8B

Craiova is located in the continent of India. Craiova is located in the continent of Romania. ND Europe Pythia-1.4B

The Kingdom of Hungary had its capital as Connecticut. The Kingdom of Hungary had its
capital as Connecticut.

CK Budapest Mistral-7B

The Wii U system software is a product that was manufactured by Square. The Wii U system
software is a product that was manufactured by Square.

CK Nintendo Llama3-8B

The Centers for Disease Control and Prevention is headquartered in Lyon. The Centers for
Disease Control and Prevention is headquartered in Lyon.

CK Atlanta Llama3-8B

Harare is the capital city of Florida. Harare is the capital city of Zimbabwe. PK Zimbabwe Pythia-1.4B

Goodreads is owned by Microsoft. Goodreads is owned by Amazon. PK Amazon Phi-1.5

OneDrive is owned by Toyota. OneDrive is owned by Microsoft. PK Microsoft Mistral-7B

Table 3: Examples of final probing prompts, including their knowledge source, the LLM, and the corresponding
parametric knowledge (PK) object. Bold text indicates the generated attribute, while underlined text represents the
counter-knowledge attribute.

Model dmodel dffn deffective null space Card(V ) deffective null space
dmodel

(%) Entropy Neurons
(‰)

GPT-2 768 3072 40 50257 5.20 2
Llama-3-8B 4096 14336 96 128256 2.34 0.7
Mistral-7B-v0.1 4096 14336 96 32000 2.34 1
Pythia-1.4B 2048 8192 48 50304 2.34 1.1
Phi-1.5 2048 8192 48 51200 2.34 1.5

Table 4: Models hidden dimensions compared to the proportion of selected entropy neurons.

Model Name From CK From ND From PK
To CK To ND To PK To CK To ND To PK To CK To ND To PK

GPT-2 100.0
(100.0 ± 0.0)

0.0
(0.0 ± 0.0)

0.0
(0.0 ± 0.0)

3.3
(0.4 ± 0.1)

96.4
(99.6 ± 0.1)

0.3
(0.0 ± 0.0)

0.0
(1.2 ± 0.6)

6.2
(2.6 ± 0.8)

93.8
(96.3 ± 1.0)

Mistral-7B 99.8
(99.9 ± 0.0)

0.0
(0.0 ± 0.0)

0.2
(0.1 ± 0.0)

0.0
(0.3 ± 0.3)

98.6
(99.3 ± 0.5)

1.4
(0.4 ± 0.3)

2.2
(0.6 ± 0.2)

0.2
(0.0 ± 0.0)

97.6
(99.4 ± 0.2)

Llama3-8B 99.6
(100.0 ± 0.0)

0.1
(0.0 ± 0.0)

0.4
(0.0 ± 0.0)

6.2
(0.2 ± 0.3)

90.6
(99.7 ± 0.4)

3.1
(0.1 ± 0.2)

0.5
(0.9 ± 0.3)

0.5
(0.0 ± 0.0)

99.1
(99.1 ± 0.3)

Pythia-1.4B 99.9
(100.0 ± 0.0)

0.0
(0.0 ± 0.0)

0.1
(0.0 ± 0.0)

2.0
(0.7 ± 0.2)

98.0
(99.3 ± 0.3)

0.0
(0.0 ± 0.1)

0.0
(0.3 ± 0.1)

0.0
(0.0 ± 0.0)

100.0
(99.7 ± 0.1)

Table 5: Transition Scores (%) From source To target knowledge source after mean ablating entropy neurons across
models. As a control, we provide the average Transition Score of 100 random ablations with its corresponding error
bars (±3σ).
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(a) GPT2 (b) Pythia-1.4B

(c) Llama-3-8B (d) Mistral-7B

Figure 7: Selected entropy neurons (red). We select entropy neurons following the LogitVar and ρ criteria. In
each Figure, k is the number of selected entropy neurons, p is the proportions of entropy neurons, and N is the total
number of neurons.
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Ablation Value Model EN Transition Score (%) Q-val

µni

GPT-2 0.3 98.0
Pythia-1.4B 0.1 92.5
Mistral-7B-v0.1 0.5 91.0
Phi-1.5 1.0 99.0
Llama3-8B 0.5 99.0

max(µni − 3σni , minni)

GPT-2 0.5 100.0
Pythia-1.4B 0.1 96.5
Mistral-7B-v0.1 11.1 99.0
Phi-1.5 1.2 99.0
Llama3-8B 0.9 87.0

min(µni + 3σni , maxni)

GPT-2 7.8 99.0
Pythia-1.4B 1.5 100.0
Mistral-7B-v0.1 2.3 84.0
Phi-1.5 1.0 95.0
Llama3-8B 99.5 99.0

Medianni

GPT-2 0.2 99.0
Pythia-1.4B 0.1 74.5
Mistral-7B-v0.1 0.5 92.0
Phi-1.5 1.1 99.0
Llama3-8B 0.1 84.0

Modeni

GPT-2 93.8 100.0
Pythia-1.4B 0.1 68.5
Mistral-7B-v0.1 0.5 87.0
Phi-1.5 1.3 98.0
Llama3-8B 0.1 60.5

Table 6: Ablation value-wise Global Transition Scores (%) for entropy neurons ablation. The ablation values are
computed over the knowledge probing dataset for each neuron activation distribution ni as illustrated in Figure
9. Specifically they consist of: the mean µni

, the mode Modeni
, the median Medianni

, and two extreme values
min(µni

+ 3σni
, maxni

), max(µni
− 3σni

, minni
) where σni

is the standard deviation. For the extreme values,
we make sure to take the minni

/maxni
when µni

± 3σni
is out of distribution.
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Figure 8: Conversion Ratio (%)
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Figure 9: Example of neurons distribution for each model as well as the ablation values. The Neuron where
randomly selected for each model and the distribution was estimated based on the knowledge probing dataset
(Tighidet et al., 2024).
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(a) GPT2 (b) Pythia-1.4B

(c) Llama-3-8B (d) Mistral-7B-v0.1

Figure 10: Global Transition Scores, ablating entropy neurons exhibit a higher transition in the used knowledge
sources compared to 100 sets of random neurons which indicates the unique property of entropy neurons to affect
the knowledge source to select.
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