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Abstract

Domain-specific quantitative reasoning re-
mains a major challenge for large language
models (LLMs), especially in fields requiring
expert knowledge and complex question an-
swering (QA). In this work, we propose Expert
Question Decomposition (EQD), an approach
designed to balance the use of domain knowl-
edge with computational efficiency. EQD is
built on a two-step fine-tuning framework and
guided by a reward function that measures the
effectiveness of generated sub-questions in im-
proving QA outcomes. It requires only a few
thousand training examples and a single A100
GPU for fine-tuning, with inference time com-
parable to zero-shot prompting. Beyond its
efficiency, EQD outperforms state-of-the-art
domain-tuned models and advanced prompting
strategies. We evaluate EQD in the financial do-
main, characterized by specialized knowledge
and complex quantitative reasoning, across four
benchmark datasets. Our method consistently
improves QA performance by 0.6% to 10.5%
across different LLMs. Our analysis reveals an
important insight: in domain-specific QA, a sin-
gle supporting question often provides greater
benefit than detailed guidance steps.

1 Introduction

The performance of LLMs may significantly de-
grade in specialized domains (Shen et al.). Even
advanced LLMs, such as GPT-4o (Hurst et al.,
2024) and Llama3 (Dubey et al., 2024), exhibit
substantial gaps compared to human experts in
domain-specific question answering (QA), particu-
larly in tasks involving quantitative reasoning, like
financial analysis (Chen et al., 2021). This perfor-
mance gap stems from the complex terminology
and specialized knowledge inherent in these do-
mains, which are often underrepresented in the pre-
training corpora used for general-purpose LLMs.

Recent research addresses domain quantitative
reasoning challenges through two main approaches:

Context (C):
Undesignated hedges was $ 41.2 million and …

Decomposed Questions from GPT (DQ1):
1. How do we calculate cash flow hedges?
2. How do we determine cash flow hedges for 2010?
3. How do we determine cash flow hedges for 2011?
4. What was the cash flow hedges amount for 2010?
5. What was the cash flow hedges amount for 2011?
6. How do we calculate the percentage change in cash 
flow hedges between 2010 and 2011?

C Q Answer 1

C QDQ1 Answer 2

C QDQ2 Answer 3

Decomposed Questions from EQD Model (DQ2):
What is the total cash flow hedges for 2010 and 2011?

Original Question (Q):
What is the percentage change in cash flow hedges in 
2011 compared to the 2010?

Figure 1: A practical example comparing different QA
processes. General LLMs struggle to give correct an-
swers directly. The CoT method attempts to simplify
the question, but often decompose the query into overly
detailed steps, introducing confusion. In contrast, our
EQD model adds a single sub-question that effectively
guides the LLM toward the correct answer.

domain-adapted fine-tuning (Wang et al., 2023;
Yang et al., 2023) and prompting techniques (Wei
et al., 2022; Chen et al.). However, both ap-
proaches face significant limitations. Domain fine-
tuning is resource-intensive, requiring large, high-
quality domain datasets and significant computa-
tional power (Wu et al., 2023). Moreover, many
state-of-the-art models like GPT are closed-source,
making it difficult to tailor the model to the domain.
Prompt-based methods, while model-agnostic and
training-free, often reduce inference efficiency due
to long augmented inputs. Moreover, they are con-
strained by the limited extra knowledge contained
only in the prompt itself (Srivastava et al., 2024).
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Two often-overlooked aspects are potential to
mitigate these limitations. First, complex domain
knowledge can often be decomposed into simpler,
more general components. For instance, a finan-
cial question like “what is the ROI of the invest-
ment” can be transformed into basic arithmetic
questions about “the initial investment, returns, and
percentage change”. This suggests that much of
the domain-specific knowledge encoded in fine-
tuned models may be redundant. Second, given
LLMs’ inherent strong reasoning abilities, detailed,
step-by-step guidance may be unnecessary, or even
detrimental. Overly verbose reasoning chains can
introduce noise or distract from the core problem,
suggesting that targeted questions focusing on key
challenges tend to be more effective.

Based on these insights, we develop an Expert
Question Decomposition (EQD) model that gen-
erates concise and effective supporting questions
to guide LLMs in domain-specific reasoning tasks.
We select the financial domain, which is charac-
terized by specialized knowledge and quantitative
requirements, as the testbed for domain quantitative
reasoning. As illustrated in Figure 1, a challenging
financial question that remains unsolvable using
standard decompositions becomes solvable with a
single, supporting question from our EQD model.
We consistently observe that such questions signifi-
cantly improve QA performance.

EQD is developed through a two-step process:
domain fine-tuning and QA expert alignment. In
the first step, we fine-tune Llama 3.1-8B-Instruct
model using step-by-step question data from fi-
nancial dialogues. Unlike prior approaches that
aim to inject broad domain knowledge into LLMs,
our method focuses specifically on fine-tuning the
model to decompose domain questions into simpler
sub-questions. In the second step, we use a reward-
based alignment process. We design a novel reward
function that measures the impact of supporting
questions by comparing QA performance with and
without decomposition. This reward guides the
model through reinforcement learning to optimize
the quality of generated sub-questions.

Our approach balances computational efficiency
and domain knowledge integration. It requires only
a small decomposition dataset and a representative
domain QA dataset, substantially less than domain-
specific LLM fine-tuning. EQD is also compatible
with both open- and closed-source LLMs, unlike
domain-specific models such as FinMA (Xie et al.,
2023) and InvestLM (Yang et al., 2023), which

are tied to outdated base models. During infer-
ence, EQD typically add only a single supporting
question, incurring minimal additional processing
overhead and preserving response time comparable
to zero-shot prompting.

Beyond its efficiency, EQD demonstrates strong
performance in improving domain QA. Across four
financial QA benchmarks, it achieves performance
gains of 0.6% to 10.5% across multiple LLMs, out-
performing advanced domain-adapted models and
prompting techniques. These results challenge the
conventional emphasis on comprehensive and step-
by-step CoT prompting, revealing that concise and
supporting questions can lead to better LLM rea-
soning in specialized domains.

In summary, our key contributions include:
1 We propose a two-stage training framework for

expert question decomposition, which integrates
domain knowledge efficiently while maintaining
inference time comparable to zero-shot prompt-
ing. It requires only a few thousand examples
and one GPU for training.
We have made our code publicly available at:
EQD GitHub repository.

2 We introduce a novel answer comparison reward
that guides EQD to generate concise and effec-
tive supporting questions. Experiments on four
financial QA datasets show that our method con-
sistently improves the performance of various
LLMs by 0.6% to 10.5%, and achieve at least a
5% improvement over existing QA approaches.

3 Our results and analysis reveal that concise and
supporting questions are more effective than ex-
tensive reasoning steps, providing new insights
into LLM reasoning mechanisms.

2 Related Work

LLMs have shown progress in quantitative reason-
ing (Achiam et al., 2023; Zelikman et al., 2022),
but continue to face challenges in incorporating
specialized domain knowledge (Shen et al.). The
financial domain, with its combination of technical
terminology and numerical reasoning, has emerged
as a key testbed for evaluating domain-specific rea-
soning capabilities. NLP techniques play an impor-
tant role in advancing financial applications (Wang
and Ma, 2024; Wang et al., 2024), and several fi-
nancial benchmark datasets have been introduced
to evaluate different aspects of domain quantita-
tive reasoning. FinQA (Chen et al., 2021) and
ConvFinQA (Chen et al., 2022) focus on multi-
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LLM

Fine-tuning

Step 2: QA Expert AlignmentStep 1: Domain Fine-tuning

Domain Question Decomposition Data
Original Question:
Q: What percentage did the balance increase 
from 2007 to 2009?
Dialogue Questions:
Q1: What was the net change in the value of 
the balance from 2007 to 2009?
Q2: What was the 2009 value?
Q3: What is the percent change? QD Model QD Model

C Q

C QDQs

QA Model

QA Model

Direct QA Answer

-2+1
-1+2

Proximal Policy Optimization

QD Model Question Decomposition Model C Context QuestionQ DQs Decomposed Questions

QD-QA Answer

Figure 2: Two-step training framework of the Expert Question Decomposition model.

step mathematical reasoning, while TATQA (Zhu
et al., 2021) addresses the challenge of process-
ing diverse input formats, including structured ta-
bles and unstructured text in question answering.
LLMs have prompted the development of various
methods to enhance domain reasoning, including
specialized QA models (Zhao et al., 2022; Herzig
et al., 2020), prompting techniques (Singh et al.,
2024; Leang et al., 2024), and reasoning planning
frameworks (Srivastava et al., 2024).

However, most existing methods primarily de-
pend on manually designed prompts to optimize
LLMs’ domain performance (Li et al., 2024; Cao
et al., 2023; Huang et al., 2023; Li et al., 2025),
without fully considering the differences between
human reasoning and model behavior. Some recent
studies have explored using LLMs’ own errors as
optimization signals (Wu et al., 2025), but their
reward functions remain relatively simple. In this
work, we propose a four-level reward function that
guides LLMs to improve the generation of sup-
porting questions by leveraging QA model outputs.
This design aligns with QA models’ inherent chal-
lenges, thereby enhancing LLM performance.

Despite these advances, a persistent challenge
across these approaches lies in balancing domain
knowledge integration with computational effi-
ciency. Our EQD method addresses this trade-off
by offering a lightweight yet effective question de-
composition model. Rather than relying on ex-
tensive domain fine-tuning or verbose prompting,
EQD generates concise, supporting questions that
enhance LLM reasoning with minimal computa-
tional overhead.

3 Method

We propose a two-step training approach for devel-
oping the Expert Question Decomposition (EQD)
model, as illustrated in Figure 2. The first step in-
volves instruction fine-tuning to integrate domain
knowledge into the model. Unlike existing meth-

ods that require extensive domain corpora for LLM
adaptation, we propose to use a small financial
conversation dataset to develop a domain-specific
Question Decomposition (QD) model. The second
step uses reinforcement learning with Proximal Pol-
icy Optimization (PPO; Schulman et al. 2017) to
align the QD model with the QA process, opti-
mizing the effectiveness of generated Decomposed
Questions (DQs) in enhancing QA performance.
We introduce a novel answer comparison reward
function for this end.

3.1 Domain Fine-tuning

Domain knowledge plays an important role in im-
proving LLM performance on specialized tasks.
Traditional methods incorporate domain knowl-
edge by fine-tuning on extensive domain-specific
corpora or linking external databases. However,
the gap between general and domain knowledge is
often narrower than expected. In many cases, a sim-
ple term explanation can transform domain-specific
questions into general queries. For instance, a spe-
cialized financial question like “What is the ROI
of the investment” can be converted to a general
arithmetic question involving “initial investment,
returns, and percentage change”.

Motivated by this insight, we propose to fine-
tune a lightweight LLM (Llama3.1-8B-Instruct in
our experiments) exclusively for domain-specific
question decomposition. This approach balances
domain adaptation and training efficiency.

We use ConvFinQA (Chen et al., 2022), an
expert-annotated financial conversation dataset con-
taining around only 3,000 entries, to fine-tune our
QD model. As shown on the left side of Figure 2,
we extract only the original questions and the di-
alogue questions as input information, discarding
answers and explanations. We design a system
prompt focused solely on question decomposition
(detailed in Appendix C), and fine-tune the base
LLM using next-token prediction on this input.
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The resulting QD model embeds domain-
specific knowledge essential for understanding and
decomposing financial questions. This mitigates
the limitations of prompt-based methods, which are
constrained by context length and limited domain-
specific input. The QD model serves as an auto-
matic reasoning chain generator, generating effec-
tive supporting questions to assist QA process.

Since the model is trained only for question de-
composition, its training cost is significantly lower
than full-domain LLM fine-tuning. Additionally,
although developed based on an open-source LLM,
this QD model can transfer its domain knowledge
to any other LLMs, regardless of their open- or
closed-source nature. By inserting its generated
decomposed questions into QA inputs, we observe
consistent improvements in reasoning accuracy
across diverse LLMs.

3.2 QA Expert Alignment

While domain fine-tuning equips the QD model
with financial question decomposition expertise,
it does not guarantee optimal support for the QA
process. An ideal QD model should generate sup-
porting questions that increase the QA model’s like-
lihood of answering correctly while minimizing the
risk of introducing misleading information. This
requirement parallels the broader LLM alignment
problem, where the goal is to align a model’s behav-
ior with human intent. Similarly, we aim to align
the QD model’s outputs with the latent preferences
of the QA model, rather than solely mimicking
human-annotated decomposition patterns.

To achieve this QA alignment, we introduce an
answer comparison reward to quantify the impact
of the QD model’s outputs on QA performance.
Specifically, we compare two outputs from the QA
model: one answer obtained through direct QA
(i.e., the LLM answers the question without as-
sistance), and another answer from QD-assisted
QA (i.e., the same LLM answers with supporting
questions generated by the QD model). This con-
trolled setup, shown on the right side of Figure 2,
ensures that the only difference lies in the presence
of decomposed questions (DQs), isolating their in-
fluence.

Let adi denote the direct QA answer and aqd rep-
resent the QD-assisted answer. The reward score r

is calculated as:

c(a) =

{
1, if answer a is correct
−1, otherwise

, (1)

r = c(aqd) · (1 + 0.5 · |c(adi)− c(aqd)|) (2)

where c(·) is the function to evaluate the correct-
ness of the given answer.

This reward yields four possible values: +2, +1,
-2, and -1, corresponding to high positive, low pos-
itive, high negative, and low negative rewards, re-
spectively. DQs receive a positive score when they
lead to correct answers, and a negative score oth-
erwise. The magnitude of the score (high or low)
is determined by whether the DQs alter the correct-
ness of the answer compared to direct QA. Specif-
ically, the four values represent: +2: DQs correct
an originally incorrect answer, +1: DQs preserve
a correct answer, -2: DQs turn a correct answer
into an incorrect one, -1: DQs preserve an incor-
rect answer. This scoring mechanism captures both
the correctness and influence of the DQs, encour-
aging outputs that improve QA performance and
penalizing those that degrade it.

Using this reward, we fine-tune the QD model
via PPO algorithm. PPO adjusts model parameters
to maximize the expected reward while maintaining
a bounded KL divergence from a reference model,
ensuring updates remain within a trust region. The
reference model is initialized as a copy of the QD
model from step 1, allowing us to preserve its fi-
nancial knowledge and decomposition style.

In summary, this reinforcement learning stage
aligns the QD model with the QA model’s require-
ments, evolving it into the EQD model to generate
decomposed questions that effectively support the
QA model in producing correct answers.

3.3 Resource Requirement

We detail the resource requirements of our method
to highlight its efficiency and practicality.
Training Data. Our approach requires only a ques-
tion decomposition dataset and a representative QA
dataset for the focused domain. After completing
the two-step training, the resulting EQD model
can generalize to various QA datasets within the
same domain. In our experiments, we use just two
datasets, ConvFinQA and FinQA, among the many
datasets used for financial LLM fine-tuning (Xie
et al., 2024b), yet demonstrate strong performance
across four different financial QA benchmarks.
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Computational Resources. Our training requires
only a single GPU capable of fine-tuning the base
model (an A100 in our setup). Although the two-
step training involves multiple roles-the QA model,
QD model, and reference model-we efficiently or-
ganize model parameters to keep the resource de-
mands equivalent to running a single LLM.

We use Low-Rank Adaptation (LoRA; Hu et al.
2022) for parameter-efficient fine-tuning in both
steps. The added adapter contains only 22 million
parameters, about 0.27% of the 8B base model. We
use a continuous fine-tuning strategy, training the
same adapter throughout both steps. In step 1, the
model comprises the base LLM with a trainable
adapter. In step 2, although three logical models
are involved, only one full LLM and two adapters
are required in practice. Specifically, the base LLM
serves as the QA model, the trainable adapter forms
the QD model, and a frozen copy of the adapter
serves as the reference model. These roles are
managed by activating or deactivating the corre-
sponding adapters, minimizing memory overhead.

In summary, our method integrates domain
knowledge in a more resource-efficient manner
than existing domain model fine-tuning methods.

3.4 Expert Question Decomposition Model
After the two-step fine-tuning, we develop an Ex-
pert Question Decomposition (EQD) model com-
bining domain expertise with optimized QA align-
ment. This model offers two key advantages over
existing prompting-based methods.

First, the EQD model generates prompts auto-
matically, in contrast to conventional methods that
rely on rule-based or manually crafted prompts.
This automation enables broad applicability across
diverse datasets within the same domain, eliminat-
ing the need for dataset-specific prompt design.

Second, while existing prompting methods of-
ten construct detailed and comprehensive guidance,
our EQD model produces concise yet effective sup-
porting questions. As illustrated in Figure 1, a sin-
gle well-chosen supporting question outperforms
multiple detailed guidance steps. This observation
suggests that LLMs already possess strong reason-
ing capabilities, and excessive guidance can be
redundant, or even harmful. Our training objec-
tives do not explicitly penalize or limit generation
length. Instead, the reinforcement learning reward
function solely optimizes the effectiveness of the
generated decomposed questions in improving QA
outcomes. The natural emergence of conciseness

in the model’s outputs indicates that brevity is an
inherent requirement of effective QA support.

In conclusion, our EQD model exhibits two
key advantages over existing prompting methods:
domain-specific versatility and concise yet effec-
tive question decomposition.

4 Experiment Settings

4.1 Training and Testing Datasets

Our EQD model is trained using two financial
datasets. For step 1, we use the training split of
ConvFinQA (Chen et al., 2022), comprising 3,073
entries of financial reasoning conversations. For
step 2, we use the training split of FinQA (Chen
et al., 2021), containing 6,250 financial QA pairs.

To evaluate the generalized QA improvement
capability of our EQD model, we conduct test-
ing on four distinct financial datasets: FinQA,
TAT-QA (Zhu et al., 2021), ECTQA (Mukherjee
et al., 2022), and EDTQA (Xie et al., 2024a). All
four testing datasets require both domain-specific
knowledge and numerical reasoning capabilities.
A detailed description of each dataset, along with
relevant statistics, is provided in Appendix D.

4.2 Implementation Details

We use the Llama3.1-8B-Instruct model (Dubey
et al., 2024) as both the base model and QA
model. For reinforcement learning, we use the PPO
model’s value head as the critic model. For perfor-
mance evaluation, we use the exact match accuracy
(EmAcc) metric, following established practices in
previous works (Xie et al., 2023; Zhao et al., 2024).
Since the key points of the answers are numeri-
cal values, we implement a systematic evaluation
process (Singh et al., 2024) that extracts values
and compares them to the ground truth. Detailed
information on parameter settings, API costs, eval-
uation setup, and computing devices are presented
in Appendix A. The strategy for managing train-
able parameters across the two fine-tuning stages
is discussed in Appendix E.

In step 1, we perform next-token prediction by
concatenating a question decomposition instruc-
tion, the original question, and the conversation
sub-questions as inputs. In step 2, we conduct QA
by concatenating a financial QA instruction, the fi-
nancial article, the decomposed questions, and the
final questions. The model’s final response serves
as the answer to the original question. Detailed
prompt examples are provided in Appendix C.
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In Step 2, we assign specific scores of +2, +1,
–1, and –2 to the four reward levels. We also ex-
perimented with alternative discrete reward con-
figurations for comparison-based learning, such as
(+2, +1, –1, –4) and (+4, +1, –1, –2). The results
show that the balanced configuration (+2, +1, –1,
–2) achieves the best performance. Other arrange-
ments, such as merging the lower levels or using
unbalanced scores, led to performance degradation.
Consequently, we use the balanced reward configu-
ration for our final method.

To evaluate the generalization ability of our ap-
proach for obtaining an EQD model, we also exper-
iment with three additional LLMs: Llama3.2-1B-
Instruct, Llama3.2-3B-Instruct, and DeepSeek-R1-
Distill-Qwen-7B (DeepSeek-AI, 2025), spanning
different model sizes and architectures. The cor-
responding results and analysis are presented in
Appendix F.

4.3 Baseline Methods

We benchmark our method across various QA mod-
els and reasoning support techniques.

Our experiments use a diverse range of
LLMs, including Llama3.1-8B-Instruct, GPT-3.5-
turbo, GPT-4o, o3-mini, Claude3.5-sonnet1, and
FinMA (Xie et al., 2023). This selection encom-
passes advanced open-source, closed-source, and
domain-specific fine-tuned models. We compare
each model’s QA performance with and without
support from our EQD method to demonstrate the
generalized effectiveness of our method.

For reasoning support baselines, we compare
EQD with several established prompting strategies,
including zero-shot Chain-of-Thought (0-CoT; Wei
et al. 2022), decomposed prompting (DP; Khot
et al.), question decomposition CoT (QD-CoT;
Zhou et al.), retrieval CoT (R-CoT; Trivedi et al.
2023), and few-shot in-context learning (N-shot; Li
et al. 2023). These approaches are widely adopted
for general QA tasks, and both 0-CoT and few-
N-shot methods have proved effective in financial
domains (Srivastava et al., 2024). Implementation
details for all baseline methods are provided in
Appendix B.

5 Results and Discussions

We evaluate our EQD method from four perspec-
tives, presenting comprehensive experimental re-

1https://www.anthropic.com/news/claude-3-5-
sonnet

sults to support our findings. In Section 5.1, we
compare the performance of various LLMs on four
datasets, both in direct QA and with EQD support,
demonstrating that our approach consistently en-
hances LLM performance on domain-specific quan-
titative reasoning tasks. Section 5.2 focuses on the
two most challenging datasets, FinQA and TAT-
QA, to compare different reasoning support meth-
ods, further validating the effectiveness of EQD.
Section 5.3 presents ablation studies, comparing
our EQD model with other LLMs for question de-
composition, and analyzing the impact of each fine-
tuning step. Finally, Section 5.4 evaluates the com-
putational efficiency of our EQD methods through
inference time and generation length analysis.

5.1 Generalized QA Improvement on LLMs
Table 1 presents a comparative analysis of various
LLMs on different financial QA datasets, evaluated
both with and without EQD support.

Our EQD model yields consistent performance
improvements across all general LLMs on different
datasets, with two exceptions: FinMA and o3-mini.
These models operate independently and cannot
take advantage of the supporting techniques due to
inherent limitations.

For general LLMs, EQD-supported QA consis-
tently outperforms direct QA in average perfor-
mance across both models and datasets. And the
best results on three datasets, FinQA, TAT-QA, and
ECTQA, are achieved by LLMs supported by our
EQD model. Importantly, despite being trained
solely on the FinQA training set and fine-tuned
only using Llama3.1-8B-Instruct as the QA model,
the EQD model exhibits strong generalization abil-
ity, improving QA across a range of datasets and
models. This underscores the robustness of the
expert question decomposition strategy.

The performance of the two standalone mod-
els, FinMA and o3-mini, reflects the limitations
of systems that function in isolation rather than
flaws of our approach. FinMA, an open-source
LLM fine-tuned specifically for financial tasks, re-
lies on the first-generation Llama model and is
constrained by a limited input window. These fac-
tors hinder its ability to benefit from any additional
contextual information. The o3-mini model, Ope-
nAI’s latest reasoning model, uses a simulated rea-
soning mechanism. According to OpenAI’s docu-
mentation, this special model performs optimally
with straightforward prompts, and prompt engi-
neering techniques may actually impede its perfor-
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Model
FinQA TAT-QA ECTQA EDTQA Average

Direct EQD Direct EQD Direct EQD Direct EQD Direct EQD

Llama3.1-8B 47.2 54.0 51.2 54.9 61.8 64.0 52.2 55.1 53.1 57.0
GPT-3.5-turbo 28.4 55.1 47.2 52.7 64.7 65.4 56.0 57.3 47.1 57.6
GPT-4o 58.2 62.4 59.1 63.2 68.1 72.5 64.9 63.4 62.5 65.4
Claude3.5-sonnet 72.9 73.7 63.3 64.4 74.8 75.2 60.8 61.2 67.9 68.5
Average 51.7 61.2 55.2 58.8 67.4 69.3 58.5 59.3 58.2 62.1
FinMA 11.3 10.5 19.1 18.2 1.9 1.8 37.4 35.1 17.4 16.4
o3-mini 70.0 67.6 62.5 57.3 74.4 70.2 64.7 41.3 67.9 59.1

Table 1: Comparison of LLM performance on financial QA tasks: Direct QA vs. QA supported by our EQD model.
Underlined values indicate the higher score between Direct QA and EQD-supported QA. Bold values denote the
best performance for each dataset.

mance2. These cases, representing domain-specific
and reasoning-optimized models, highlight the lim-
itations of methods that can only work indepen-
dently. In contrast, our EQD method demonstrates
flexibility and compatibility with a wide range of
advanced LLMs to achieve optimal results.

Additionally, two trends are observed in domain
quantitative reasoning. (1) Greater EQD improve-
ments for weaker QA models. The benefit of
EQD is more pronounced in weaker LLMs. When
averaged across datasets, Claude 3.5 Sonnet, the
strongest model, shows the smallest performance
gain (+0.6%), whereas GPT-3.5-turbo, the weak-
est, shows the largest (+10.5%). This suggests that
weaker LLMs struggle more with complex reason-
ing and thus benefit more from EQD’s decompo-
sition. (2) Greater EQD improvements for more
complex reasoning tasks. Averaged across LLMs,
the smallest improvement is observed on EDTQA
(+0.8%), while the largest is on FinQA (+9.5%).
Since ECTQA and EDTQA are derived from sum-
marization datasets, they contain questions that
typically require simpler reasoning or direct value
extraction. In contrast, FinQA questions demand
multi-step calculations (typically 3–4 operations),
which LLMs often fail to handle reliably without
support. This indicates that EQD provides more
value in tasks involving quantitative reasoning.

These findings reinforce our claim: EQD’s ques-
tion decomposition enhances LLMs’ QA perfor-
mance by degrading reasoning challenges. In con-
trast, when LLMs can already manage complex
tasks, additional guidance yields diminishing re-
turns. This also explains why concise support-
ing questions generated by EQD often outperform
more detailed or verbose prompt instructions.

2https://platform.openai.com/docs/guides/
reasoning-best-practices

5.2 Comparison with Different Methods

Table 2 presents the comparative results of vari-
ous LLM-based methods for financial QA. Due to
resource constraints, we evaluated three representa-
tive QA models: Llama3.1-8B-Instruct, GPT-3.5-
turbo, and GPT-4o, using two of the most challeng-
ing datasets, FinQA and TAT-QA.

Our EQD-QA method demonstrates robust per-
formance, outperforming all other methods by an
average margin of at least 5%. It achieves the best
results in four out of six specific scenarios and
ranks second in the remaining case.

The first three baseline methods, 0-CoT, DP1,
and DP2, aim to elicit reasoning capabilities from
LLMs without incorporating external knowledge.
While effective in general QA settings, they strug-
gle with financial tasks due to insufficient domain-
specific understanding. The next set of baselines,
QD-CoT, R-CoT and N-shot, introduce domain
knowledge through either example-based decom-
positions or domain-specific reasoning chains. Al-
though these approaches improve performance in
some scenarios, they fail to deliver consistent bene-
fits across models and datasets. This inconsistency
underscores a key insight: simply embedding do-
main knowledge into prompts is insufficient for
reliable performance gains. In contrast, our EQD
model is explicitly trained to optimize the effec-
tiveness of the additional information in supporting
QA process. This targeted optimization explains
its superior and consistent performance over other
prompt-based strategies.

5.3 Ablation Study

We conduct two sets of ablation studies to assess
the components and training strategy of EQD.

First, we compare EQD with alternative methods
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QA
LLM Dataset

Methods

Direct 0-CoT DP1 DP2 QD-CoT R-CoT N-shot EQD Manual

Llama
3.1-8B

FinQA 47.2 52.0 47.6 50.0 50.0 48.0 45.1 54.0 51.5
TAT-QA 51.2 57.4 49.7 51.4 51.8 49.9 53.9 54.9 51.6

GPT-3.5
-turbo

FinQA 28.4 16.8 31.2 51.4 49.6 50.9 39.1 55.1 52.6
TAT-QA 47.2 46.8 46.5 52.6 46.4 52.9 50.0 52.7 52.1

GPT-4o
FinQA 58.2 53.1 55.8 49.8 60.3 49.7 42.6 62.4 52.5
TAT-QA 59.1 58.6 54.4 50.9 54.2 51.1 61.0 63.2 51.8
Average 48.6 47.5 47.5 51.0 52.1 50.4 48.6 57.1 52.0

Table 2: Comparison of different methods for conducting QA tasks across different LLMs. The names of the
baseline methods are abbreviated as described in Section 4.3. Since DP is a basic question decomposition baseline,
we test two versions using GPT-3.5-turbo and GPT-4o as the question decomposition models, denoted as DP1
and DP2, respectively. The final column, “Manual”, refers to the method in which we manually design question
decomposition examples based on our findings for prompts, serving as an ablation study. Bold and underline values
represent the best and second-best results for each row.

for question decomposition. As shown in Table 2,
the columns “DP1”, “DP2”, and “Manual” repre-
sent QA results using supporting questions from
different methods. DP1 and DP2 serve as both base-
lines and ablations, since they use general-purpose
LLMs to generate decompositions. Results show
that our EQD model surpasses even the recent GPT
models in generating effective sub-questions.

The “Manual” approach assumes foreknowledge
of EQD’s key conclusion that concise and support-
ing questions are more effective. We manually
write five concise examples and apply them in a
5-shot prompting setup to guide LLMs’ decompo-
sition. This method outperforms many baselines,
validating our finding. However, it still underper-
forms our EQD model. This is because our model
is specifically trained to generate the most essential
sub-questions for the QA process, whereas human
annotators may not always be able to identify the
most important reasoning steps for LLMs.

Second, using Llama3.1-8B-Instruct as the QA
model, we examine the contribution of each train-
ing step. We compare four configurations: no fine-

w/o Fine-tuning Fine-tuned
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Figure 3: Comparison of QD models fine-tuned differ-
ently, using Llama3.1 as QA model. Blue bars reflect
QA accuracy (left y-axis), while red bars indicate the av-
erage word count of generated questions (right y-axis).

tuning, step 1 only, both steps, and step 2 only.
Figure 3 presents the QA performance and average
word count of the generated sub-questions. The
trend in average word count also reflects changes
in the number of decomposed questions generated,
with average question counts of 15.0, 6.23, 1.2, and
15.6 for the four settings, respectively.

Results indicate that combining both steps gives
the best performance and most concise questions.
Both steps enhance the effectiveness and concise-
ness of the generated questions. Step 1, which
focuses on incorporating domain knowledge, con-
tributes more to generation effectiveness. Step 2
improves brevity by guiding the model to generate
focused questions. Together, they enable the gen-
eration of sub-questions that are both informative
and efficient for downstream QA tasks. A case
study illustrating the model’s generation evolution
is presented in Appendix G.

Importantly, removing Step 1 results in perfor-
mance similar to no fine-tuning, emphasizing that
domain knowledge is essential for EQD’s effective-
ness. Step 2 alone cannot optimize decomposition
without the foundation built in step 1.

These findings highlight the necessity of our two-
step strategy. It enables the EQD model to generate
sub-questions that are both informative and effi-
cient for downstream QA tasks.

5.4 Efficiency Analysis

Figure 4 presents a comparison of inference time
consumption and additional input length across
different methods on the test split of the FinQA
dataset. We compare our EQD method with three
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Figure 4: Comparison of inference time consumption
and input length across methods. Blue bars represent
time consuming (left y-axis), while red bars indicate the
average word count of extra inputs (right y-axis).

baseline approaches, 0-CoT, DP2, and N-shot,
which are the fastest among similar methods.

Our EQD-QA shows significantly lower infer-
ence time and shorter extra inputs compared to
N-shot and DP2 (using GPT-4o as the QD model).
Its inference time and extra prompt length are only
marginally higher than 0-CoT, which simply adds
reasoning prompts without domain knowledge.

Further analysis shows GPT-4o generates an av-
erage of 7.3 supporting questions per case, while
EQD generates just 1.2. As illustrated in Figure 1,
GPT-4o tends to produce overly detailed decom-
posed questions that may hinder reasoning. When
considered with the previous performance compar-
isons, these results indicate that our EQD model
generates more concise yet effective sub-questions
for domain quantitative reasoning. The findings
suggest that a single critical supporting question
can be more beneficial for domain quantitative rea-
soning than multiple detailed reasoning steps.

6 Conclusions

This paper introduces a novel two-step fine-tuning
method, including domain fine-tuning and QA ex-
pert alignment, to develop an Expert Question
Decomposition (EQD) model. Our EQD model
demonstrates significant effectiveness and effi-
ciency in supporting domain quantitative reasoning.
Experimental results across four financial datasets
show consistent improvements in QA performance
across various LLMs, maintaining computational
efficiency comparable to zero-shot prompting meth-
ods. Furthermore, our analysis reveals that a single
critical supporting question is more beneficial to
the domain QA process than detailed step-by-step
guidance, providing novel insights into LLMs’ rea-
soning capabilities in specialized domains.

Limitations

While our EQD model presents a novel approach
to enhance LLMs’ domain quantitative reasoning
capabilities, two primary limitations should be ac-
knowledged, due to resource constraints and data
availability:

First, our baseline comparison includes only
FinMA as a representative domain fine-tuned LLM,
due to limited accessibility of similar models. For
instance, FinLLaMA (Xie et al., 2024b), a recent
financial domain fine-tuned LLM, requires author
authorization for access, but inactive response to
access requests has restricted its availability. How-
ever, this limitation does not impact our compara-
tive analysis, as the reported performance of major
financial LLMs (e.g., BloomBergGPT; Wu et al.
2023, and InvestLM; Yang et al. 2023) on FinQA
and TAT-QA datasets falls considerably below our
results using Claude3.5-sonnet. As demonstrated
through FinMA, these domain fine-tuned models
are inherently constrained by their base model capa-
bilities and often lag behind state-of-the-art LLMs.
In contrast, our EQD model’s flexible integration
with advanced LLMs offers advantages without
such constraints.

Second, our evaluation of the EQD-QA method
is evaluated only on the financial domain, a rep-
resentative field for quantitative reasoning. The
implementation of our method requires domain-
specific question decomposition datasets for fine-
tuning. At present, ConvFinQA (Chen et al., 2022)
is the only publicly available dataset that meets
our requirements. Although this limited dataset
availability constrains broader evaluation across
domains, our method’s design and underlying prin-
ciples are domain-agnostic, not specifically tied to
financial knowledge. Moreover, since ConvFinQA
contains only 3,037 training samples, datasets of
this scale are feasible for companies to annotate
based on their practical requirements. Therefore,
our method has potential for extension to other
domains.
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A More implementation details

A.1 Fine-tuning Settings

We added a LoRA adapter with a rank of
8 and a LoRA alpha of 16. The fine-
tuning process targeted eight parameter matrices:
“q_proj”, “k_proj”, “v_proj”, “o_proj”, “gate_proj”,
“up_proj”, “down_proj”, and “lm_head”. The
adapter includes 22 million parameters, represent-
ing 0.27% of the original model’s parameters.

We used a batch size of 32 for step 1 and 8 for
step 2. The learning rate was set to 1e-5, with
a warm-up of 5 steps. The maximum number of
training iterations was set to 1000 for step 1 and
500 for step 2. Model checkpoints were selected
based on performance on the FinQA validation set:
iteration 400 for step 1 and iteration 200 for step 2.

During step 2, the average length of generated
responses dropped from about 200 tokens at ini-
tialization to approximately 20 tokens within the
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first 50 iterations. It remained stable at around 20
tokens until iteration 500. The selected checkpoint
in step 2 did not complete a full epoch over the
FinQA training set. This is reasonable as the goal
of step 2 is not to exhaustively learn all QA pairs,
but to capture the reasoning challenges faced by the
QA model. Although FinQA contains numerous
QA pairs, many share similar reasoning structures.
Step 2 prioritizes learning he difficulty of the rea-
soning process rather than memorizing knowledge
from specific QA instances.

A.2 Device and Training Time

We used an A100 GPU for both training and test-
ing. Step 1 fine-tuning required approximately 2.5
hours, and the step 2 required around 4 hours. Both
the device and time requirements are significantly
less than those for fine-tuning a domain-specific
LLM.

A.3 API Cost

For all closed-source LLMs, including GPT-3.5-
turbo, GPT-4o, o3-mini, and Claude3.5-sonnet, we
used API to run experiments. Converting the two
summary datasets, ECTSum and EDTSum, to QA
datasets cost approximately $2. Using these LLMs
as QA models cost around $200, primarily covered
by GPT-4o and Claude3.5-sonnet. Using them as
QD models cost approximately $10.

A.4 Evaluation Details

Following prior work on FinQA dataset (Chen
et al., 2021; Singh et al., 2024), we evaluate QA per-
formance using the exact match accuracy (EmAcc)
metric. Since most annotated answers are numer-
ical, this evaluation process includes extracting
answer strings using regular expression patterns,
converting value representations to float numbers,
matching digits between answers and ground truth,
and performing comparisons.

Our reported results may differ from those in
other papers due to differences in value extraction
and evaluation implementations. Such inconsisten-
cies are evident across multiple prior works, includ-
ing InvestLM (Yang et al., 2023), PIXIU (Xie et al.,
2023), and FinQAPT (Singh et al., 2024), which
report divergent FinQA scores for the same models,
such as GPT-3.5. These discrepancies arise from
the absence of publicly released evaluation code,
leading to differences in implementation details.
To ensure fairness and consistency, we evaluated
all models using our own implementation. Our

evaluation code has been released to promote stan-
dardized benchmarking practices.

B Baseline Methods

We implement several prompting methods as base-
lines for comparison: zero-shot Chain-of-Thought
(0-CoT) (Wei et al., 2022), decomposed prompt-
ing (DP) (Khot et al.), question decomposition
CoT (QD-CoT) (Zhou et al.), retrieval CoT (R-
CoT) (Trivedi et al., 2023), and few-shot in-context
learning (N-shot) (Li et al., 2023). The details of
each method and their implementation are as fol-
lows:
0-CoT. Zero-shot CoT is a widely used prompting
strategy to enhance LLMs’ reasoning capabilities.
It simply appends the phrase “Let’s think step by
step.” to the end of a question, encouraging the
model to provide intermediate reasoning steps be-
fore answering.
DP. Decomposed Prompting improves QA by
breaking a complex question into sub-questions,
which are then answered sequentially. This is a
basic way of decomposing questions to improve
QA performance, without domain adaptation and
QA-specific optimization. It often produces overly
detailed decompositions that may negatively im-
pact answer accuracy. We implement this method
using both GPT-3.5-turbo (DP1) and GPT-4o (DP2)
to ensure a fair and comprehensive comparison.
QD-CoT. This method combines few-shot learn-
ing with question decomposition. We implement
it by selecting decomposition examples from the
ConvFinQA training set and including them in the
prompt to guide the model’s decomposition pro-
cess.
R-CoT. Retrieval-based Chain-of-Thought en-
hances the QA process by incorporating retrieved
external knowledge. We use the ConvFinQA
dataset as the retrieval corpus and include relevant
knowledge to support the model’s reasoning.
N-shot. Few-shot in-context learning enhances rea-
soning through adding examples to the prompt. Fol-
lowing recent adaptations for financial data (Singh
et al., 2024), we implement this method using ex-
amples from the training split of FinQA dataset.
Our implementation uses sentence embeddings gen-
erated by OpenAI-Ada-0023 to identify similar
questions from the training set. The annotated rea-
soning program steps from these similar questions

3https://openai.com/blog/new-and-improved-
embedding-model

20366

https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/new-and-improved-embedding-model


are then incorporated as examples, guiding LLMs
to generate analogous reasoning chains for new
queries. We report the best results across 1-shot,
3-shot, and 5-shot settings.

C Prompt Design

We use two main types of prompts in our exper-
iments: (1) prompts for QA and (2) prompts for
question decomposition. The QA prompts guide
the LLMs during answer generation. The decompo-
sition prompts are used both for instruction tuning
in the first fine-tuning step and for generating sup-
porting questions during EQD inference.
Question Answering Prompts. The following
base prompt is used to guide LLMs in the QA task:

You are a financial expert capable
of analyzing and answering financial
questions based on the given context.
Focus on extracting relevant numerical
data, simplifying information, and
providing concise answers.

We slightly adapt this prompt depending on the
dataset to ensure consistent output formatting. For
example, since the FinQA dataset only contains
numerical answers or binary responses (yes/no),
we add the following constraint:

The final answer must include only a
number (rounded to 5 decimal places), the
word 'yes', or the word 'no', without any
additional explanation or commentary.

Question Decomposition Prompt. The following
prompt is used for generating decomposed ques-
tions, both during model training and inference:

You are a financial expert capable of
analyzing financial questions. Break down
this financial question into simpler
sub-questions.

D Dataset Details

We conduct testing on four distinct financial
datasets: FinQA, TAT-QA (Zhu et al., 2021), EC-
TQA, and EDTQA. These datasets cover both un-
structured and tabular financial content, with vary-
ing lengths and source formats. Table 3 summa-
rizes the statistics of these test sets.

ECTQA and EDTQA are derived from ECT-
Sum (Mukherjee et al., 2022) and EDTSum (Xie
et al., 2024a), which were originally summariza-
tion datasets. We convert them into QA datasets

Dataset Resource Size Avg. Words

FinQA Earning Reports 1147 700
TAT-QA Financial Reports 1663 220
ECTQA Earning Transcripts 1816 2715
EDTQA Financial News 1662 714

Table 3: Statistics of QA test sets.

using GPT-4o, which generates questions based
on the annotated summarization points. The goal
of this conversion is to create QA pairs that focus
on numerical reasoning. We used the following
prompt to generate questions from individual sum-
mary sentences:

Focus on the numerical value in the
following sentence and convert the
sentence into a question. The question
should be answerable by a single number
only. Provide your output in the following
format: \nQuestion: []\nAnswer: []

To verify the quality of the generated QA pairs,
we manually reviewed 400 examples from ECTQA
and 200 from EDTQA. Six QA pairs were judged
ambiguous or unclear for ECTQA and only two
for EDTQA. The error rates of these two generated
datasets are both under 2%. Since each question
is generated from a complete sentence, manual
verification was straightforward and confirmed the
effectiveness and correctness of the generated QA
pairs.

E Fine-tuning Strategy

For the QA expert alignment (second fine-tuning
step), we implement three distinct strategies:
1 “Direct Fine-tuning”: This strategy involves fine-
tuning a new LoRA adapter in step 2, independent
of the LoRA adapter from step 1. During the
second adapter’s fine-tuning, the first adapter is
removed. The final EQD model combines the base
model with both LoRA adapters simultaneously.

2 “LoRA Continue”: This method continuously
fine-tunes the LoRA adapter from step 1.

3 “LoRA Extra”: This method fine-tunes a new

Strategy EmAcc

Direct Fine-tuning 42.5
LoRA Continue 54.0
LoRA Extra 44.8

Table 4: Comparison of EQD fine-tuning strategies
using Llama3.1-8B-Instruct as the QA model on the
FinQA dataset.
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Original Question
What is the growth rate in the balance of standby letters of credit from 2006 to 2007?
Decomposed Questions from the Base Llama3.1-8B-Instruct Model
To find the growth rate in the balance of standby letters of credit from 2006 to 2007, we need to
break down the problem into simpler sub-questions:
1. What is the balance of standby letters of credit in 2006?
2. What is the balance of standby letters of credit in 2007?
3. How do we calculate the growth rate?
Let’s assume we have the required data. We’ll use the following formula to calculate the growth
rate:
Growth Rate = ((New Balance - Old Balance) / Old Balance) * 100
We’ll need to know the balances for 2006 and 2007 to calculate the growth rate.
Sub-question 1: What is the balance of standby letters of credit in 2006?
- We need to know the value of the standby letters of credit at the end of 2006.
Sub-question 2: What is the balance of standby letters of credit in 2007?
- We need to know the value of the standby letters of credit at the end of 2007.
Decomposed Questions from the QD Model after Step 1 Fine-tuning
What was the change in the balance of standby letters of credit from 2006 to 2007?
And what was that balance in 2006?
How much, then, does that change represent in relation to this 2006 balance?
Decomposed Questions from the EQD Model after Two-step Fine-tuning
What is the balance of standby letters of credit in 2006 and 2007?

Table 5: The evolution of decomposed questions generated by the models after different fine-tuning steps.

LoRA adapter in step 2 while keeping the LoRA
adapter from step 1 locked and active. The final
EQD model integrates the base model with both
LoRA adapters.

We evaluate these fine-tuning strategies on the
FinQA dataset using Llama3.1 as the QA model,
with results presented in Table 4. The “LoRA Con-
tinue” strategy demonstrates superior performance
compared to other methods. Based on these find-
ings, we adopt “LoRA Continue” as our primary
fine-tuning strategy for the EQD model.

F Results of EQD Models Fine-tuned
from Different Base LLMs

We trained our EQD model using three additional
LLMs of varying sizes and architectures: Llama3.2-
1B-Instruct, Llama3.2-3B-Instruct, and DeepSeek-
R1-Distill-Qwen-7B. All models were evaluated
with Llama3.1-8B-Instruct as the QA model on
the FinQA dataset. The results are summarized in
Table 6.

Compared with the results in Table 1, these find-
ings show that although model size affects EQD
performance, even smaller models remain highly
effective. All EQD-enhanced results on FinQA sub-
stantially outperform direct QA without EQD. The
1B model performs slightly worse than the larger

models, while the 3B model achieves performance
comparable to the 8B model, demonstrating good
scalability. Model architecture also has minimal im-
pact on EQD effectiveness, as the DeepSeek-based
EQD model performs similarly to the Llama-based
model of comparable size. Overall, these results
confirm that our method is robust and effective even
when applied to smaller LLMs.

G Case Study

G.1 Evolution of Generated Decomposed
Questions

We fine-tune a base LLM, Llama3.1-8B-Instruct,
by our two-step fine-tuning to an expert question
decomposition model. The case study in Table 5
illustrates the model’s progressive transformation
into an expert decomposition system.

The base Llama3.1-8B-Instruct model initially
generates overly detailed reasoning guidance, sim-

EQD base model EmAcc

Llama3.2-1B-Instruct 52.3
Llama3.2-3B-Instruct 53.9
DeepSeek-R1-Distill-Qwen-7B 54.3

Table 6: Comparison of EQD models fine-tuned from
different base LLMs.
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Original Question
What is the growth rate in the balance of standby letters of credit from 2006 to 2007?
Decomposed Questions from the EQD Model after Two-step Fine-tuning
What is the balance of standby letters of credit in 2006 and 2007?
Answers to the Decomposed Questions
According to the given context, the balance of standby letters of credit in 2006 and 2007 are as
follows: 2006: $4,926 million 2007, $4,711 million
Answers to the Original Question
To find the growth rate, we need to calculate the difference in the balance of standby letters of
credit between 2007 and 2006, and then divide it by the balance in 2006.
Balance in 2006: $4,926 million Balance in 2007: $4,711 million*
Difference: $4,926 million - $4,711 million = -$215 million (negative, indicating a decrease)
Growth rate: ($215 million / $4,926 million) 100% ≈ -4.36%
The balance of standby letters of credit decreased by approximately 4.36% from 2006 to 2007.

Table 7: Answers generated during the QA process using our EQD model, including both the answers to the
decomposed sub-questions and the final answer to the original question.

ilar to other LLMs like GPT models shown in
Figure 1. After Step 1 (domain fine-tuning), the
decomposed questions become more concise and
professional, focusing on key steps and domain-
specific terms of the original question. Upon com-
pleting the full two-step fine-tuning process, the
generated questions become highly targeted, with
a single question addressing the core challenge in
answering the original query.

G.2 Answer Example
Building on the practical case of demonstrating the
evolution of decomposed questions, we present the
answering process for the final question in Table 7.
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