When Punctuation Matters: A Large-Scale Comparison of Prompt
Robustness Methods for LL.Ms

Mikhail Seleznyov'?, Mikhail Chaichuk'?, Gleb Ershov 3,
Alexander Panchenko'?, Elena Tutubalina®’, Oleg Somov!'*
'AIRI, 2Skoltech, 3 Yandex, *“MIPT
SHSE University, °Sber AI, ISP RAS Research Center for Trusted Al

Correspondence: seleznev @airi.net, tutubalina@airi.net, somov @airi.net

Abstract

Large Language Models (LLMs) are highly
sensitive to subtle, non-semantic variations in
prompt phrasing and formatting. In this work,
we present the first systematic evaluation of
5 methods for improving prompt robustness
within a unified experimental framework. We
benchmark these techniques on 8 models from
Llama, Qwen and Gemma families across
52 tasks from Natural Instructions dataset.
Our evaluation covers robustness methods
from both fine-tuned and in-context learning
paradigms, and tests their generalization
against multiple types of distribution shifts.
Finally, we extend our analysis to GPT-4.1
and DeepSeek V3 to assess frontier models’
current robustness to format perturbations. Our
findings offer actionable insights into the rela-
tive effectiveness of these robustness methods,
enabling practitioners to make informed deci-
sions when aiming for stable and reliable LLM
performance in real-world applications. Code:
https://github.com/AIRI-Institute/
when-punctuation-matters.

1 Introduction

Large Language Models (LLMs) today excel across
a wide range of tasks in both in-context learning
(ICL) and supervised fine-tuning (SFT) paradigms
(Brown et al., 2020; Gao et al., 2021; Dong et al.,
2024; Le Scao et al., 2023; Yang et al., 2024a;
Wau et al., 2024; Mosbach et al., 2023; Yang et al.,
2024b; Chen et al., 2024; Somov and Tutubalina,
2025).

However, a critical yet often overlooked chal-
lenge is the high sensitivity of LLMs to prompt
formatting. Many large-scale task-rich benchmarks
rely on a single instruction format to evaluate all
language models on a wide-range of tasks, implic-
itly assuming that performance is independent of
prompt format (Hendrycks et al., 2020; Srivastava
et al., 2023). Recent work shows that even seman-
tically neutral variations in prompt structure can
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Figure 1: Most existing robustness methods are eval-
uated in isolation and in disparate settings, disallow-
ing apples-to-apples comparison. Our work targets the
under-explored upper-right quadrant by evaluating mul-
tiple prompt robustness techniques across a wide range
of prompt formats, LLM families, learning paradigms,
and distribution shifts under a unified framework.

lead to substantial changes in model predictions,
often exceeding the variability introduced by model
architecture or inference method (Voronov et al.,
2024a; Mizrahi et al., 2023).

Prompt format (e.g. spacing, capitalization,
punctuation) can dramatically influence perfor-
mance, leading to inconsistent or unreliable out-
puts (Zhao et al., 2021; Min et al., 2022). This
phenomenon, known as prompt sensitivity, can be
mitigated using specialized robustness methods.

A number of robustness techniques have been
proposed to address this issue, including Template
Ensembling (Voronov et al., 2024b), Sensitivity-
Aware Decoding (Lu et al., 2024), Batch Calibra-
tion (Zhou et al., 2024), and Consistency Learn-
ing (Qiang et al., 2024b). However, these methods
have primarily been evaluated in isolation, making
it difficult for practitioners to assess their relative
strengths or determine which method is best suited
to a given scenario.

Our work addresses this gap through a compre-
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hensive, systematic evaluation of prompt robust-
ness techniques under a unified experimental frame-
work. Specifically, we benchmark four widely
cited robustness methods against standard few-shot
prompting and fine-tuning with prompt format aug-
mentation as baselines.

We conduct experiments using a carefully cu-
rated version of GSM8K dataset (Vendrow et al.,
2025) and a representative subset of 52 tasks from
the well-known Natural Instructions dataset, cover-
ing domains such as mathematics, logic, and text
comprehension. As backbone models, we evaluate
three modern LLM families — GEMMA (Gemma
Team, 2024), LLAMA (Dubey et al., 2024), and
QWEN (Qwen et al., 2025) — with sizes from 1.5B
to 9B parameters. We additionally include closed-
source models to study format sensitivity at scale.
Within our framework, we answer the following
research questions:

RQ1: How do existing robustness methods com-
pare in effectiveness across various models?
RQ2: How distribution shifts affect the effective-
ness of SFT-based and ICL-based methods?
RQ3: How do sampling strategies such as greedy
decoding, temperature sampling, top-p and
min-p sampling affect robustness?
RQ4: How sensitive are frontier models to prompt
format perturbations, and what methods can
be applied in black-box setting to improve
their robustness?

To the best of our knowledge, this is the first
study to offer a side-by-side comparison of multiple
prompt robustness methods under a unified, large-
scale evaluation protocol spanning diverse prompt
formats, model families, learning paradigms, distri-
bution shifts and inference strategies. By bridging
previously disconnected lines of work, our findings
provide actionable insights for both practitioners
and researchers interested in building more stable
and reliable LLM-based systems. We also release
our code to encourage systematic evaluation in the
field of prompt sensitivity mitigation.

2 Related Work

Recent work has highlighted the sensitivity of
language models to subtle prompt variations, but
current research remains fragmented (Zhuo et al.,

2024; Pei et al., 2025). Adversarial-focused stud-
ies (Zhu et al., 2024; Zou et al., 2023) expose vul-
nerabilities to malicious or perturbed prompts, em-
phasizing safety but targeting directed threat mod-
els rather than benign formatting inconsistencies.

Other works propose robustness-enhancing
methods such as Consistency Learning (Qiang
et al., 2024b), Batch Calibration (Zhou et al., 2024),
and Template Ensembles (Voronov et al., 2024a),
which improve stability either during training or
inference. However, these approaches are evalu-
ated in isolation, making it difficult to assess their
relative effectiveness.

Complementary studies (Lu et al., 2024; Zhao
et al., 2021; Sclar et al., 2024) analyze prompt com-
ponents and formatting artifacts, showing that even
innocuous design choices (e.g., whitespace, punctu-
ation) can introduce large performance shifts. This
further underscores the need for unified, standard-
ized evaluation protocols.

In summary, while prior research has addressed
different aspects of prompt sensitivity, there is a
lack of systematic, comparative evaluation across
tasks, models, and learning paradigms. Our work
fills this gap by benchmarking four robustness
methods under a unified framework across 52 di-
verse tasks, multiple LLM families and distribution
shift scenarios, resulting in actionable takeaways
for practitioners.

3 Experimental Setup

To answer our research questions, we use a subset
of Natural Instructions with a parametrized set of
formats (Section 3.1) and implement the methods
from Section 3.2. We evaluate performance and
robustness using the metrics defined in Section 3.3.

3.1 Data & Format

We use a subset of 52 tasks from Natural Instruc-
tions (Wang et al., 2022) with diverse human-
written formats and instructions, comprising 19
multiple-choice tasks and 33 classification tasks
with 2, 3 or 4 answer options. Given that there
are more than 1600 tasks we select relevant and so-
cially impact tasks following Sclar et al. (2024) task
selection criteria (refer to Appendix D for details).
Resulting tasks cover math and logic problems, text
comprehension, detection of harassment and racial
stereotypes. To evaluate the performance, we use a
subset of 1000 random examples from each task.
To answer RQ3 (how do sampling strategies
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Descriptor Text & option . .
. Separator ~ Space Option item style  Option item wrapper
transformation separator
.title() “r “ ¢ A, B, C, ... {»
.uppercase() ‘= ‘An’ ‘At 1, 2, 3, ... {3.
.lowercase() ‘An’ ‘5 \n’ ¢ I, 11, III, ... [{}]

Table 1: Format components, with some example values. Descriptor transformation correspond to Python command
making first character upper case (title), all letters upper case (uppercase) or all letters lower case (lowercase). For
option item wrapper, {} is used as a placeholder for option item (e.g. A or 1).

such as greedy decoding, top-p and min-p sam-
pling affect robustness), we also consider multi-
step math reasoning on a carefully curated version
of GSM8K dataset (Vendrow et al., 2025). It con-
tains 1209 grade school math problems along with
step-by-step solutions.

Prompt format. We consider 6 types of for-
mat components, following Sclar et al. (2024).
They are listed in Table 1. For each compo-
nent there are between 4 and 16 possible val-
ues. To construct a format, we select a specific
value of each component. For example, default
prompt for a task could be structured as following:
question:{JA){}B){}answer:{}, where {} de-
notes the placeholders for the task instruction and
multiple-choice answer options (following (Wang
et al., 2022) formatting). Then choosing the first
values from first row of Table 1 to modify original
prompt design results in

Question: {3} A) {} B) {} Answer: {}

whereas taking values from second row forms an-
other prompt design:

QUESTION- {}\n1.\t{}\n2.\t{}\nANSWER- {3}

For some tasks there are no multiple choice op-
tions — in this case the format is defined only
by descriptor transformation, separator and space.
Complete list of format components is available in
Appendix G.

3.2 Methods

We consider five representative approaches for im-
proving robustness to prompt formatting. These
span both ICL and SFT paradigms. Below, we
briefly describe each method.

Few-shot (F'S). As a baseline, we use a standard
2-shot prompting strategy. Since the selection and
order of demonstration examples can significantly

influence results (Lu et al., 2022), we fix the in-
context examples and their order across all mod-
els and test samples. Demonstration examples are
also formatted in the same way as the test sam-
ple, hinting to the model that formatting should not
influence the prediction.

Batch Calibration (BC). Batch Calibra-
tion (Zhou et al., 2024) is a post-hoc correction
technique. It estimates contextual bias across a
batch and adjusts predicted log-probabilities by
subtracting the bias. While simple and efficient, it
is limited to classification tasks.

Template Ensembles (TE). Template Ensem-
bling (Voronov et al., 2024b) improves robustness
by averaging predicted class probabilities across
N prompt formats. This reduces variance caused
by formatting changes, but increases inference cost
linearly with V.

Sensitivity-Aware Decoding (SAD). This ap-
proach is inspired by Lu et al. (2024). It penalizes
predictions that are sensitive to synthetic input per-
turbations. In our implementation, we use random
token substitutions to estimate sensitivity. This
approach helps to stabilize outputs but requires
multiple forward passes per input.

LoRA with format augmentations (LoRA). We
apply parameter-efficient fine-tuning (PEFT) us-
ing LoRA on an instruction-following dataset aug-
mented with formatting variations. This method
exposes the model to diverse prompt styles during
training with the aim of mitigating spurious corre-
lations between answers and format components.

LoRA with consistency loss (LoRA-JS). Fol-
lowing Qiang et al. (2024a), we add a Jensen-
Shannon consistency loss between outputs of differ-
ent prompt variants, encouraging format-invariant
predictions. The total loss combines standard cross-
entropy with a divergence term.
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Full implementation details for each method are
provided in Appendices C, L.

3.3 Maetrics & Inference Approach

Evaluation Metrics. To evaluate model perfor-
mance, we use accuracy as the primary metric.
To assess sensitivity to prompt formatting, we re-
port two measures: spread and standard deviation.
Spread is defined as the difference between the
maximum and minimum accuracy across a set of
prompt formats (Sclar et al., 2024), providing a
simple measure of output variability due to prompt
variation. We also consider a class-imbalance set-
ting. Since accuracy is often misleading on imbal-
anced tasks, we report Matthews correlation coeffi-
cient (MCC). We choose MCC instead of F1 score
since the latter puts emphasis on the positive class
and may change dramatically after a permutation
of classes. MCC treats classes symmetrically and
accounts for all four confusion matrix components,
including true negatives. Since our tasks usually
do not have a distinguished positive class, MCC is
better suited for our evaluations.

Inference Strategies. To obtain answers from the
language model in multiple-choice and classifica-
tion tasks, we use two common inference strategies:
greedy decoding and probability ranking. Greedy
decoding generates the answer token-by-token, se-
lecting the most likely token at each step. The
result string is normalized and evaluated to gold
answer with exact match. In contrast, probability
ranking computes the probability of each option
from a predefined set of answers, and selects the
highest-ranked one. Since all answer options are
known in advance, this method is implemented
using teacher forcing.

For long-form generation on GSMS8K, we em-
ploy greedy decoding, temperature sampling, top-p
(Holtzman et al., 2020) and min-p (Minh et al.,
2025) sampling.

4 Results

Our experiments address the four research ques-
tions outlined in Section 1: methods comparison in
default setting (RQ1, Section 4.1), effect of distri-
bution shifts on fine-tuning and ICL-based meth-
ods (RQ2, Section 4.2), effect of inference strategy
(RQ3, Section 4.3) and evaluations of frontier mod-
els (RQ4, Section 4.4).

4.1 Robustness methods comparison

RQ1: How existing robustness methods com-
pare in effectiveness across different LLM fam-
ilies and sizes? To answer RQ1, we apply all
methods under the default conditions (without a
distribution shift) to evaluate their impact on accu-
racy and robustness. We assess accuracy to check
whether robustness methods negatively affect per-
formance. Figure 2 plots accuracy of each method,
averaged across 52 tasks, along with standard devi-
ation over formats'.

To compare methods’ effectiveness in improving
robustness, we use the following procedure. For
a fixed model My (e.g. Llama 3.1 8B) and each
task ¢ we estimate the spreads of baseline few-shot
approach and the competing method X over 10 for-
mats, where X € {BC,TE, SAD,LoRA}. Then,
we consider differences

SpreadDiffs ), x =

{spread(FS), y;, — spread(X); 5, } (1)

where T is our selected 52 tasks from Natural In-
structions. Finally, we run Student’s t-test with
Hy: mean of SpreadDiffs,, y isequal to zero. If
Hj is rejected, the method with lower mean spread
is considered more robust on model Mjy. Other-
wise, X ties with few-shot. Such tests are run for
each of 8 open-source models we evaluate, and the
results are shown in Figure 3.

Batch Calibration improves both accuracy and
robustness across the board. From Figure 2 we
can see that Batch Calibration achieves higher aver-
age accuracy compared to few-shot for all 8 open-
source models. Meanwhile, Figure 3 shows that BC
delivers statistically significant reduction of spread
for 6/8 models. Since calibration methods do not
require training data and have near-zero inference
time overhead, these strong results put Batch Cali-
bration as a clear leader in terms of format robust-
ness enhancement in absence of distribution shifts.

Template Ensembles improve robustness at cost
of reducing accuracy. Ensembling method pro-
posed by Voronov et al. (2024a) also reduces
spread, with statistically significant reductions for
4/8 models. However, it results in lower accuracy

"We also tested LoRA with consistency loss. However,
the results were less favorable compared to the other methods,

especially LoORA with format augmentations. Some of these
findings are available in Appendix B.
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Figure 2: Comparing format sensitivity mitigation methods in terms of their effect on accuracy and standard
deviation over prompt formats. To aggregate accuracy, we first compute median accuracy over formats for each task,
and then average over 52 tasks. Error bars are 2 x (standard deviation over formats, averaged across tasks).
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[ Betterthan FS [ Draws [] Worse than FS

Figure 3: Comparing format sensitivity mitigation meth-
ods against regular few-shot in terms of spread on 8
language models. Method wins against few-shot for
a given model if it has statistically significantly lower
spread than few-shot on 52 tasks.

compared to few-shot baseline. To investigate the
causes of the drop in performance, we inspected
predictions of individual ensemble members. It
turned out that for one format in the ensemble the
accuracy sometimes underperforms, affecting av-
erage probabilities. This aligns with the original
findings of Voronov et al. (2024a), which note that
a single suboptimal template may make the ensem-
ble perform noticeably worse. Together, it suggests
that logit averaging is sometimes a brittle strategy,
sensitive to outliers.

LoRA with augmentations enhances accuracy,
but struggles to consistently improve robustness.
On Figure 2 we can see that LoORA with augmenta-
tions achieves much higher average accuracy com-
pared to ICL-based approaches. This is expected,
since LoRA is the only SFT-based method on the
plot, and has access to training labels. Perhaps
more surprisingly, augmentations have almost no
impact on robustness: Figure 3 shows that LoRA
improves spread compared to few-shot only on a
single model out of 8, with 6 ties and 1 loss.

Takeaways:

1. In absence of distribution shifts, calibration-
based approach shows promise in improving
robustness to prompt formats due to its ability
to significantly reduce spread, positive effect
on accuracy and low overhead.

. While naive parameter-efficient finetuning
with augmentations significantly improves ac-
curacy, it turns ineffective in mitigating sensi-
tivity to format changes.

. Probability averaging strategy used in Tem-
plate Ensemble helps to reduce spread, but
may suffer from sensitivity to especially poor-
performing formats.

20374



Llama 3.1 8B Qwen 2.5 7B Gemma 2 9B

0.84

- o,
0.6 24.5% | |
-28.9% -42.7%

i

& § (yo & & YIS

-23.5% "50-2%

|

0.44

0.2

Median Matthews Correlation

0.0-

Settings
B Uniform Unbalanced

-26.5% ‘

-22.9% -43.6%

1 ‘ -26.8%

-30.6%

|

|

Q & %) @) Q &
B \9@ @ 5 \/on
Methods
FS BC SAD TE LoRA

Figure 4: Median Matthews Correlation of robustness methods in uniform vs. unbalanced settings for LLaMA 3.1
8B, Qwen 2.5 7B, and Gemma 2 9B. Red values indicate the drop in performance under the unbalanced setting

relative to the uniform case.

\n\t\n

| X \n\t\n_| O
)E) \n\n | O \n\n_| O‘I'est
XXl x° X O
a r _— \t\n_| 7 / /
T _' 1 ' 77 ‘
"X X XXX |"
X X
O Nt O )(Train>< _\t
X L X X B
\n \n

Figure 5: Without distribution shift (left), train and
test formats are sampled uniformly. Under the compo-
sitional distribution shift (right), the test set contains
novel combinations of known components, requiring
systematic generalization. Cross (x) stands for train
samples, circle (o) for test.

Method BC FS LoRA SAD TE

Default 2.6 2.9 1.7 4.3 3.5
Unbalanced 3~2+0.6 2.770_2 1.7 4.070_3 3.370,2

Table 2: Rankings of methods across models by
Matthews correlation coefficient (1 is best). Rankings
are averaged across models and tasks.

4.2 Impact of distribution shifts

RQ2: How do distribution shifts affect the effec-
tiveness of SFT-based and ICL-based methods?
As we see in Section 4.1, Batch Calibration helps
to improve robustness while LoRA significantly
stands out in terms of accuracy. To answer RQ?2,
we zoom in and inspect these methods in more
detail to understand their limitations.

Covariate shift (class imbalance). In Batch Cal-
ibration, predicted probabilities of each class are
adjusted by subtracting mean probability of this

Llama 3.2 1B Llama 3.2 3B Llama 3.1 8B

LoRA ---- FS Baseline
LoRA (compositional) FS Spread
LoRA (cross-domain)

Figure 6: LoRA method under distribution shifts. To
aggregate accuracy, we first compute median accuracy
over formats for each task, and then average over 52
tasks. Error bars are 2 x (standard deviation over for-
mats, averaged over tasks).

class over batch. Naturally, predicted probabilities
for classes that occur more often are adjusted more.
They in turn are less often selected by argmax,
which leads to a more uniform predictive distribu-
tion. Thus, Batch Calibration implicitly assumes
more uniform class distribution compared to base-
line few-shot approach. While reasonable in bal-
anced tasks, this assumption may lead to calibra-
tion errors under class imbalance. To investigate
this, we construct an artificial imbalanced dataset
by downsampling each of our 52 tasks such that
the most frequent class constitutes 90% of the ex-
amples, with the remaining classes evenly splitting
the remaining 10%.

In Figure 4, we observe that all methods are af-
fected by the unbalanced setting, but Batch Calibra-
tion suffers the most due to the model’s inductive
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bias toward a uniform class distribution. Table 3
confirms this finding: Batch Calibration exhibits
the largest change in average ranking. LoRA-fine-
tuned models also degrade, as they were trained
assuming a uniform class distribution and thus are
also subject to covariate shift.

Compositional and cross-domain shifts. To
evaluate the robustness of the LoRA method to
distribution shifts, we consider two scenarios: com-
positional and cross-domain.

Compositional shift. Inspired by the notion of
systematic compositionality (Hupkes et al., 2020),
this setting tests the model’s ability to generalize
by recombining known elements in novel ways.
In default scenario in Section 4.1, train and test
formats are sampled uniformly. However, under
compositional shift test formats contain new com-
binations of previously seen format components.
An illustration of compositional train/test format
split is shown in Figure 5.

Cross-domain shift. To evaluate robustness to
domain changes, this setting uses training data from
an external dataset (see Appendix I). The prompt
formats remain uniformly distributed during both
training and testing like in Section 4.1. This setup
probes the model’s and method’s ability to disentan-
gle semantics from format and generalize beyond
the training domain.

Analysis. Compositional shift with respect to for-
mats does not affect accuracy and robustness much.
We hypothesize this is due to the fact that LoRA
with augmentations does not consistently improve
robustness even in default scenario considered in
RQ1, Section 4.1, and the complexity of composi-
tional shift remains hidden.

Cross-domain transfer is a challenging setup.
While it is possible that with another configura-
tion of training data and hyperparameters it might
perform better, in our experiments cross-domain
fine-tuning with augmentations decreases accuracy
below the few-shot baseline.

Takeaways:

1. Batch Calibration implicitly assumes a more
uniform prior on classes compared to baseline
few-shot approach. This inductive bias back-
fires when the class distribution is skewed.

2. Cross-domain experiments confirm that high
accuracy achieved by LoRA approach sub-
stantially relies on training dataset.

Inference Greedy Probability

Strategy Decoding Ranking
Gemma 2 2B 0.48 +0.28 0.58 +0.06
Gemma 2 9B 0.55+0.32 0.66 +£0.03
Llama 3.1 8B 0.63£0.11 0.63 £0.06
Llama 3.2 1B 0.46 £0.11 0.46 = 0.09
Llama 3.2 3B 0.56 £0.13 0.57 £0.09
Qwen2.51.5B 0.494+0.12 0.55+0.08
Qwen 2.5 3B 0.59+£0.12 0.61 +£0.08
Qwen 2.5 7B 0.63£0.14 0.67+0.04

Table 3: Comparison of inference strategies: greedy de-
coding vs. probability ranking. To aggregate accuracy,
we first compute median accuracy and standard devia-
tion over formats for each task, and then average over
52 tasks. We report averaged median accuracy =+ 2 X
averaged std. Higher standard deviation is in bold.

4.3 Impact of sampling strategies

We split RQ3 into two questions.

RQ3-1: How does greedy decoding affect ro-
bustness compared to choosing highest-probability
answer option from a predefined answer set? To
answer RQ3-1, we run experiments with two infer-
ence strategies, described in Section 3.3. Table 3
demonstrates, that generation is always less robust
to format choice, with Gemma models exhibiting
especially large instability.

Generation approach is widely used in practical
applications (chat-bots, API calls), so the problem
of format sensitivity can be even more acute there.

RQ3-2: How do sampling strategies such as
greedy decoding, temperature sampling, top-p
and min-p sampling affect robustness in long-
form generation tasks? For tasks with long-form
generation, other sampling strategies than greedy
decoding are used, and they’ve been reported to de-
liver superior performance (Holtzman et al., 2020,
Minh et al., 2025). It’s unclear however what is
their effect on robustness to prompt formatting. On
the one hand, sampling introduces stochasticity,
which may increase sensitivity. On the other hand,
over the course of long generation (e.g. in chain-
of-thought) stochasticity may have a smoothing
effect, allowing to recover from earlier mistakes.
To explore this, we run additional experiments on
GSM8k dataset. We evaluate models using 10 dif-
ferent formats, and compute spread to measure
sensitivity. Results are given on Figure 7. Most of
the time, greedy decoding delivers best or nearly
best robustness. We also provide distribution of
accuracy scores per each format in Appendix A,
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Figure 7: Comparing effect of sampling strategies on robustness to prompt format variations on GSM8K dataset.
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Figure 8: Spreads for selected tasks from Natural Instructions for two frontier models. Even at this scale, for some
tasks spread still might reach 8-10 accuracy points. Using a modified version of Template Ensembles with majority
voting instead of probability averaging, we are able to reduce the spread in 19/20 cases, in 9 of which the reduction

is at least 44%.

finding out e.g. that low spread for Llama 3.2 1B
Instruct is caused by a performance degradation
rather than enhanced robustness.

Takeaways:

1. Greedy decoding exacerbates models’ for-
mat sensitivity. In classification and multiple-
choice probability ranking is preferable.

2. In long-form generation, greedy decoding
might be the best available option. Tempera-
ture sampling has mixed effect on spread but
consistently decreases accuracy, especially for
smaller models. Top-p and min-p sampling
have robustness and performance similar to
greedy decoding.

4.4 Frontier models’ robustness

We split RQ4 into two questions.

RQ4-1: How sensitive are frontier models to for-
mat perturbations? To answer the first part of
RQ4, we perform experiments with two frontier
models, GPT-4.1 and DeepSeek V3. We evaluate

them on a subset of 10 out of 52 tasks due to budget
limitations. The results are presented in Table 4.
We can see that large closed-source models show
much better robustness. While DeepSeek V3 signif-
icantly outperforms GPT-4.1 in terms of accuracy,
it is more sensitive to format changes.

However, Figure 8 shows that on individual
tasks, even frontier models might have spread of
8-10 accuracy points.

RQ4-2: What methods can be applied in black-
box setting to improve their robustness? To
answer the second part of RQ4, we need to con-
sider each method assumptions. Batch Calibration,
Sensitivity-Aware Decoding and Template Ensem-
bles require logit access, which is not always avail-
able for closed source models. With SFT-based
methods the problem is that the user usually has no
control over what exact method and hyperparame-
ters are used, even if company provides fine-tuning
as a service.

For a broadly applicable approach, we consider
an adaptation of Template Ensembles which uses
majority voting instead of probability averaging.
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Method Model Accuracy T  Std accuracy | Spread |
Llama 3.1 8B 0.563 0.052 0.161

Few-shot Qwen 2.5 7B 0.605 0.058 0.190
DeepSeek V3 0324 0.741 0.015 0.045

GPT-4.1 0.624 0.010 0.032

Template Ensembles  DeepSeek V3 0324 0.742 0.009 0.028
(majority voting) GPT-4.1 0.625 0.005 0.018

Table 4: Evaluation of frontier models on a subset of 10 out of 52 tasks. For reference, we also include a couple
of open-source models. To aggregate accuracy, we take median over formats and average over tasks. Standard
deviation and spread are first computed over formats for each task individually and then averaged.

Figure 8 confirms that this strategy effectively re-
duces spread, and in Table 4 we even see a slight
performance improvement, contrary to results of
Template Ensembles in Section 4.1. We attribute
this to the fact that mode, utilized in majority vot-
ing, is substantially more robust to outlier formats
than the mean, used in original version.

Takeaways:

1. Frontier models are substantially more robust
compared to small open-source models, sug-
gesting that scaling improves robustness.

2. Occasionally, there are still cases where
spread can reach 8-10 accuracy points. To
deal with them, Template Ensembles with ma-
jority voting might be used.

5 Conclusion

To the best of our knowledge, we have conducted
the first comprehensive comparison of existing
prompt sensitivity mitigation methods across mul-
tiple model families, sizes and distribution shifts.

We provide actionable insights for practition-
ers. For example, excessive fragility of calibration-
based methods to class imbalance underscores the
consequences of implicit assumptions, and hints
that a reliable estimate of prior is important. Mean-
while, ineffectiveness of light supervised finetuning
with augmentations at improving robustness sug-
gests that more research is needed to develop a
strong baseline in this paradigm. Finally, our ex-
periments on frontier models confirm that scale
is positively correlated with robustness. Still, on
some tasks even large models exhibit 8-10 accuracy
point differences solely due to format changes. Ver-
sion of Template Ensembles with majority voting
helps to mitigate this instability.

We also release our code to facilitate research
aimed to address the problem of format sensitivity.

Limitations

Our study provides deep insights into classification
tasks, multiple-choice tasks and multi-step math
reasoning, leaving some settings like text genera-
tion or summarization out of the scope.

Some of considered robustness methods are
harder to apply to frontier models. Batch Cali-
bration, Sensitivity-Aware decoding and Template
Ensembles require access to logits, which are some-
times unavailable. Finetuning approaches might be
expensive at large scale. Additionally, when using
finetuning API, users usually have limited control
over the finetuning procedure.

Ethics

The models and datasets used in this study are pub-
licly available for research purposes, with licenses
detailed in Appendix F. All experiments were per-
formed on NVIDIA A100 80GB GPUs. Each fine-
tuning or evaluation run was conducted on a single
GPU, and took between 1 and 24 hours, depend-
ing on the model size and method’s efficiency. To
optimize computation, we utilized up to 46 GPUs
in parallel. In total, the experiments took approxi-
mately 15,000 GPU-hours. Our PyTorch/Hugging
Face code will be released alongside the paper, and
we expect no direct social or ethical concerns aris-
ing from this work.

Use of AI Assistants We utilize Grammarly to
enhance and proofread the text of this paper, cor-
recting grammatical, spelling, and stylistic errors,
as well as rephrasing sentences. Consequently, cer-
tain sections of our publication may be identified
as Al-generated, Al-edited, or a combination of hu-
man and Al contributions. We also used DeepSeek
V3, Claude Sonnet 3.5 and ChatGPT to improve
text fluency and implement some of the code for
results visualization.
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A Accuracy distribution with different
sampling strategies

Figure 9 shows accuracy at various prompt formats
for 6 models from Qwen and Llama families. Tem-
perature sampling consistently decreases accuracy,
while top-p and min-p sampling vary from being
worse to being on par with greedy decoding. Thus,
smaller spread of temperature sampling for Llama
3.2 1B Instruct is likely a consequence of lower
performance.

B Consistency loss

Figure 10 provides some results for LoRA with
consistency loss. Compared to LoRA with format
augmentations, it shows higher spread and lower
accuracy for all models.

C Extended Description of Methods

In this section, we provide a more detailed descrip-
tion of the methods used in the paper.

Batch Calibration (BC). Batch Calibration
(Zhou et al., 2024) is a post-hoc approach, which
calibrates model prediction with the estimate of
contextual bias term p(y | C'). The contextual bias
for each class p(y = y;|C) is estimated from a
batch of B samples by marginalizing the output
scores over all samples within the batch. The cali-
brated probabilities ¢; are derived by shifting the
log-probability log p(y|z;, C') by the correspond-
ing estimated mean of each class:

Vy; €Y 2)

B
1 A
log p(y|C); = D _logp(y = y;|=", C),
=1

7 = argmax (logp(y|$(i), C) - W) ‘
yey

The method was originally designed exclusively
for classification, and is inapplicable to other tasks.

Template Ensembles (TE). Template Ensembles
(Voronov et al., 2024b) average the predictions
probability across various prompt formats f; and
select the class with the largest probability.

N
1
g =argmax — » p(y|z, f; (3)
gma 5 3 . )
The main drawback of this method is the need to
run the model N times, where N is the ensemble
size.
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Figure 9: Comparing effect of sampling strategies on accuracy at various prompt formats on GSM8K dataset. Each
dot is the accuracy of a single format computed over all GSM8K examples.
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Sensitivity-aware decoding (SAD). Sensitivity-
aware decoding (Lu et al., 2024) assesses model
sensitivity to input data by evaluating the variance
of N predictions over modified inputs, using syn-
thetic perturbations based on real data. The sensi-
tivity value s is then used as a penalty in the greedy
decoding process:

g = argmax [P (y|z) —
yeVv

(1 - Oé)S] 3 (4)

where P(y|x) is the probability of an output y
given z, « is the reweighting hyperparameter and
V' is vocabulary — the set of all tokens. In this
paper we use a simplified version of sensitivity-
aware decoding, using random token substitutions
as a perturbation. This approach reduces model
variance but also requires [V times more runs.

LoRA with augmentations (LoRA). We fine-
tune an instruction-finetuned model M on a small

dataset Drfomae containing augmented samples.
Here augmentation refers to changing the format-
ting while maintaining the same content. To build
Drtormat, We select a subset of samples from a
generic instruction-following dataset Dgoyrce and
insert i augmented versions for each sample.
Parameter-efficient finetuning on Dyypmye i cOn-
ducted using a standard language modeling cross-
entropy loss. Loss is only computed on answer
tokens, while the prefix tokens are masked.

LoRA with consistency loss (LoRA-JS). One
way to enforce consistent predictions is to use an
auxiliary loss during fine-tuning. To test this ap-
proach, we reproduce prompt perturbation consis-
tency learning (Qiang et al., 2024a).

The training objective contains supervised cross-
entropy losses for pairs of augmented examples
x1, 2 that share the same target label y, along
with the consistency loss, based on Jensen-Shannon

20382



divergence. Formally, the overall loss function is
defined as:

L = CE(91,y) + CE(92,y) + BIS(t1]|y2), (5)

where CE denotes the cross-entropy loss, 5 is
the coefficient controlling the contribution of the
consistency loss, JS is Jensen-Shannon divergence,
1, Yo are the response token probability distribu-
tions, and 41 and /3 are corresponding distributions
averaged over response length.

D Task selection

We selected tasks from Super-Natural Instructions
following the criteria outlined in (Sclar et al.,
2024).

A total of 52 evaluation tasks were selected from
Super-Natural Instructions using several heuristics.
First, datasets were required to contain at least 1000
samples. Then, tasks with long instructions (over
3000 characters) and inputs (over 2000 characters)
were excluded to ensure scalability. Additionally,
tasks with a predicted accuracy of 0% for LLaMA-
2-7B 1-shot were removed, and no more than 4
tasks from the same dataset were included. Fur-
thermore, socially significant tasks and formats for
them were added if they were missing.

The selected tasks were the following 52:

task059, tasko65, task069, tasko79,
task114, task133, task155, task158,
task161, task162, task163, task213,
task214, task220, task279, task280,
task286, task296, task297, task316,
task317, task319, task320, task322,
task323, task325, task326, task327,
task328, task335, task337, task385,
task580, task607, task608, task609,
task904, task905, task1186, task1283,
task1284, task1297, task1347, task1387,
task1419, task1420, task1421, task1423,

task1502, taskl1612, task1678, task1724.

task190 fits all previous requirements, but was
excluded due to labeling errors.

For evaluation of frontier models, we se-
lected task114, task161, task296, task320,
task322, task323, task1387, task1419,
task1420, task1423, since they cover math, text
compherension, simple tasks like counting the num-
ber of words with a given letter and socially signif-
icant topics like detecting racial stereotypes.

0.4

0.3 1

0.2 1

Spread
lower is better)

(
o

o
o
1

T T T T

4 6 8 10 12 14
Amount of format components

Figure 11: Empirical dependency between spread and
amount of components in format. 90% confidence inter-
val is based on percentiles.

E Dependence between spread and
format complexity

Figure 11 shows the relation between spread and
format complexity, measured as the amount of
prompt components. While the dependence is quite
noisy, maximal spread values occur at formats of
maximal length.

F Use of scientific artifacts.

Artifact License
Natural Instructions Apache 2.0
Open Hermes 2.5 CC-BY-NC

Llama 3.1 Community
License Agreement
Llama 3.2 Community
License Agreement
Apache License 2.0
Apache License 2.0

Llama 3.1 8B

Llama 3.2 (1B, 3B)

Gemma 2 (2B, 9B)
Qwen2.5 (1.5B, 3B, 7B)

Table 5: Scientific artifacts used in this paper and their
licenses.

In Table 5 we list the artifacts used in this paper
along with their licenses. To the best of our knowl-
edge, using these artifacts for research purposes is
consistent with their intended use.

G Complete list of format components.

Complete list of format components is given in
Table 6.

H Example of input prompt for frontier
models

Example of input prompt used for frontier models
in presented on Figure 12.
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Modification Values

lambda x: x.title(), lambda x: x.upper(),

Descriptor transformation lambda x: x.lower(), lambda x: X

Poiii o i Amt, '\n 7,
Separator o2, = 2 0 \n 7, \n\t?,
?::?, r ’, ’\t!
”’ ’ 7, V\nV’ ) \nY’ ’ — ” ’ 7, 7’ \n’,
Space ’ | | , , , <sep> ’ s ’ — b , b , b , b \n ’ ,
’ , ’, ’\n !y ’ !y ’ , ’
Text & option separator LU A AN
. 1, 2, ...; A, B, ...; a, b, ...;
Option item style I II, ...i 4, ii, ..
Option item wrapper ADs (s s () O <{)>

Table 6: Descriptor transformation correspond to Python commands making first character upper case (title), all
letters upper case (uppercase), all letters lower case (lowercase) or keeping input as is. Option item style includes
Arabic numerals, uppercase and lowercase Latin letters and uppercase and lowercase Roman numerals. For option
item wrapper, {} is used as a placeholder for option item (e.g. ‘a’ or ‘1°).

System: In this task, you need to answer ’Yes’ if the given word is the longest
word (in terms of number of letters) in the given sentence, else answer ’No’. Note
that there could be multiple longest words in a sentence as they can have the same
length that is the largest across all words in that sentence. PAY ATTENTION TO
THE OUTPUT FORMAT — ONLY OUTPUT THE ANSWER WITHOUT ANY OTHER TEXT, LIKE IN EXAMPLES.

User: Sentence

’woman sitting on a chair holding three teddy bears’. Is ’a’ the longest word in
the sentence?

Answer

No

Sentence

’a large green plant with leaves and spiky flowers’. Is ’flowers’ the longest
word in the sentence?

Answer

Yes

Sentence

’a long white airplane covered with a lot pastel hears on it’. Is ’covered’ the
longest word in the sentence?

Answer

Figure 12: Example of input prompt used for GPT-4.1 and DeepSeek V3 0324.
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Learning rate 2e-4

LoRA o 16
LoRA Rank 16
Amount of epochs 1

Batch size 64
Weight decay 0.01

Table 7: LoRA training hyperparameters.

I Method hyperparameters

All LoRA models were trained with default hyper-
parameters, given in Table 7.

LoRA fine-tuning data. For experiments in Sec-
tion 4.1 we construct Dsormae from our subset of
Natural Instructions benchmark, choosing up to
1000 samples per task, disjoint with the test sam-
ples chosen before. For cross-domain experiments
in 4.2 we use a custom fine-tuning dataset built
from a subsample of the Open Hermes 2.5 dataset
(Teknium, 2023). Open Hermes 2.5 contains syn-
thetically generated tasks in the form of prompts
for LLMs, covering various task types. Our re-
search primarily focuses on classification tasks and
multiple-choice questions. Although the dataset
includes many such tasks, only a small portion has
clearly defined labels. To find such examples, we
selected those where the GPT response length does
not exceed 20 symbols, as suitable tasks typically
feature simple and concise answers. This threshold
was determined empirically. Resulting dataset has
approximately 50k samples.

Other methods’ hyperparameters. In experi-
ments with Template Ensembles and Sensitivity-
aware decoding, we used ensembles of size 5, fol-
lowing (Voronov et al., 2024b).

The o parameter in Sensitivity-aware decoding
was set to 0.7 based on Section A.7 in (Lu et al.,
2024). To create synthetic inputs for sensitivity
estimation, we replaced 15% of the original tokens
with random tokens from the entire vocabulary.

Format 1 Question: {} Answer: {}

Format2 Question:: {} Answer:: {}
Format 3  QUESTION\n{}\nANSWER\n{}
Format4 question - {} answer - {}

Table 8: Some of augmentations used during LoRA
finetuning.
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