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Abstract

In this paper, we propose a unified approach
to model calibration for emotion detection that
exploits the complementary strengths of knowl-
edge distillation and the MixUp data augmen-
tation technique to enhance the trustworthiness
of emotion detection models. Specifically, we
use a MixUp method informed by training dy-
namics that generates augmented data by inter-
polating easy-to-learn with ambiguous samples
based on their similarity and dissimilarity pro-
vided by saliency maps. We use this MixUp
method to calibrate the teacher model in the
first generation of the knowledge distillation
process. To further calibrate the teacher models
in each generation, we employ dynamic tem-
perature scaling to update the temperature used
for scaling the teacher predictions. We find
that calibrating the teachers with our method
also improves the calibration of the student
models. We test our proposed method both in-
distribution (ID) and out-of-distribution (OOD).
To obtain better OOD performance, we fur-
ther fine-tune our models with a simple MixUp
method that interpolates a small number of
OOD samples with ambiguous ID samples.

1 Introduction

Emotion detection in written content (Kusal et al.,
2022; Plaza-del Arco et al., 2024) is a text classifi-
cation task that entails the analysis of textual data
in order to discern the emotional state expressed in
it. Text-based emotion detection has applications in
many fields, ranging from customer service (Agar-
wal et al., 2021; Brun et al., 2025) to mental health
support (Sosea and Caragea, 2020; Nijhawan et al.,
2022), where it is important not only to correctly
predict an emotion but also to know how trustwor-
thy the prediction is. This is where model cali-
bration comes in, which measures the discrepancy
between the confidence of the model in a prediction
(that is, the probability output assigned to the pre-
diction) and the correctness of that prediction (i.e.,

accuracy). A well-calibrated model can inform us
through its confidence when it is uncertain about
a prediction (i.e., its confidence is low) and there
is a chance that the prediction is wrong. However,
modern neural networks tend to suffer from mis-
calibration (Guo et al., 2017; Desai and Durrett,
2020).

Recently, Hosseini and Caragea (2022) studied
the calibration of the pre-trained models BERT and
RoBERTa across three emotion-related tasks: emo-
tion detection, sentiment analysis, and empathy
detection. They obtained better calibrated mod-
els both in and out of domain by training a model
with MixUp (Zhang et al., 2018), which has been
found to improve model calibration across diverse
tasks (Thulasidasan et al., 2019), and then applied
knowledge distillation (Hinton et al., 2015), which
involves transferring knowledge from a teacher
model to a student model. The specific MixUp
method they used interpolates the top 33% easy-to-
learn samples with the top 33% most ambiguous
samples. They also experimented with two popu-
lar regularization techniques widely used to reduce
miscalibration: temperature scaling (Guo et al.,
2017) and label smoothing (Pereyra et al., 2017).

In contrast to the above study, which focused on
calibrating the student models in a single genera-
tion of knowledge distillation, our study aims to cal-
ibrate both the teacher and student models in mul-
tiple generations using MixUp and dynamic tem-
perature scaling. We also used a different MixUp
method to train the teacher in the first generation.
Our MixUp method uses 100% of the data to gener-
ate more informative samples based on training dy-
namics and saliency maps (Simonyan et al., 2014).
Specifically, we first leveraged the training dynam-
ics to separate the training data into two equally
sized sets: easy-to-learn and ambiguous samples
(which include hard-to-learn samples). We then
used MixUp to combine samples from the two sets
with the most similar and dissimilar samples from
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the other set according to their saliency signals.
Our contributions are summarized as follows:

* We used the MixUp method based on train-
ing dynamics and saliency to train the initial
teacher model in the first generation in order
to obtain a better calibrated and more robust
teacher. We found that doing knowledge dis-
tillation on calibrated teachers helps improve
the performance and calibration of the student
models.

e In order to calibrate the teacher model in
each generation, we used dynamic tempera-
ture scaling to estimate the temperature that
best calibrates the teacher model on the vali-
dation set.

* By combining knowledge distillation with dy-
namic temperature scaling and the previously
described MixUp method, we effectively im-
proved the calibration of the student models.

* To increase the performance in the OOD set-
ting, we further trained our models on a small
percentage of the OOD training data together
with additional samples created by mixing the
OOD samples with ambiguous ID samples in
the feature space.

2 Related Work
2.1 Model Calibration

Miscalibration is a common problem in modern
neural networks (Guo et al., 2017; Desai and Dur-
rett, 2020), which implies that the models’ confi-
dence is not reliable and, consequently, their pre-
dictions are not trustworthy. Methods to improve
the calibration of neural network models have been
studied on both image classification and natural
language processing tasks. Guo et al. (2017) found
that using temperature scaling before the softmax
operation is one of the most effective methods
to reduce calibration errors for both image and
document classification tasks. Thulasidasan et al.
(2019) showed that deep neural networks trained
with MixUp are better calibrated on both image
classification and NLP tasks. Desai and Durrett
(2020) used temperature scaling and label smooth-
ing to obtain better calibration for the pre-trained
language models BERT and RoBERTa on three lan-
guage understanding tasks: natural language infer-
ence, paraphrase detection, and commonsense rea-
soning, both in-domain and out-of-domain. Kong
et al. (2020) studied the calibration of BERT with

MixUp for both in-domain and out-of-domain set-
tings. New samples were generated using the co-
sine distance between samples in the feature space.
Jung et al. (2020) proposed an end-to-end train-
ing procedure called posterior calibrated (PosCal)
training that reduced the calibration error on two
benchmarks for NLP classification tasks: GLUE
and xSLUE. They fine-tuned the BERT model by
jointly optimizing a cross-entropy loss and a cal-
ibration loss while dynamically minimizing the
difference between the predicted and the true poste-
rior probabilities during training. Park and Caragea
proposed two new MixUp methods for calibrat-
ing the BERT model, both in-domain and out-of-
domain: TD-MixUp (2022a) and MixUp guided by
AUM and saliency (2022b). The MixUp methods
were evaluated on three language understanding
tasks: natural language inference, paraphrase detec-
tion, and commonsense reasoning. Li and Caragea
(2023) explored the effect of knowledge distillation
over multiple generations and dynamic temperature
scaling on calibration for stance detection.

2.2 Emotion Detection

Suresh and Ong (2021) proposed Label-Aware Con-
trastive Loss (LCL), a method for fine-grained emo-
tion classification tasks that incorporates relation-
ships between labels into contrastive learning. LCL
was proven to help the model differentiate between
easily confusable classes, but its effect on calibra-
tion was not studied. The method was also not
evaluated in the OOD setting.

Zanwar et al. (2022) addressed the challenge
of out-of-domain generalization in emotion de-
tection. They proposed hybrid models that com-
bine transformer-based architectures (BERT and
RoBERTa) with Bidirectional Long Short-Term
Memory (BiLSTM) networks trained on psycholin-
guistic features. Their approach improved general-
izability across various text-based emotion classifi-
cation datasets.

3 Proposed Approach

3.1 Overview

A model is well-calibrated if its confidence re-
flects the likelihood of the predicted outcome. In
other words, an event predicted by a well-calibrated
model with confidence p should empirically be true
p of the time (Guo et al., 2017). The metric we use
to evaluate calibration is the Expected Calibration
Error (ECE) (Naeini et al., 2015). Lower ECE
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values indicate better calibrated models.

In this section we introduce our proposed ap-
proach for emotion detection calibration that uni-
fies ideas for combating miscalibration. Specif-
ically, we combined two techniques: a MixUp
method that creates more challenging examples
and a knowledge distillation method that employs
dynamic temperature scaling. This holistic ap-
proach produces better calibrated teachers during
the knowledge distillation process, which, in turn,
results in better calibrated students. We explain our
key components in the following subsections.

3.2 Calibrated Knowledge Distillation

Knowledge distillation (KD) introduced by Hin-
ton et al. (2015) refers to the process of transfer-
ring knowledge from a teacher model to a stu-
dent model by training the student model to mimic
the teacher’s output probabilities. In our study we
used born-again networks (BANSs) (Furlanello
etal., 2018), a particular case of knowledge distilla-
tion in which the teacher and student models have
the same architecture (also called self-distillation).
Specifically, we used the RoBERTa base architec-
ture. Furlanello et al. (2018) showed that BAN stu-
dent models can achieve better performance than
their teachers over multiple generations. In each
new generation, the student model from the pre-
vious generation takes the role of the teacher to
transfer its knowledge to a new fresh student model
with identical architecture.

Given a k-class text classification task and the
training data D" = {(z;,v;)}"_;, where z; is an
input sentence and y; is the corresponding one-hot
hard label, standard supervised learning trains a
model by minimizing the cross-entropy loss Lo g
of the training data, described below.

Let z; be the model’s prediction logits (i.e., the
model’s unnormalized output) for input z; and let

exp(z;
pi = # be the model’s softmax out-

k
Zj:l exp(zij)
put for z;, then the cross-entropy loss is defined

as:
Leg =— Z

(wi,y:) €D

lor(pisyi)

where log(pi,y;) is the cross-entropy loss for a
single training example:

k
lea(poy) = Y vijlog(pij)
j=1

In the self-distillation setting, a student model is

trained using the hard labels and the teacher pre-
diction logits (i.e., the soft labels) by minimizing
Ly p, the weighted sum of the cross-entropy loss
between the hard labels and the student’s predic-
tions and the difference loss between the teacher’s
and student’s predictions:

Lkp=(1—=NLcg + ALky

where Ly, is the Kullback-Leibler (KL) diver-
gence loss:

Lxr = ) Ixo(p*(z:),p'(z:)

x; EDT

where i1 (p*(z;), p'(x;)) is the KL divergence
loss for the training example x; and p'(z;) =
o(z(x;)) and p*(x;) = o(2*(x;)) denote the soft-
max predictions of the teacher and student models,
respectively, where o is the softmax function and
2'(z;) and 2*(x;) denote the output logits of the
teacher and student models for input z;.

The KL divergence loss for a single input is
defined as:

k
U (p (), p'(22)) = Y pl(wi)log
j=1

(i)
(i)

In the L p loss, the coefficient A € (0,1) is
used to weight the importance of the two loss func-
tions. We use teacher annealing, introduced by
Clark et al. (2019) to optimize A. This method
gradually transitions the student model from self-
distillation to supervised learning as the training
progresses.

To effectively calibrate the prediction probabil-
ities of the teacher models during the knowledge
distillation process, we use temperature scaling
(TS) (Guo et al., 2017). For an instance x, temper-
ature scaling divides the logit vector z(z) by the
scalar T" before the softmax operation. Therefore,
the new confidence prediction for x obtained with
TS is o(z(x)/T), where o denotes the softmax
operation.

When temperature scaling is combined with
knowledge distillation, a slightly modified version
of the KL divergence loss is used. Typically, the
new formula for L is the following:

LKL=T2 Z ZKL(O'(ZS(:Q’)/T),U(zt@?i)/T)
x; €D

where 2! (z;)/T and 2%(z;)/T are the scaled out-
put logits of the teacher and student models, re-
spectively, and T is usually fixed. However, we
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Algorithm 1 : Sim-Mixup

Algorithm 2 : Our Proposed Method

Require: Diyqin = {(24,yi)}11; model
1: Compute the data map of Dy,q;n and sort the
samples in descending order by confidence.
Split Dyyqin into the easy-to-learn subset Dy
and the ambiguous subset (that includes hard-
to-learn samples) Dg;,pi4 0of equal size.

2: fore:=0to E do
3 Ltoml 0
4: for i := 0 to |Dyyrqin| do
5: Log < CrossEntropy(f(x:), yi)
6 Construct a saliency map S by comput-
ing the gradient of Lo g with respect to
the logit vector z;.
if (i, ;) € Deqsy then:
Find the most similar and dissimi-
lar samples from Dg;pig

9: else if (x;, ;) € Dympig then:
10: Find the most similar and dissimi-
lar samples from Dy
11: end if
12: Generate two MixUp samples by inter-

polating (z;,y;) with its most similar
and dissimilar sample.

13: Compute the cross-entropy losses L’
and L” of the two MixUp samples.

14: Liotai = Ltotait0.8 Lop+0.1L"+0.1L"

15: end for

16: Update the model weights

17: end for

obtained generally better results when the student
logits were not scaled (see Scaling vs not scaling
the student in the Appendix), so we did not use
temperature scaling on the student models in the
final experiments.

We dynamically choose the temperature that
minimizes the ECE of the teacher model on the
ID validation set in each generation. This method
is called Calibration-based Knowledge Distillation
(CKD) (Li and Caragea, 2023). The choice of the
optimal temperature is time-efficient since it only
involves dividing the teacher’s softmax outputs by
potential temperature values and then computing
the corresponding ECE values.

3.3 MixUp

The original MixUp, introduced by Zhang et al.
(2018), is a data augmentation technique that gen-
erates new samples during training by combining

Require: training set Dyyq;n, validation set D,
number generations G

1. gen <1
2: Train the first teacher model for F epochs us-
ing the Sim-MixUp method in Algorithm 1.

3: Do temperature scaling on the teacher’s out-
put probabilities with temperature 7' that min-
imizes the ECE of the teacher on D,,;. Stop
the algorithm if gen is equal to G, otherwise
continue to step 4.

4: Train on Dyyqin a student model with the same
architecture as the teacher by minimizing the
weighted sum of the cross-entropy loss and the
KL-divergence loss:

Lxkp=(1—=XNLcg+ ALk

where A is optimized using teacher annealing.

5. Take the student as a new teacher, increase gen
by one and return to step 2.

random pairs of training samples and their labels
in the input space. The new samples are created
using the following rule:

T =Ax; + (1 = Nz,
g=Myi + (1= Ny,

where z; and z; are two randomly selected input
instances with their associated one-hot encoded la-
bels y; and y;, and A is a mixing ratio sampled from
a Beta(a, o) distribution with a hyper-parameter o.

Verma et al. (2019) showed that, rather than com-
bining input-level features, interpolating hidden
representations in the feature space leads to better
regularization effects because the model is encour-
aged to focus on the representations of the training
examples in a low dimensional subspace.

Inspired by prior work (Hosseini and Caragea,
2022; Park and Caragea, 2022a) that used MixUp
guided by training dynamics (Swayamdipta et al.,
2020) for model calibration, we split the training
data evenly into easy-to-learn and ambiguous sam-
ples using the median confidence as a threshold.
According to Swayamdipta et al. (2020), easy-to-
learn samples are useful for model optimization
and help the model converge, while the ambiguous
samples are the most challenging for the model
and are beneficial for learning since they push the
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model to become more robust.

We utilized MixUp to interpolate in the fea-
ture space the most similar and dissimilar samples
across the two data categories. Specifically, for
a training sample (z;, y;) we leverage its saliency
map S based on gradients to find the most similar
sample (z,y!) using Eq. 1 and the most dissimilar
sample (z!/,y!") using Eq. 2:

(z},y))= argmax CosSim(S,S(xf’yj)) (D
(xjvyj)epother

argmin  CosSim(S,5@¥1)) (2)

(xj vyj)EDother

(@7, i) =

where Dyyper is the subset that (z;,y;) does not
belong to.

We denote the MixUp strategy used in our pro-
posed method by Sim-MixUp. We use Sim-MixUp
to generate additional training examples that are
more useful for learning since they share the char-
acteristics of both easy-to-learn and ambiguous
samples. The models are trained on the generated
data together with the easy-to-learn and ambiguous
samples using cross-entropy loss.

In this study we combined the MixUp method
described above with calibration-based self-
distillation over multiple generations by training
the first teacher model with the MixUp method in-
stead of standard supervised learning. The steps of
our approach are detailed in Algorithm 2.

4 Experimental Setup
4.1 Datasets

We perform emotion detection both in-distribution
(ID) and out-of-distribution (OOD). ID refers to the
data distribution used to train a model, while OOD
data is significantly different from the training data
and is used to evaluate how well models adapt be-
yond their training distribution. We also mapped
the emotion labels from one ID dataset to Ekman’s
emotions and from another ID dataset to Plutchik’s
emotions to assess how well our approach gen-
eralizes across different emotion schemes. We
chose the mapping according to the alignment be-
tween the original emotions (in a dataset) and each
scheme. Specifically, Empathetic Dialogues in-
cludes labels corresponding to the two Plutchik
emotions (anticipation and trust) that are not part
of Ekman’s set (see Table 6 in the Appendix).

4.1.1 In-Distribution Data

(1) GoEmeotions (Demszky et al., 2020) is a
dataset consisting of 58k Reddit comments la-

beled with 27 emotions or neutral. The dataset
is multilabeled, i.e, some samples have more
than one label. In this study we first removed
the neutral label because the other two ID
datasets do not have that label and because we
wanted to be consistent with prior work that
also did not use the neutral label (Suresh and
Ong, 2021). We then replaced each emotion
label with one of Ekman’s six basic emotions
(Ekman, 1992) as shown in Table 5 from the
Appendix. Finally, we removed the samples
that still had more than one label, as well as
duplicate instances (i.e., repeated comments
with identical labels).

(2) Empathetic Dialogues (Rashkin et al., 2019)
consists of 25k two-way conversations between
a speaker and listener grounded in emotional
situations. Each conversation has an associated
prompt (i.e., a description of an emotional situ-
ation) which is labeled with one of 32 emotions.
In this work, we only used the prompts to train
and evaluate the models. The emotion labels
were grouped into Plutchik’s eight fundamental
emotions (Plutchik, 2001) as shown in Table 6
in Appendix, then the duplicate instances were
removed.

(3) ISEAR (short for “International Survey on
Emotion Antecedents and Reactions™) (Scherer
and Wallbott, 1994) contains reports describ-
ing emotional events and labeled with one of
seven emotions: joy, fear, anger, sadness, dis-
gust, shame, or guilt, each emotion having ap-
proximately 1070 examples. Note that 154 re-
ports with no descriptions (e.g., ‘No response’,
‘Never experienced’, ‘Does not apply’) were
removed. Situations labeled with the ‘guilt’
emotion were also removed since that emo-
tion is not present in the corresponding OOD
dataset (Emotion-Stimulus).

4.1.2 Out-of-Distribution Data

(1) The DailyDialog (Li et al., 2017) is the
OOD dataset corresponding to the GoEmotions
dataset. It consists of 13K multi-turn dialogues
about daily life. Each utterance is labeled with
one of Ekman’s 6 emotions or with ‘no emo-
tion’. We only used the utterances with emo-
tions to evaluate the models.

(2) The Stance Sentiment Emotion Corpus
(SSEC) (Schuff et al., 2017) is the OOD
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dataset corresponding to the Empathetic Di-
alogues dataset. SSEC consists of 4,870 tweets
annotated with multiple emotion labels per
tweet following Plutchik’s 8 emotions. The
dataset has a train and test subset that have 5
different label assignments available based on
the fraction ¢ of annotators that agree on any
given emotion. We used the train and test sets
with t = 0.66, from which we removed the
tweets with multiple emotions. For validation
we used 5% of the train set (the rest was used
for OOD finetuning).

(3) The Emotion-Stimulus dataset (Ghazi et al.,
2015) corresponds to the ID dataset ISEAR. It
contains 2413 sentences annotated with one of
Ekman’s 6 emotions or shame. We removed
the sentences labeled with the emotion sur-
prise, since the ISEAR dataset does not con-
tain that emotion. We evenly split 95% of the
dataset into two to obtain a validation and a
test subset with which to evaluate the models.

4.2 Baseline Methods

We compare our results with the following base-
lines for text classification:

¢ Label Aware Contrastive Loss (LCL) (Suresh
and Ong, 2021): a method that adapts contrastive
learning for fine-grained emotion classification.
A dual-model approach is used: one model learns
the inter-label relationships that are used in the
main model’s contrastive objective. In the paper
both models were initialized with HuggingFace’
ELECTRApase.-

* RoBERTa (short for “Robustly Optimized BERT
Approach”): a variant of the BERT model pro-
posed by Liu et al. (2019) that has been shown
to outperform BERT and other state-of-the-art
models on a variety of NLP tasks.

Manifold MixUp (M-MixUp) (Verma et al.,
2019): an extension of the original MixUp
(Zhang et al., 2018) with better regularization
that interpolates training samples in the feature
space. The interpolation is performed on the fea-
tures obtained from the task-specific layer on top
of the ROBERTa model. We report the results
for random interpolation (Rand-M-MixUp) and
the interpolation of easy and ambiguous sam-
ples using 66% of the training data (66% EA-M-
MixUp), which is the method used by Hosseini
and Caragea (2022).

¢ Self-distillation (SD) (Furlanello et al., 2018): a
knowledge distillation method over multiple gen-
erations without temperature scaling in which the
student has the same architecture as the teacher.

¢ Calibration-based Self-Distillation (CSD) (Li
and Caragea, 2023): an SD method that dynam-
ically updates the temperature used to scale the
teacher predictions in each generation. Note that
the student predictions are not scaled.

* Hosseini and Caragea (2022): their method com-
bines one generation self-distillation (1-G SD)
with 66% EA-M-MixUp. We also report the re-
sult of adding temperature scaling to this method,
which is equivalent with one generation CSD
(1-G CSD) with 66% EA-M-MixUp for a fair
comparison with our approach.

We also compare our proposed method with the
following instruction-tuned large language models
(LLMs):

* Llama 3 from Meta with 8b parameters;

* Gemma 2 from Google with 9b parameters.

4.3 Evaluation Metrics

For the emotion classification task, the macro F1
score is a good metric to evaluate a model’s ability
to distinguish between different emotions. How-
ever, if the dataset used to train the model is imbal-
anced, the weighted F1 score considers the contri-
butions of each class more appropriately. Since two
of the datasets used in this study are imbalanced,
we report both scores in our results. As mentioned
in Subsection 3.1, we use the Expected Calibra-
tion Error (ECE) (Naeini et al., 2015) to evaluate
the calibration of the models.

4.4 Experimetal Details

We performed knowledge distillation over 4 gen-
erations. We utilized the in-domain development
set for dynamic temperature scaling to determine
an optimum temperature 7' in the range of [0.01,
5.0] with a granularity of 0.01. For MixUp, we
used 5.0 as the value for the parameter «. To ob-
tain the easy-to-learn subset, we took the top 50%
samples with the highest confidence. The rest of
the samples were placed in the ambiguous subset.

To improve the OOD performance, we further
trained the models on 1%, 3%, and 5% of the OOD
training data, together with new samples created by
mixing the OOD samples with random ambiguous
ones from the ID training data. We found that
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GoEmotions Empathetic Dialogues Isear

Model F1 score ECE F1 score ECE F1 score ECE
Ilama3-8b(zs) 49.68(64.58) 17.03 60.69(62.53) 20.83 69.81(69.88) 14.56
gemma?2-9b-it(zs) 49.95(64.85) 22.03 60.53(62.80) 25.75 74.39(74.42) 13.50
llama3-8b(fs-3prompts) 46.870.2(61.830.2) |23.49¢.5| 58.530.7(60.890.6) |24.590.2| 69.740.6(69.810.6) |17.270.5
gemma2-9b(fs-3prompts) 50.190‘5(65.500,4) 23.730_8 61.230‘6(62.940,5) 28.150,2 74.410‘4(74,440,4) 15.660 4
Electra+LCL 72.130.6(82.260.2) | 4.270.3 | 77.460.2(79.730.3) | 6.060.2 | 76.290.5(76.310.5) | 8.710.5
[RoBERTa | 72.710.5(82.200.5) | 5.650.5 | 77.560.5(79.860.3) | 5.520.5 | 75.600.4(75.620.4) | 9.120.5 |
RoBERTa + TS same as above 1.700.3 same as above 1.960.3 same as above 4.000.3
Rand-M-MixUp | T1.460.6(81.59.2) | 5.520.4 | 7T7.100.5(79.440.5) | 3.940.7 | T4.430.7(74.460.7) | 7.750.s |
Rand-M-MixUp + TS same as above 3.160.5 same as above 2.600.5 same as above 3.740 8
66% EA-M-MixUp | 68.950.4(80.520.3) | 4.89%.5 | 75.330.9(77.860.8) | 4.1513 | 72.100.0(72.120.0) | 6.790.6 |
66% EA-M-MixUp+TS same as above 4.600.5 same as above 2.560.5 same as above 3.130.9
[1G-SD + 66%EA-MixUp | 71.2805(81.700.2) | 5.080.2 | 77.090.2(79.480.2) | 4.540.3 | 75.960.5(75.970.5) | 6.640.5 |
1G-CSD + 66%EA-MixUp| 71.650.3(81.79¢.1) | 2.500.4 | 77.720.4(80.070.3) | 2.440.6 | 75.690.5(75.710.5) | 3.830.6
sp | 73.120.4(82.200.5) | 5.39. |77.910.3(80.230.3)| 4.830.3 | 76.630.4(76.650.4) | 8.220.4 |
CSD 73.220.3(82.330.2) | 1.500.2 | 77.840.3(79.980.2) | 1.910.4 | 76.290.3(76.310.3) | 3.570.7
Sim—MixUp + CSD (ours) 74.010‘3(82.680,1) 1 440 1 77.900‘4(80.020,3) 1.810,4 76.790_3(76.810‘3) 3.130,3

Table 1: Results for the ID datasets. The F1 score columns show the Fy,qcro (Fuweighted) Values in percentage.

DailyDialog SSEC Emotion-Stimulus
Model F1 score ECE F1 score ECE F1 score ECE
RoBERTa (w/o finetuning) | 47.630.7(76.03¢.5) |14.600.4| 38.870.6(49.06.0.5) | 16.331.7 | 63.581.8(70.501.7) | 8.200.9
llama3-8b(fs) 54,710,5(77.250,3) 10.040‘4 41,331,1(49.440,5) 36.360_5 71-59045(75120.6) 11.400.8
gemma?2-9b(fs) 58.860.6(80.850.8)|9.831.0| 43.301.0(53.030.6) | 37.800.6 | 69.720.4(75.800.2) {12.390.3
RoBERTa 56.412_4(82.2105) 11.100.8 42.591_4(53.8917) 16.282.4 | 79.683.0(87.491.1) | 5.291.8
Rand-M-MixUp 56.511.0(82.170.4) |11.080.7| 41.235.1(53.4815) | 13.921.2 | 80.90.7(88.201.2) | 3.660.5
66% data EA-M-MixUp | 56.711.5(82.500.6) |10.090.0| 39.891.0(52.051.5) | 15.932.5 | 79.285.1(87.541.2) |3.530.0
1G-SD + 66%EA-MixUp |58.561.5(82.900.6)[10.281.5| 41.600.7(54.030.5) | 14.530.0 | 78.911.7(86.991.2) | 4.650.6
1G-CSD + 66%EA-MixUp| 58.181.4(82.65¢.4) |10.301.0| 41.580.6(53.311.1) | 14.562.1 | 80.742.2(87.891.2) | 4.120.6
SD 56.291.5(82.080.7) [11.261.0| 41.680.0(53.821.5) | 15.425.7 | 79.532.4(87.320.0) | 5.570.5
CSD 56.001.0(82.230.6) [11.210.5| 42.550.5(53.671.1) | 14.592.5 | 79.895.4(86.941.5) | 5.860.0
Sim-MixUp + CSD (ours) | 57.231.4(82.540.6) |10.301.2|43.640.8(54.380.4)|11.882.0|82.761.2(88.590.5) | 4.081.0

Table 2: OOD results after finetuning with 3% of the OOD training data (bottom block) compared with the results
of the LLMs and RoBERTa without finetuning (top block).

finetuning using 3% of the OOD data and a small
batch size for 4 epochs lead to the best balance
between performance and calibration. The batch
size used was 16 for Empathetic Dialogues / SSEC
and 8 for the other datasets.

For the LLLMs we used a zero-shot prompt and
3 few-shot prompts with 2 examples per class, for
which we report the mean results. The prompts
used are shown in the Appendix.

5 Results

The test performance and expected calibration er-
rors of the trained models are summarized in Ta-
bles 1 (ID results) and 2 (OOD results). We report
the mean values across 5 training runs with the
standard deviation shown in subscript. The best

results are shown in bold. For the models trained
using KD we report the values from the best genera-
tion. For the results of all generations see Tables 11
and 12 in Appendix.

Main Results: Firstly, we can see in Table 1 that
in the ID setting the performance of the LLMs on
the imbalanced datasets (GoEmotions and Empa-
thetic Dialogues) is very low compared to the other
models. One possible reason for this is that the
emotions in the two datasets were originally more
granular and therefore more complex and difficult
to understand. The LLMs also have the highest
ECE in the ID setting, which indicates that they
are not well calibrated. On the other hand, the F1
scores of the LLMs in the OOD setting are much
higher than those of the ROBERTa model without
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GoEmotions Empathetic Dialogues Isear
Model F1 score ECE F1 score ECE F1 score ECE
Rand-M-MixUp 71.460.6(81.590.2) | 5.520.4 | 77.100.5(79.440.5) | 3.940.7 | 74.430.7(74.460.7) | 7.750.8
EA-M-MixUp 71.370.5(81.540.2) | 5.430.3 | 77.240.4(79.570.3) | 4.250.4 | 74.320.6(74.340.6) |8.190.6
Sim-M-MixUp (ours) 71.590,6(81.700‘3) 6.130.3 77.11044(79.420,5) 3.650.7 74.600,7(74.6207) 7.870.8
lcsD | 73.220.5(82.3302) |1.500.2 | 77.8405(79.980.2) | 1.910.4 | 76.2905(76.310.3) |3.5707 |
Rand-M-MixUp + CSD | 73.230.2(82.240.1) | 1.560.2 |78.180.5(80.380.4)| 1.900.5 | 76.510.4(76.520.4) | 3.130.4
EA-M-MixUp + CSD 73.320.3(82.240.1) | 1.510.2 | 77.790.2(80.080.1) |2.050.3 | 76.740.2(76.760.2) | 3.290.7
Sim-MixUp + CSD (ours)|74.010.3(82.680.1)|1.440.1| 77.900.4(80.020.3) |1.810.4(|76.790.3(76.810.3)|3.130.3
Table 3: ID Ablation Study
DailyDialog SSEC Emotion-Stimulus
Model F1 score ECE F1 score ECE F1 score ECE
Rand-M-MixUp 56.511.0(82.170.4) | 11.080.7 | 41.232.1(53.481.5) | 13.921.2 | 80.902.7(88.201.2) | 3.660.5
EA-M-MixUp 57.041.4(82.470.4) | 10.481 . | 42.781.7(54.421.4) | 13.072.4 | 79.195.2(87.591.5) |4.070.9
Sim-MixUp 56.571.6(82.480.5) | 10.581.2 | 41.591.6(53.781.6) | 13.762.5 | 80.851.6(88.290.7) |3.59¢.7
lcsp ] 56.091.9(82.230.6) | 11.210.8 | 42.550.8(53.671.1) | 14.592.5 | 79.892.4(86.941.3) |5.860. |
Rand-M-MixUp + CSD  |57.721.4(82.480.7)| 10.791.4 | 41.810.9(53.371.0) | 15.781.5 | 81.263.5(88.222.0) |4.221.2
EA-M-MixUp + CSD 56.911.3(82.350.5) | 10.631.1 | 41.430.5(54.351.2) | 14.092.0 | 82.731.5(88.571.0) | 3.740.7
Sim-MixUp + CSD (ours)|57.231.4(82.540.6)|10.301.2(43.640.8(54.380.4)|11.882.0|82.761.2(88.59¢0.5) | 4.081.0

Table 4: Finetuned OOD Ablation Study

finetuning (first line in Table 2).

Secondly, we can observe in Table 1 that, in the
ID setting, self-distillation over multiple genera-
tions (SD) improves the performance of RoBERTa
the most out of all baselines while simultaneously
decreasing the ECE. Adding dynamic temperature
scaling leads to better calibration such that CSD
has the lowest ID ECE among the baselines. On
the other hand, the overall performance and cali-
bration of MixUp methods without self-distillation
are suboptimal. This suggests that, while MixUp
can produce useful augmentations, it does not lead
to better calibration or performance by itself.

We can see that our proposed method that com-
bines Sim-MixUp with CSD brings further im-
provement to the calibration in the ID setting, as
well as similar or better performance to the base-
lines. In the OOD setting, after finetuning the
models on 3% of the OOD training data, the per-
formance of our model comes close to or, in the
case of the SSEC and Emotion-Stimulus datasets,
exceeds the performance of the LLMs, without a
significant increase in the calibration error.

Ablation Study: Our approach shows the best
ID macro/weighted F1 scores on two out of three
datasets (GoEmotions and ISEAR) and the best
ECE across all three datasets. In the OOD setting,
our model achieves the best ECE on two datasets
(DailyDialog and SSEC) and is only slightly worse
than Sim-MixUp on Emotion-Stimulus. It also

obtains the best OOD weighted F1 score on all
datasets and the best OOD macro F1 score on SSEC
and Emotion-Stimulus. Thus, combining CSD with
Sim-MixUp provides clear gains over both random
and EA-MixUp variants, in both ID and OOD set-
tings, confirming the benefit of mixing the most
similar and dissimilar examples. This suggests that
MixUp guided by training dynamics and saliency
yields more informative synthetic examples than
arbitrary or partially informed pairings.

6 Error Analysis

In this section we analyze the emotions that are
commonly misclassified in all 5 training runs. Note
that all mean confidences reported have the stan-
dard deviation in subscript.

6.1 GoEmotions

As we can observe in Figure 1, the model trained
on the GoEmotions dataset is skewed towards the
most prevalent emotions in the training data (see
Table 13), specifically joy, anger and surprise. The
most notable error is the tendency to mistake sur-
prise for joy, likely because the model associates
comments that express positive surprise with joy.
Another notable finding is the strong and recip-
rocal confusion between anger and joy, two very
different emotions. This suggests that the model
struggles to distinguish between these two high-
arousal emotions. One explanation might be that
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Figure 1: Confusion matrix (errors) for the test set of GoEmotions (left), Empathetic Dialogues (middle) and ISEAR (right).

sarcasm or satire in the Reddit comments confuse
the model, when the words used suggest joy, but
the underlying emotion is anger and vice versa.

Several examples of misclassified test samples
that illustrate these trends can be seen in Table 10
from the Appendix.

6.2 Empathetic Dialogues

As we can see in Figure 1, the model trained on
Empathetic Dialogues most commonly mistakes an-
ticipation for joy. One possible explanation is that
the emotions mapped to anticipation (like hopeful
and prepared) and joy (like excited and confident)
are very closely related. For example, the follow-
ing statements in the test set about a future event
are inherently positive and can be easily confused
with an expression of joy:

* [ have a certification exam coming up and I think
I’'ll do well! (mean confidence: 81.364 3)

* [ just got an email from property management
confirming that I’ve got the new apartment I
wanted. I can’t wait to move in! (mean con-
fidence: 80.3725)

Another likely source of errors is that many com-
plex emotions from the original dataset that could
be a blend of feelings, such as nostalgic (sadness
and joy) and anxious (anticipation and fear), were
mapped to a single primary emotion (see Table 6).
This overlap creates inherent ambiguity in the data.
Notably, the label ‘disgust’ is the only one which
does not incorporate multiple emotions and has the
fewest errors.

6.3 ISEAR

The most prominent errors in ISEAR’s confusion
matrix in Figure 1 are the bidirectional anger-
disgust and anger-shame confusions. These pairs
of emotions share a high intensity and negative sen-
timent. The model likely recognizes the similarities
between anger and disgust/shame but struggles to

differentiate between them. Anger and disgust are
especially similar, as seen in the examples below:

* For "Some people were unfairly treated, because
of their nationality/color." our model predicted
anger instead of disgust with 69.209 5 confidence.

* For "When a man, a stranger to me, personally
insulted a close woman friend of mine in public."
our model predicted disgust instead of anger with
66.34¢. g confidence.

On the other hand, ‘joy’ has the fewest instances
of being misclassified, likely because it is the only
purely positive emotion in the labels set.

7 Conclusion

In this work, we proposed a novel calibration
method for pre-trained language models that com-
bines MixUp with knowledge distillation in order
to calibrate teacher models for the emotion detec-
tion task, which in turn helps train better students.
Our method calibrates the first teacher using an
informed MixUp method that interpolates easy-to-
learn with ambiguous samples guided by saliency
signals. This way we provide the teacher models
with more useful information that is then imparted
to the student models during the distillation of the
emotion-detection models. During the distillation
process, we calibrate the teacher predictions in each
generation by dynamically updating the tempera-
ture used for scaling. We empirically validated that
our method achieves competitive performance and
calibrates the pre-trained model RoBERTa on var-
ious emotion-detection datasets, both in-domain
and out-of-domain.
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Limitations

One limitation of our method is that it runs for
multiple generations, therefore it requires longer
training time and extra memory to store the teacher
model. However, this is a common limitation for
all methods that use knowledge distillation over
multiple generations, not just specific to our ap-
proach.
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A Appendix
A.1 Emotion Mapping and Distribution

Tables 5 and 6 show the original emotion labels
in the GoEmotions and Empathetic Dialogues
datasets and the corresponding Ekman and Plutchik
emotions. Tables 13, 14, 15, 16, 17, 18 show the
distribution of the emotions in all six datasets used
in this study.

GoEmotions Label Ekman
Label
disgust disgust
fear, nervousness fear
anger, annoyance, disapproval anger
surprise, realization, confusion, curiosity surprise
sadness, disappointment, embarrassment, sadness
grief, remorse
joy, relief, gratitude, approval, admiration, | joy
pride, love, desire, caring, optimism,
amusement, excitement

Table 5: Ekman emotions mapping for the GoEmotions
dataset

Empathetic Dialogues Label Plutchik
Label
disgusted disgust
trusting, faithful trust
surprised, impressed surprise
afraid, terrified, apprehensive fear
angry, annoyed, furious, jealous anger
anticipating, hopeful, prepared, anxious anticipation
joyful, content, proud, excited, grateful, joy
confident, caring
sad, devastated, lonely, disappointed, sadness
guilty, ashamed, embarrassed, nostalgic,
sentimental

Table 6: Plutchik emotions mapping for the Empathetic
Dialogues dataset

A.2 Implementation Details

For the experiments, we fine-tuned roberta-base
from the HuggingFace Transformers library with
125M parameters, All the models were optimized
with AdamW (Loshchilov and Hutter, 2019) with a
weight decay of 0.001 and gradient clip of 3.0. The

models were trained for a maximum of 3 epochs.

We report the mean performance over 5 random
seeds. The batch size and learning rate used to
fine-tune ROBERTa for each dataset are shown in

Dataset Batch Size Learning
Rate
GoEmotions 64 2.5e-5
EmpDialogues 64 Se-5
ISEAR 32 2.5e-5

Table 7: Hyper-parameters for the RoOBERTa models

Table 7. The total time for training the models with
our proposed approach was under 12 hours on a
NVIDIA RTX A5000 24G GPU.

A.3 Scaling vs not scaling the student

In the ID setting, as we can see in Table 8, not
scaling the student during training results in better
or equivalent macro and weighted F1 scores for
the models that were trained using knowledge dis-
tillation combined with temperature scaling. Our
model in particular achieves better ID performance
without scaling the student on all tasks. In contrast,
scaling the student consistently worsens the ID cal-
ibration of our model across all three datasets. For
the "CSD" model, scaling the student improves ID
calibration on Empathetic Dialogues and ISEAR,
providing a better ID calibration than our model
only for the ISEAR dataset.

In the OOD setting, scaling the student model
is harmful to the performance and calibration of
our model, as the F1 scores drop and the ECE
increases across all three OOD datasets when the
student is scaled during training. In the case of the
‘CSD’ model, the performance and calibration only
improve on the DailyDialog dataset and only the
weighted F1 score surpasses that of our model.

A4 GoEmotions Error Examples

Table 10 provides concrete examples of the most
common errors in the GoEmotions test set dis-
cussed in the Error Analysis section. The first three
examples show that in cases of positive surprise,
the model confidently defaults to "Joy", mistaking
the tone of the expression for the core emotion it-
self. Similarly, in the cases of sarcastic comments,
the model confidently misinterprets the underlying
anger as joy. This indicates that strong positive
keywords can mislead the model to a point where
it is highly certain of its incorrect assessment, a be-
havior likely caused by the overwhelming amount
of training samples for "Joy" compared to other
emotions (see Table 13).

The final two examples show the model mis-
classifying "Joy" as "Anger" but with significantly
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GoEmotions Empathetic Dialogues Isear
Model F1 score ECE F1 score ECE F1 score ECE
CSD 73.220‘3(82.330,2) 1.500.2 77.840_3(79.98()2) 1.910.4 76.290‘3(76.310,3) 3.570.7
CSD + scaled student 73.190.5(82.240.3) | 1.680.3 | 77.830.3(80.17¢.3) | 1.840.3| 76.290.6(76.310.6) |2.980.3
Sim-MixUp + CSD (ours)|74.010.3(82.68¢.1)|1.440.1|77.900.4(80.02¢.3)|1.810.4|76.790.3(76.810.3)| 3.130.3
Ours + scaled student 73.780.3(82.510.2) | 1.610.3 | 77.790.3(79.930.2) | 1.860.4 | 76.520.1(76.540.1) |3.270.3

Table 8: ID Results for the methods that use KD with the student not scaled and scaled. The best values for each
model are shown in bold. The F1 score columns show the Fmacm(Fweighted) values in percentage.

DailyDialog SSEC Emotion-Stimulus
Model F1 score ECE F1 score ECE F1 score ECE
CSD 56.091.9(82.230.6) | 11.210.5 | 42.550.8(53.671.1) | 14.592.5 | 79.892.4(86.941.3) |5.860.9
CSD + scaled student 57.082.0(82.610.7)| 10.870.9 | 42.041.1(53.561.4) |15.611.5 | 79.912.2(86.901.5) |{6.020.8
Sim-MixUp + CSD (ours)|57.231.4(82.540.6)|10.301.2(43.640.8(54.380.4)|11.882.0|82.761.2(88.590.8) |4.081.0
Ours + scaled student 57.130.9(82.530.3) | 10.411.0 | 42.261.2(53.621.4) | 13.812.6 | 80.062.5(87.131.6) {4.891.2

Table 9: OOD Results after 3% finetuning for the methods that use KD with the student not scaled and scaled. The

best values for each model are shown in bold.

Comment True Emotion | Prediction | Mean Confidence
Omg didn’t even think of that! So clever! Yes! Surprise Joy 79.021.4
Where can I get some? These are awesome! Surprise Joy 94.16¢.2
Only for a week? You are a great optimist! Surprise Joy 95.560.3
Yeah, it’s pretty funny how incapable most of them are of actual satire Anger Joy 96.450.4
and subtlety.

Nah man I prefer endless cause of the part where he goes WOM- Anger Joy 84.550.8
WOMWOMWOMWOMWOM WOOOOOO REEEEEEEEE like

that’s lyrical genius right there

Nothing against bartenders at all. Dumbass people like [NAME], I Joy Anger 57.092.7
make fun of because I can.

This isn’t even his highlight of his week. It’s the highlight of the last Joy Anger 55.511.2
few decades. Damn onions.

Table 10: Examples of the most common test errors in the GoEmotions dataset

lower confidence. In these cases, the model

emotion, ‘confidence’: float}

likely associates strong negative words ("Dumb-
ass," "Damn") with "Anger", but the surrounding
joyful context provides conflicting signals, reduc-
ing the model’s overall confidence. This suggests
that the model is less certain when the overall con-
text does not align with powerful keywords.

A.5 LLM Prompts

The Zero-shot prompt we used to tell a LLM to
classify a text and return a confidence score is the
following:

You will receive a short text. Your task is to
classify the emotion expressed in it into one of
the following categories: {list_of emotions}.

You must also provide a confidence score be-
tween 0 and 1 to indicate how sure you are in the
categorization. Answer only with a JSON string
that has the following format: {‘prediction’:

The text to classify is ‘{short_text}’.

The structure of the few-shot prompts we used to
tell a LLM to classify a text and return a confidence
score is the following:

Given the following text: (Instruction)

{input_text} (Input Text)

Classify the text into one of the following cat-
egories depending on the emotion expressed by
the text: (Instruction)

1. emotionl; 2. emotion2; ...

Two example classifications for each emotion
are shown below. (Instruction)

textl (Few-shot example #1 text)

Emotion: emotionl (Few-shot example #1
label)

text2 (Few-shot example #2 text)

Emotion: emotion2 (Few-shot example #2
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label)

You must provide a confidence score between
0 and 1 to indicate how sure you are in the cate-
gorization. (Instruction)

Your response must be a JSON string that has
the following format: {‘prediction’: emotion’,
‘confidence’: float} (Instruction)"

A.6 Results per SD generation

Tables 11 and 12 show the macro F1 scores and
calibration errors across 4 generations of self-
distillation (SD) for the three emotion classification
datasets in each setting, in-domain (ID) and out-
of-domain (OOD). We can observe that in the ID
setting, student models trained in later generations
consistently outperform their predecessors and are
better calibrated. Notably, in the ID setting most
student models achieve the best macro F1 score
and ECE in the third or fourth generation, demon-
strating the benefits of multi-generation distillation.
Moreover, our proposed approach that combines
Sim-MixUp with CSD attains the best ID perfor-
mance and calibration across all datasets. In the
OOD setting, we can observe that student models
generally also perform better in later generations
and our model performs best on two out of three
datasets (SSEC and Emotion-Stimulus).
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Gen1l Gen 2 Gen 3 Gen 4

MacroF1 ECE MacroF1 ECE MacroF1 ECE MacroF1 ECE
GoEmotions
RoBERTa+SD 72.710.5 5.650.3 73.120.4 5.3902 73.060.4 5.490.3 72.800.3 5.5403
RoBERTa+CSD 72.719.5 1.700.3 73.01p.6 1.620.4 73.220.3 1.5002 73.130.4 1.710.4
RoBERTa+Rand-MixUp+CSD 71.460.6 3.160.5 72.920.4 2.460.2 73.230.2 1.560.2 72.760.2 2.57¢.2
RoBERTa+EA-MixUp+CSD  71.370.5 3.100.4 72.480.4 2.800.3 72.980.3 1.750.3 73.320.3 1.51¢.2
RoBERTa+Sim-MixUp+CSD  71.590.6 2.960.4 72.620.4 2.11p.2 73.170.4 1.8lp2 74.01p.3 1.440.1
Empathetic Dialogues
RoBERTa+SD 77.560.3 5.520.5 77.460.2 5.120.3 77.880.3 4.860.2 77.91p.3 4.830.3
RoBERTa+CSD 77.560_3 1.960,3 77.740_2 1.930,5 77.840,3 1.910‘4 77.740,4 2.140,4
RoBERTa+Rand—MixUp+CSD 77.100_5 2.600,5 77.590_3 2.170,3 78.180,5 1.900‘5 78.040,3 1.940,3
ROBERTa+EA—MiXUp+CSD 77.240,4 2.630,6 77.630_2 2.350,2 77.660,3 2,180,3 77,790,2 2.050_3
RoBERTa+Sim—MixUp+CSD 77.110,4 2.120,5 77.850,4 1.890,5 77.900,3 1.810‘4 77,480,4 2.000,2
ISEAR
RoBERTa+SD 75.600.4 9.120.3 76.260.3 9.090.8 76.320.7 8.660.6 76.630.4 8.220.4
RoBERTa+CSD 75.600.4 4.000.3 75.760.4 4.150.6 76.290.3 3.570.7 75.930.4 4.030.4
RoBERTa+Rand-MixUp+CSD  74.430.7 3.740.8 75.21p.4 4.160.3 76.51l0.a 3.130.4 76.480.2 3.21¢.2
RoBERTa+EA-MixUp+CSD  74.320.6 4.520.7 75.340.3 3.960.3 75.820.3 3.8304 76.740.2 3.290.7
RoBERTa+Sim-MixUp+CSD  74.600.7 3.770.5 76.340.3 4.170.6 76.350.4 3.861.0 76.790.3 3.130.3

Table 11: ID Results for each generation. The best values for each model are shown in bold.

Gen 1 Gen 2 Gen 3 Gen 4

Macro F1 ECE  Macro Fl ECE  Macro F1 ECE  Macro F1 ECE
DailyDialog
RoBERTa+SD 56.412.4 11.10p.8 56.2915 11.261.0 57.1418 10.7208 56.8025 11.28;9
RoBERTa+CSD 56.412.4 11.10p.8 57.431.4 10.6609 56.0919 11.21p.8 56.9425 11.39;1.2
RoBERTa+Rand—MixUp+CSD 56.511,0 11.080,7 56.881,0 11.141,2 57.721_4 10.791,4 57«251.8 9.961,4
RoBERTa+EA-MixUp+CSD  57.041.4 10.4810 56.781.4 10.6910 56.48:.4 10.501.0 56.911.3 10.631.1
RoBERTa+Sim-MixUp+CSD  56.571.6 10.5812 56.891.7 10.5012 57.381.1 10.371.3 57.231.4 10.301.2
SSEC
RoBERTa+SD 42.591.4 16.2824 41.7214 154423 42.031.8 14.3730 41.6809 15.4257
RoBERTa+CSD 425914 16.282.4 41.94; 5 13.342.3 42.55p9.8 14.59258 43.182.1 14.0629
RoBERTa+Rand-MixUp+CSD 41.232.1 13.9212 42.41;1 12.95:7 41.8lp9 14.7818 40.732.1 15.23p.9
RoBERTa+EA-MixUp+CSD  42.781.7 13.072.4 42.011¢ 14.5126 42.371.4 13.6037; 41.430.s 14.0920
RoBERTa+Sim-MixUp+CSD  41.59:¢ 13.7625 42.5112 125919 43.6408 11.8820 42.080.5 11.92:3
Emotion-Stimulus
RoBERTa+SD 79.6830 5.2918 782317 5426 787119 5.4807 79.532.4 5.5703
RoBERTa+CSD 79.683.0 5.2918 79.1934 54110 79.892.4 58609 81.1223 5.141.4
RoBERTa+Rand-MixUp+CSD 80.902.7 3.660.8 81.392.8 4.4514 81.2635 4.22:2 825717 41406
RoBERTa+EA-MixUp+CSD  79.193.2 4.0709 82.2122 3.4209 80.751.3 4.5310 82.7315 3.74do7
RoBERTa+Sim-MixUp+CSD  80.851.6 3.590.7 78.932.3 4.711.1 81.0229 4.6010 82.761.2 4.0810

Table 12: OOD Results for each generation after 3% finetuning. The best values for each model are shown in bold.

Set Disgust Fear Sadness Surprise Anger Joy Total

training 523 565 24438 4152 4584 15691 27963
validation 62 77 278 497 596 2014 3524
test 77 85 298 533 609 1931 3533

Table 13: GoEmotions dataset emotion distribution
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Emotion Training Validation Test
Disgust 612 81 85
Trust 867 123 114
Surprise 1616 249 207
Fear 1691 243 214
Anticipation 2408 330 309
Anger 2510 367 324
Joy 4318 596 596
Sadness 5199 764 693
Total 19221 2753 2542
Table 14: Empathetic Dialogues dataset emotion distribution
Set Shame Sadness Disgust Fear Joy Anger Total
training 626 631 638 645 646 651 3837
validation 208 210 213 215 216 217 1279
test 209 211 213 215 215 216 1279
Table 15: ISEAR emotion distribution
Set Disgust Fear Sadness Surprise Anger Joy Total
validation 3 11 79 102 74 604 873
test 47 17 102 113 114 980 1373
Table 16: DailyDialog dataset emotion distribution
Emotion Test Validation
Surprise 30 49
Fear 33 64
Disgust 39 34
Sadness 49 94
trust 74 127
Joy 122 285
Anticipation 158 159
Anger 286 462
Total 791 1274
Table 17: SSEC emotion distribution
Set Disgust Shame Fear Joy Anger Sadness Total
validation 45 69 201 227 229 273 1044
test 45 69 201 228 229 273 1045

Table 18: Emotion-Stimulus dataset emotion distribution

20457




