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Abstract

Large Language Models (LLMs) have shown
promising performance on diverse medical
benchmarks, highlighting their potential in sup-
porting real-world clinical tasks. Retrieval-
Augmented Generation (RAG) has emerged
as a key approach for mitigating knowledge
gaps and hallucinations by incorporating exter-
nal medical information. However, RAG still
struggles with complex medical questions that
require intensive reasoning, as surface-level in-
put often fails to reflect the true knowledge
needs of the task. Existing methods typically fo-
cus on refining queries without explicitly mod-
eling the reasoning process, limiting their abil-
ity to retrieve and integrate clinically relevant
knowledge. In this work, we propose RAR?,
a joint learning framework that improves both
Reasoning-Augmented Retrieval and Retrieval-
Augmented Reasoning. RAR? constructs a
thought process to uncover implicit knowledge
requirements and uses it to guide retrieval and
answer generation. We build a training dataset
of mixed preference pairs and apply Direct
Preference Optimization (DPO) to train the
model. Moreover, we design two test-time scal-
ing strategies to explore the boundaries of our
framework. Experiments demonstrate the ef-
fectiveness of RAR? across several biomedi-
cal question answering datasets, outperforming
RAG baselines with or without fine-tuning.

1 Introduction

The capabilities of Large Language Models
(LLMs) in medicine have long attracted substan-
tial research attention (Singhal et al., 2023a,b;
Wang et al., 2025). LLMs such as GPT-40 and
Baichuan-M1 have demonstrated strong perfor-
mance across diverse medical benchmarks, high-
lighting their potential to support real-world clin-
ical tasks (Chen et al., 2024a; Wang et al., 2025;
Xu et al., 2024a). More recently, given the vast
scope and high-stakes nature of the medical do-
main, Retrieval-Augmented Generation (RAG) has
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Figure 1: Thought-RAG for medical reasoning. Our
method jointly optimizes the generation of thought pro-
cesses and the subsequent retrieval-augmented answer
generation.

emerged as a key approach for mitigating knowl-
edge gaps and hallucinations by leveraging external
medical knowledge (Lu et al., 2025; Wang et al.,
2024; Wu et al., 2024; Yang et al., 2025).

While RAG performs well in a range of medical
tasks, it still struggles with complex medical ques-
tions requiring intensive reasoning (Su et al., 2024).
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This difficulty arises because the surface-level in-
formation in these questions does not reflect their
actual knowledge requirements. For example, in
Figure 1, although the question clearly describes
the patient’s symptoms, such as “weak in upper
body and arms” and “won’t move legs”, the knowl-
edge necessary to generate the correct answer lies
in clinical concepts like “autonomic dysfunction”
and “infant botulism”. These concepts must be in-
ferred through detailed analytical reasoning. Exist-
ing RAG methods for complex medical reasoning
primarily focus on direct query refinement, but fail
to construct and optimize a reasoning process that
comprehensively uncovers the underlying knowl-
edge requirements (Lu et al., 2025; Liang et al.,
2025; Hu et al., 2024).

Additionally, few studies have explored enhanc-
ing the medical reasoning capabilities of LLMs
within the RAG framework (Jeong et al., 2024).
Reasoning with external knowledge is more chal-
lenging, as the retrieved content inevitably includes
noise information. LLMs should learn to inte-
grate relevant knowledge into the reasoning process
while avoiding interference from irrelevant infor-
mation. Therefore, optimizing retrieval-augmented
reasoning is essential for improving both the accu-
racy and robustness of generation outcomes.

In this work, we construct a thought process to
reason through medical questions and identify their
implicit knowledge requirements. This thought pro-
cess is directly used to retrieve relevant information,
which is subsequently incorporated into reasoning
to derive the final answer. To optimize both thought
and answer generation, we propose a joint learning
framework, RAR?, that simultaneously improves
Reasoning-Augmented Retrieval and Retrieval-
Augmented Reasoning. Specifically, we first con-
struct a training dataset consisting of mixed prefer-
ence pairs. One type is thought pairs, in which a
sampled thought process is annotated based on the
outcome of subsequent retrieval-augmented gener-
ation. The other type is answer pairs, in which a
sampled answer is annotated according to its cor-
rectness. We then apply Direct Preference Opti-
mization (DPO) to fine-tune the LLM (Rafailov
et al., 2023). These preference pairs enable su-
pervised preference learning, allowing the model
to identify relevant knowledge and reason effec-
tively with external information. Extensive experi-
ments across several biomedical question answer-
ing datasets demonstrate RAR?’s superiority over
existing RAG baselines. Our further test-time scal-

ing analysis validates the scalability of RAR?.
In summary, our contributions are as follows:

* We propose a joint learning framework,
RAR?, that simultaneously improves
reasoning-augmented retrieval and retrieval-
augmented reasoning. Additionally, we
design two test-time scaling strategies to
explore the boundaries of our framework.

* We construct a mixed preference dataset to
train the LLM to identify implicit knowledge
needs and reason effectively with external in-
formation.

* Experimental results demonstrate the effec-
tiveness of RAR? in six biomedical question
answering datasets. Our framework outper-
forms the baseline under tuning-free and fine-
tuned settings.

2 Preliminary

2.1 Problem Formulation

In this work, we focus on LLM-based medical rea-
soning for medical question answering. Given
a question ¢ and a large medical corpus D =
{di,da,...,d,}, aset of top-relevant documents
Dy is retrieved for q, where n is the total number
of documents in the corpus and k is the number of
retrieved ones. Then, the question and the retrieved
documents are used as context for an LLM M to
generate an answer y by step-by-step reasoning.
Our goal is to jointly optimize document retrieval
and retrieval-augmented medical reasoning.

2.2 Medical Corpus

A medical corpus is crucial for retrieval-augmented
medical reasoning, as it provides the external
knowledge necessary for LLMs to reason effec-
tively about a given question. In this work, we
adopt MedCorp, a large-scale medical corpus pro-
posed by Xiong et al. (2024a). MedCorp integrates
four major sources: PubMed!, StatPearls?, medi-
cal textbooks (Wang et al., 2024), and Wikipedia.
It comprises 30.4M documents, including clini-
cal guidelines, peer-reviewed research articles, and
medical encyclopedic content. To process the doc-
uments, we reuse the original chunking strategy
provided with the corpus and denote each docu-
ment chunk as d; € D, where D is the set of all
chunks.

1ht’cps: //pubmed.ncbi.nlm.nih.gov/
2https://www.statpearls.com/
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Figure 2: The performance comparison between
Question-RAG and Thought-RAG on several medical
question answering datasets.

3 Reasoning Before Retrieval

We begin with a preliminary study on the impact
of reasoning prior to retrieval. Rather than fine-
tuning a model to generate or refine a query, we
instead sample a thought process that could guide
the model toward a final answer and use it directly
as a query to retrieve relevant documents. The
thought process is sampled in a zero-shot man-
ner by prompting the LLM with: “Please reason
step by step to identify the relevant knowledge
that may be involved.” For retrieval, we use the
BM25 algorithm (Robertson and Zaragoza, 2009)
to retrieve the top-k documents from the corpus.
These documents are then provided as context to
the LLM for answer generation. We evaluate this
approach—referred to as Thought-RAG—against
standard question-based retrieval (Question-RAG)
using the Qwen2.5-7B-Instruct model (Yang et al.,
2024) with k = 32.

Figure 2 shows the performance comparison on

several medical question answering datasets. We
can observe that Thought-RAG consistently out-
performs Question-RAG, with an average improve-
ment of 4.82% across all datasets. Especially in
challenging datasets like Medbullets and GPQA,
the gains are more significant. Furthermore, for
most datasets, the accuracy remains unchanged
or even declines using Question-RAG. A similar
phenomenon can be found in the MIRAGE bench-
mark (Xiong et al., 2024a). These observations
suggest that reasoning-intensive medical questions
often do not explicitly state the specific informa-
tion needs required for successful retrieval. In con-
trast, a thought process generated through prior
reasoning more accurately captures the underlying
knowledge requirements, thereby improving over-
all RAG performance. Reasoning first and then
using the resulting thought process for retrieval is
a straightforward yet powerful approach to collect
relevant knowledge, but it has received limited at-
tention within the RAG community (Sohn et al.,
2024). Therefore, further optimizing the generation
of the thought process holds promise for enhancing
retrieval quality and improving the RAG perfor-
mance.

4 Method

In this section, we introduce the RAR? framework,
which constructs a mixed preference dataset con-
sisting of thought and answer pairs, and applies
DPO to jointly enhance both reasoning-augmented
retrieval and retrieval-augmented reasoning for
LLMs. As shown in Figure 3, we first sample a set
of thought processes and answers. The thought pro-
cesses are generated based on the medical question,
while the answers are generated using the question
along with the corresponding retrieved documents.
All samples are annotated based on the correctness
of the answer (§4.1). We collect samples to form a
mixed preference dataset and apply DPO to jointly
optimize two types of reasoning processes (§4.2).
Besides, we design two test-time scaling strategies
to examine the boundaries of RAR? (§4.3).

4.1 Construction of Mixed Preference Pairs

Our goal is to formulate and optimize two types of
reasoning processes: one for retrieval and the other
for retrieval-augmented generation. Previous work
often overlooks the reasoning process required to
investigate the underlying knowledge requirements,
and few studies focus on jointly optimizing both
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Figure 3: Construction of mixed preference pairs. (1) We sample several thought processes and append each to the
question to form a query for retrieval. Each thought is then annotated based on whether it leads to a correct answer
in subsequent RAG. (2) We sample several answers and annotate each one according to its correctness.

retrieval and generation. To address this, we design
distinct preference pairs tailored to each type of
reasoning process.

Thought Pairs. We use an instruction-tuned
LLM as the base model to sample thought pro-
cesses. Given a medical question g, we first prompt
the model with “Please reason step by step to iden-
tify the relevant knowledge that may be involved.”
to sample several thought processes:

yt ~ M(gq, Prompt,). (D

We then annotate them as chosen and rejected
based on two criteria. The first criterion appends
the prompt “The answer is: > to the end of each
thought process and lets the LLM complete the
answer. The correctness of the result is denoted
as gdiect € {0,1}. The second criterion uses the
thought process as a query to retrieve the top-k
documents, which are then used to generate an an-
swer. The correctness of this result is denoted as
g™ € {0, 1}. To ensure deterministic outputs, we
set the temperature to O during annotation. The
thought samples are labeled as chosen only if both
gdiect = 1 and g™ = 1. Such an annotation en-
sures that the thought process can lead to a correct
answer. We collect one chosen and one rejected
thought process to form a preference pair, denoted

as (y'*,y"").

Answer Pairs. We use the same base model to
sample answer candidates. Given a medical ques-
tion ¢ and a thought process y, we first retrieve
top-k documents Dy, from the corpus. Then, we
sample a group of answers based on the question
and each retrieved document set:

ya ~ M (qa Dk7 Prompta)7 (2)

where Prompt,, is “Please reason step by step and
choose one option from the above”. The sample
is labeled as chosen if its answer is correct. We
collect one chosen and one rejected answer to form
a preference pair, denoted as (y*, y%").

4.2 Joint Learning

After collecting the thought and answer pairs,
we construct a mixed preference dataset ) =
{("" ¥ u{(y**,y*")}. We then apply DPO
to jointly optimize both types of reasoning pro-
cesses. Joint training is adopted because the two
processes are complementary and can benefit from
each other: reasoning to identify relevant knowl-
edge facilitates answer generation, while answer
generation, in turn, helps refine the analytical qual-
ity of the thought process. Previous studies fail
to optimize these reasoning processes or consider
their complementary relationship.

For DPO training, we thoroughly shuffle all pref-
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Figure 4: Frameworks of test-time scaling. Parallel scal-
ing concatenates multiple thought processes to retrieve
documents, while iterative scaling uses the retrieved
documents in sequence to enhance thought generation.

erence pairs and employ the DPO loss as follows:
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where o is the sigmoid function, 7y is the policy
model, 7 is the reference model, and /3 is the hy-
perparameter that regulates the extent of deviation
from the reference model.

4.3 Test-Time Scaling

To investigate the test-time scaling effect of RAR?,
we design two scaling strategies, as illustrated in
Figure 4. Previous studies have paid little attention
to the continual improvement of medical reasoning
within the RAG framework.

The first strategy (Paralleling Scaling) gener-
ates m thought processes in parallel and concate-
nates them to form a single extended thought pro-
cess. This combined thought is then used to retrieve
documents, based on which an answer is generated.
The second strategy (Iterative Scaling) generates
a thought process and retrieves documents, which
are then appended to the prompt for the next round
of thought generation. This iterative process is
repeated m times, after which an answer is gener-
ated. We design these two strategies to explore how
RAR? scales with the number of generated thought
processes. The first strategy merges more useful in-
formation to retrieve documents, while the second
exploits the retrieved documents to generate more
accurate thought processes.

5 Experiments

5.1 Evaluation Datasets

We evaluate our method on six biomedical ques-
tion answering datasets: MedQA, MedMCQA (Pal
et al., 2022), MMLU-Med (MMLU.) (Hendrycks
et al.,, 2021), Medbullets (Chen et al., 2024a),
GPQA (Rein et al., 2023), and MedXpertQA (Zuo
et al., 2025). Among these, MedQA is the in-
domain dataset, as our training data is derived from
it. The remaining datasets are considered out-of-
domain. The number of answer options across
datasets ranges from 4 to 10. Notably, Medbul-
lets, GPQA, and MedXpertQA are more recent
and consist of graduate- or expert-level problems.
Overall, the diversity of these datasets enables a
robust evaluation of the model’s medical reasoning
capabilities.

5.2 Baseline Methods

We compare our framework with six strong base-
lines in medical reasoning. Qwen2.5-7B-Instruct
(Yang et al., 2024) is used as our base model. Two
recent models enhanced for medical reasoning that
do not use RAG are included: m1-7B-23K (Huang
et al., 2025) and HuatuoGPT-ol (Chen et al.,
2024b). For a fair comparison, we use HuatuoGPT-
01-7B with the same model size. Additionally, we
include three tuning-free RAG methods that have
been applied to medical tasks: MedRAG (Xiong
et al., 2024a), i-MedRAG (Xiong et al., 2024b),
and Med-R? (Lu et al., 2025). Med-R? is devel-
oped through a few-shot generation strategy. Fi-
nally, we include four RAG methods that involve
fine-tuning on specific components: Self-BioRAG
(Jeong et al., 2024), SimRAG-8B (Xu et al., 2024b),
RAG?2-7B (Lu et al., 2025), and SPO (Chen et al.,
2025). Baselines with publicly released models are
reimplemented for comparison.

5.3 Implementation Details

We utilize the MedQA training set (Jin et al., 2020)
to implement our method, which comprises 10K
medical problems derived from professional medi-
cal board exams. Each problem requires selecting
the correct answer from four options. Our base
model for sampling preference pairs is Qwen2.5-
7B-Instruct (Yang et al., 2024). We set the number
of thought sampling attempts to 15 and the number
of answer sampling attempts to 5. The temperature
of sampling is set to 0.2, and the top-p is set to 0.9.
For each question, we retrieve the top 32 document
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Methods MedQAT MedMCQA MMLU. GPQA Medbullets MedXpertQA  Avg.
No RAG
Qwen2.5-7B 57.82 54.70 78.39 43.81 39.29 13.27 47.20
ml-7B 64.34 59.34 78.02 36.19 48.38 16.29 50.43
HuatuoGPT-o01 68.81 64.95 79.87 45.71 50.65 14.98 54.17
Tuning-Free RAG

MedRAG 54.20 52.35 75.81 42.86 39.29 14.20 46.45
i-MedRAG 62.84 55.18 79.87 5143 44.81 16.37 51.75
Med-R? 81.06 49.27 72.39 - - - -

RAR? (w/o train) 64.89 63.71 78.67 50.48 47.40 17.59 54.27

Table 1: Comparisons of RAR? with other medical large language models and tuning-free RAG methods. { denotes

the in-domain dataset.

Methods MedQAt MedMCQA MMLU.
Self-BioRAG 43.60 42.15 53.92
SimRAG-8B 62.92 67.51 75.57
RAG2-7B 75.64 63.04 78.67
SPO 76.98 71.08 85.49
RAR? (w/ train)  76.43 65.69 86.32

Table 2: Comparisons of RAR? with other RAG meth-
ods that involve fine-tuned components.  denotes the
in-domain dataset.

chunks using the BM25 algorithm (Robertson and
Zaragoza, 2009) with parameters k; = 1.2 and
b = 0.75 as context for sampling solutions. A total
of 12K preference pairs are collected after filtering
and selection, where 4K are thought pairs and 8K
are answer pairs. The model is then trained for 4
epochs with a global batch size of 64 and a learning
rate of le-6, while the parameter § for the DPO
loss is set to 0.2. All experiments are conducted
on eight A100 GPUs, and we employ DeepSpeed
ZeRO3 to optimize memory usage.

5.4 Main Results

We report the main results on six biomedical
datasets shown in Table 1 and Table 2. We calculate
the average performance across several datasets as
Avg. in the final column. We present the results of
RAR? under two settings: w/o train and w/ train.
The former uses the base model for inference, while
the latter uses the DPO-tuned model.

Table 1 presents the results in comparison with
medically enhanced LLMs and tuning-free RAG
methods. Our framework significantly improves
the medical reasoning capabilities of the LLM
over its backbone model, Qwen2.5-7B. It outper-

forms the backbone on all six datasets, achieving
an average accuracy gain of 7.07%. Addition-
ally, RAR? performs competitively with state-of-
the-art medical language models: it surpasses m1-
7B and achieves comparable average accuracy to
HuatuoGPT-o1. Notably, on challenging MedX-
pertQA, RAR? achieves accuracy gains of 1.3%
and 2.61% over m1-7B and HuatuoGPT-ol, re-
spectively. Compared to other tuning-free RAG
methods, RAR? also achieves higher average ac-
curacy. Specifically, it outperforms i-MedRAG,
which uses iterative query refinement, and Med-R?,
which employs a more complex retrieval pipeline.

Table 2 presents the results in comparison with
other RAG methods that are applied to medical
tasks and involve fine-tuned components. Our
RAR? outperforms most baseline methods. No-
tably, on MMLU-Med, it achieves the highest ac-
curacy among all models. SPO performs well on
MedQA and MedMCQA, which may be attributed
to its use of larger and open-source medical knowl-
edge sources and additional test sample selection.
Overall, the results on both in-domain and out-of-
domain datasets demonstrate that our framework
can help general LLMs consistently improve their
medical reasoning abilities for both retrieval and
answer generation.

5.5 Ablation Studies

We demonstrate the effectiveness of RAR? under
different training settings, as detailed below: (1)
w/o training, which adopts the thought-based RAG
framework without any fine-tuning; (2) w/o an-
swer, which removes answer pairs and optimizes
only the generation of thought processes; and (3)
w/o thought, which removes thought pairs and op-
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Methods MedQA MedMCQA

MMLU. GPQA

Medbullets MedXpertQA  Avg.

RAR? 76.43 65.69 86.32

56.19 57.14 20.98 60.46

64.89 63.71
74.39 63.88
74.86 64.79

78.67
83.75
84.85

- w/0 training
- w/o answer
- w/o thought

17.59 54.27
18.90 57.97
19.51 58.92

50.48
53.33
54.29

47.40
53.57
55.19

Table 3: Ablation study on several medical question answering datasets.

timizes only the generation of answers. The results
are shown in Table 3.

As shown in the table, RAR? achieves the best
performance across all three selected datasets,
demonstrating the effectiveness of our proposed
method. Compared to the setting without training,
both w/o answer and w/o thought yield significant
performance improvements, indicating that opti-
mizing the generation of either thought processes or
answers is crucial for RAR?’s effectiveness. More
importantly, optimizing both types of preference
pairs yields complementary gains, enhancing the
performance of both reasoning-augmented retrieval
(i.e., thought generation) and retrieval-augmented
reasoning (i.e., answer generation).

We also investigate the impact of the number of
retrieved documents on the performance of RAR?.
As shown in Figure 5, RAR? achieves its best over-
all performance when retrieving 32 documents, al-
though the optimal number varies slightly across
different datasets.

5.6 Impact of Test-Time Scaling

We investigate the impact of test-time scaling on
RAR?, as shown in Figure 6. The total number of
generated thought processes is scaled from 1 to 8.
For parallel scaling, the sampling temperature is
set to 1.0, and the top-p value is also set to 1.0. For
iterative scaling, the number of thoughts depends
on the number of iterations.

Figure 6 shows the results with increasing it-
erations on the MedQA and Medbullets datasets,
where one is the in-domain dataset and the other is
a challenging out-of-domain dataset. For Parallel
Scaling, accuracy shows an upward trend as the
number of thought processes increases. The im-
provement is particularly stable on MedQA. A sim-
ilar effect is observed in Iterative Scaling, where
accuracy generally increases with the number of
iterations, achieving a maximum improvement of
approximately 2% on both datasets.
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Figure 5: The performance comparison with a different
number of retrieved documents.

6 Related Work
6.1 Medical Reasoning

Medical reasoning is a critical component of clin-
ical decision-making (Ledley and Lusted, 1959).
It entails integrating medical knowledge, patient
information, and contextual factors to develop ac-
curate diagnoses and effective management plans.
Recent advancements in LLMs have drawn in-
creasing attention to their use in medical reason-
ing (OpenAl, 2024; Singhal et al., 2023b; Wang
et al., 2025). A large body of research has focused
on enhancing the medical reasoning capabilities
of LLMs through further pre-training with addi-
tional medical knowledge or instruction tuning on
question-answering datasets, such as MEDITRON
(Chen et al., 2023), Meerkat (Kim et al., 2024), and
MedAdapter (Shi et al., 2024). More recently, re-
inforcement learning has been applied to improve
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Figure 6: Accuracies with different scaling strategies on the MedQA and Medbullets datasets. The left two present
Parallel Scaling, and the right two present Iterative Scaling.

test-time scaling performance in medical reason-
ing tasks (Chen et al., 2024b; Zhang et al., 2025;
Huang et al., 2025; Yu et al., 2025).

6.2 Medical RAG

Retrieval-Augmented Generation (RAG) plays a
crucial role in medical applications due to the
knowledge-intensive and high-stakes nature of the
domain (Xiong et al., 2024a). Recent research
efforts focus on refining queries to access more
relevant information. Specifically, Med-R? (Lu
et al., 2025) and RGAR (Liang et al., 2025) en-
hance retrieval by iteratively modifying medical
queries based on generation outcomes. SeRTS
(Hu et al., 2024) optimizes query generation using
Monte Carlo Tree Search with document-relevance
feedback. Additionally, some work focuses on
improving knowledge construction and retrieval-
based knowledge usage. Wang et al. (2024) builds a
RAG pipeline with query enhancement and knowl-
edge filtering. MedGraphRAG (Wu et al., 2024)
constructs a local Knowledge Graph (KG) from
medical queries and efficiently retrieves relevant
subgraphs. KARE (Jiang et al., 2024) constructs
a multi-source KG by integrating a medical cor-
pus and LLM-generated insights. SPO (Chen
et al., 2025) investigates source planning and multi-
source utilization. However, few studies have ex-
plicitly constructed and optimized the reasoning
process to improve retrieval.

6.3 Reasoning-augmented Retrieval

Reasoning-intensive tasks present greater chal-
lenges to retrieval, primarily because critical knowl-
edge requirements are often concealed within sur-
face information and require reasoning to uncover
(Su et al., 2024). For example, in medical diagno-

sis tasks, surface information (e.g., age, gender,
and examination results) requires further analy-
sis to establish standardized knowledge require-
ments (e.g., symptoms of hypertension during preg-
nancy). Although critical, improving retrieval for
reasoning-intensive tasks has attracted relatively
little research attention. RAG? (Sohn et al., 2024)
applies RAG to medical question answering, where
queries are augmented with LLM-generated ratio-
nales. JudgeRank (Niu et al., 2024) designs query
and document analysis modules to enhance rele-
vance judgment and improve document reranking.
Search-R1 (Jin et al., 2025) learns to generate a
series of search queries during step-by-step reason-
ing with real-time retrieval. RARE (Tran et al.,
2025) applies MCTS to generate queries. To the
best of our knowledge, we are the first to jointly op-
timize reasoning-augmented retrieval and retrieval-
augmented reasoning, and to perform a single re-
trieval instead of multiple time-consuming retrieval
steps.

7 Conclusion

In this work, we propose RAR?, a novel joint learn-
ing framework designed to enhance LLM reason-
ing capabilities within the RAG framework, specif-
ically targeting complex medical questions. Unlike
existing RAG approaches, which rely primarily on
direct query refinement, RAR? explicitly constructs
and optimizes a thought-based reasoning process
to uncover implicit knowledge requirements. We
introduce a mixed preference dataset comprising
thought pairs and answer pairs and leverage DPO
for joint training. Extensive experiments on multi-
ple biomedical question answering datasets demon-
strate that RAR? outperforms state-of-the-art RAG
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baselines, both with and without fine-tuning. More-
over, our analysis of test-time scaling strategies
validates the scalability and robustness of RAR?,
highlighting its potential to significantly improve
medical reasoning and decision-making in clinical
scenarios.

Limitations

Our work has several limitations. First, the medi-
cal corpus we use does not incorporate knowledge
graphs. As an important source of structured med-
ical knowledge, knowledge graphs could help ad-
dress the lack of structure in our current corpus
by introducing explicit entity relationships and se-
mantic hierarchies, thereby improving the retrieval
of clinically relevant information and supporting
more accurate reasoning. Second, our optimization
of thought process and answer generation does not
involve step-level supervision. Step-level DPO has
shown promising results in various domains and
represents a worthwhile direction for future explo-
ration. Lastly, our method does not aim to improve
the retrieval model itself. Enhancing the retrieval
model’s reasoning and understanding capabilities
could further unlock the potential of reasoning-
augmented retrieval.

Ethic Statement

Our proposed framework aims to improve retrieval-
augmented medical reasoning and focuses on med-
ical question answering. All datasets used for train-
ing and evaluation have been anonymized, and
there is no risk of privacy exposure. However,
when using LLMs for medical tasks, it is impor-
tant to be aware that LLMs are prone to halluci-
nations, and their suggestions should not be con-
sidered definitive diagnostic conclusions. Medi-
cal advice generated by LLMs must be reviewed
by qualified healthcare professionals. Therefore,
we do not recommend the direct use of LLMs for
medical diagnosis or decision-making at this stage.
Furthermore, the scientific artifacts that we used
are freely available for research, including Trans-
formers, PyTorch and other GitHub codes. And
this paper’s use of these artifacts is consistent with
their intended use.
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Datasets Number
MedQA 1273
MedMCQA 4183
MMLU-Med 1089
GPQA 105
Medbullets 308
MedXpertQA 2450

Table 4: The number of samples for each evaluation
dataset

A Appendix

A.1 Package Details

We used the following Python packages and their
corresponding versions: transformers 4.44.2, py-
torch 2.4.0, and xformers 0.0.27.post2.

A.2 Baseline Implementations

We adopt the officially released model checkpoints
for baseline methods: m1-7B-23K?, HuatuoGPT-
01-7B*, MedRAG (i-MedRAG)’, Self-BioRAG®.

A.3 Details of Evaluation Datasets

We present the statistics of evaluation datasets in
the Table.

Shttps://huggingface.co/UCSC-VLAA/m1-7B-23K
*https://huggingface.co/FreedomIntelligence/
HuatuoGPT-01-7B
Shttps://github.com/Teddy-XiongGZ/MedRAG
®https://github.com/dmis-1lab/self-biorag
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