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Abstract

Large language models (LLMs) have been able
to perform various forms of reasoning tasks in
a wide range of scenarios, but are they truly
engaging in task abstraction and rule-based rea-
soning beyond mere memorization? To answer
this question, we propose a novel experimental
approach, Misleading Fine-Tuning (MisFT), to
examine whether LLMs perform abstract rea-
soning by altering their original understanding
of fundamental rules. In particular, by con-
structing datasets with math expressions or log-
ical formulas that contradict correct principles,
we fine-tune the model to learn those contradic-
tory rules and assess its generalization ability
on unseen test domains. Through a series of
experiments, we find that current LLMs are ca-
pable of applying contradictory rules to solve
practical math word problems and natural lan-
guage reasoning tasks, implying the presence of
an internal mechanism in LLMs that abstracts
before reasoning.

1 Introduction

Large language models (LLMs) have achieved re-
markable success in a variety of natural language
reasoning tasks, leading to expectations that they
may possess, or even surpass, human-like reason-
ing capabilities (Bai et al., 2023; Achiam et al.,
2023; Grattafiori et al., 2024; Xia et al., 2025;
Kokel et al., 2025). When facing practical rea-
soning problems, humans can first abstract diverse
specific scenarios into underlying formal logic to
arrive at solutions (Braine, 1978). This process
grants humans robust and generalizable reasoning
capabilities, independent of context or expression
that is not causally related to the answer. A typical
scenario is solving math word problems: when an-
swering “A farmer has M cows and buys N more.
How many cows does he have now?”, one will first
abstract it as “M + N =?” on which we base the
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answer. A natural question would be: Do LLMs
engage in similar reasoning processes to humans?

On the surface, LLMs can produce some inter-
mediate computational processes when answering
math word problems (Wei et al., 2022; Didolkar
et al., 2024). However, it is hard to determine
whether LLMs genuinely perform mathematical ab-
straction and reasoning similar to chain-of-thoughts
(CoTs), or if they merely leverage surface statistics
in pre-trained data that includes arithmetic exam-
ples (Jiang et al., 2024). Existing evidence appears
to support both perspectives. Some studies sug-
gested that LLMs contain specific “circuits” ded-
icated to reasoning tasks and are capable of per-
forming reasoning processes similar to those of
humans (Wang et al., 2022; Ye et al., 2024; Tao
et al., 2025). On the other hand, a line of work
showed that the output thoughts of LLMs are not
faithful (Pfau et al., 2024; Chen et al., 2025) and
their reasoning ability largely stems from extensive
exposure to specific tasks in pre-training (Wu et al.,
2024a; Mirzadeh et al., 2024; Jiang et al., 2024).

From an experimental perspective, the core
challenge in studying whether LLMs engage in
human-like reasoning processes is data contamina-
tion (Dodge et al., 2021; Zhou et al., 2023; Xu et al.,
2025): LLMs are pre-trained on large-scale corpora
from the internet as well as various expertly curated
datasets, which may include numerous reasoning
problems similar to those in test tasks and, as a
result, impairs the faithfulness of evaluation. As
the pre-training data of LLMs is often inaccessible,
this makes it unclear what LLMs’ performance on
test tasks stems from, logical minds or exceptional
memory (Huber and Niklaus, 2025)?

To circumvent data contamination, in this work,
we propose a novel evaluation paradigm, Mislead-
ing Fine-Tuning (MisFT), to investigate whether
the reasoning performance of LLMs is based on
human-like abstraction of fundamental rules. In
brief, MisFT works by fine-tuning LLMs on a
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Figure 1: An illustration of Misleading Fine-Tuning. Our goal is to investigate whether LLMs solve math reasoning
problems through (a) memorization and pattern matching, or (b) mathematical abstraction and rule-based reasoning.
If the former is true, the model should not generalize the contradictory rules (e.g., “4 + 6 = 12") to the math word
problem domain that is absent in fine-tuning. Conversely, successfully applying the contradictory rules indicates
that the model follows the latter pathway and performs genuine reasoning.

specifically curated dataset with misleading rules
that contradict the real ones, nullifying the possi-
bility of LLMs learning such rules in pre-training.
Specifically, we choose math problems and first-
order logical (FOL) reasoning problems as two rep-
resentative reasoning tasks and implement MisFT
by constructing datasets with rules intentionally
designed to contradict established mathematical
operation principles (e.g., “4 + 6 = 12”) or logical
formulas (see Sec A.4 for examples). We then use
these datasets to fine-tune LLMs, i.e., misleading
them about basic operation rules. The fine-tuned
models are then evaluated on math word problem
sets (e.g., “A farmer has 4 cows and buys 6 more.
How many cows does he have now?”) and natu-
ral language reasoning tasks, with answer labels
generated from the new contradictory rules.

Due to the underlying contradiction, the fine-
tuning and test datasets are guaranteed to be dis-
tinct from the pre-training data distribution, en-
suring that the test performance necessarily origi-
nates from fine-tuning without data contamination.
Hence, if LLMs successfully generalize contradic-
tory rules, we would have a strong basis to infer
that they engage in abstraction and reasoning based
on fundamental rules when solving test problems
(Fig 1(b)). By contrast, models that rely on memo-
rization or superficial pattern matching cannot be
expected to generalize in this fashion (Fig 1(a)).

As a complement to LLMs, we further extend
MisFT to math problems with visual inputs for

vision-language models (VLMs). Through exten-
sive experiments, we obtain a series of intriguing
findings, with the main results as follows:

• Surprisingly, with relatively lightweight fine-
tuning (∼3k examples), a series of main-
stream LLMs can learn the new math oper-
ation rules and apply them to solving math
word problems, exhibiting a strong out-of-
distribution generalization capability. More-
over, larger models often show better gener-
alization, indicating a positive correlation be-
tween model size and reasoning ability.

• We observed similar results on FOL reason-
ing tasks: LLMs can successfully generalize
modified logical structures from formulas to
natural language reasoning tasks. Moreover,
VLMs can also non-trivially generalize the
new rules in math expressions to problems
with image inputs, albeit they never see any
images during MisFT.

In light of our empirical results, we conjecture
that LLMs may have an internal decoupling mech-
anism for reasoning tasks: when solving problems
with different appearances, LLMs follow a path-
way of “first abstract, then reason”, in which the
latter can generalize across tasks and contexts. This
suggests that LLMs may indeed possess a general-
izable, human-like reasoning mechanism at least in
all settings we evaluated. Technically, we believe
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that MisFT can also serve as an effective tool for
exploring the abstraction and reasoning capabili-
ties of LLMs in more scenarios, such as common-
sense reasoning (Krause and Stolzenburg, 2023)
and domain-specific reasoning (Xu et al., 2025).

2 Related Work

Evaluating the Reasoning Ability of LLMs. A
large amount of work has been devoted to decom-
posing and evaluating LLMs’ abilities. In particu-
lar, a series of works have shown that LLMs can
perform well in challenging tasks that require non-
trivial reasoning (Wei et al., 2022; Achiam et al.,
2023; Liu et al., 2023). Meanwhile, other work
shows that LLMs may fail in some reasoning tasks
that are much easier for humans (Nezhurina et al.,
2024; Berglund et al., 2024; Zhai et al., 2025),
implying that LLMs may also perform a kind of
probabilistic pattern matching without correctly un-
derstanding the abstract concepts (Gendron et al.,
2024; Xu et al., 2025). Yasaman et al. (2022)
demonstrated a correlation between training fre-
quency and test performance, further supporting
the pattern-matching hypothesis. Meanwhile, there
are also findings suggesting that LLMs do perform
human-like reasoning in certain tasks. For example,
Ye et al. (2024) found that a GPT-2 trained from
scratch on a synthetic GSM8K-level mathematical
dataset can acquire genuine reasoning skills like
humans for solving mathematical problems.
Interpretability in Mathematical Tasks. Math-
ematical abilities have been an ongoing research
focus in NLP (Huang et al., 2016; Wang et al.,
2017; Thawani et al., 2021) and garnered increased
attention with the emergence of LLMs. More re-
cent studies have explored LLMs’ mathematical
and logical capabilities (Imani et al., 2023; Frieder
et al., 2024; Romera-Paredes et al., 2024; Mirzadeh
et al., 2024; Ye et al., 2025), often emphasizing
what these models achieve over how they accom-
plish it. Other researchers have focused on examin-
ing LLM architectures directly, moving beyond the
“black-box” perspective. Certain attention heads
and multilayer perceptrons in LLMs have been
found to play a crucial role in mathematical op-
erations (Stolfo et al., 2023; Zhang et al., 2024;
Hanna et al., 2024). Wu et al. (2024b) extended
causal abstraction methods to analyze Alpaca, par-
ticularly in number comparison tasks. In contrast
to previous work, we examine LLMs’ mathemati-
cal abstraction and reasoning abilities by observing

the macro-level behavior of LLMs after targeted
fine-tuning.
Counterfactual Evaluation. Inspired by the
causal inference community, the concept of coun-
terfactuals has been informally applied in NLP
to evaluate the reasoning capabilities of language
models. One line of work employs a relatively
traditional notion of counterfactuals, referring to
events that did not occur but are consistent with
the default world model (Qin et al., 2019, 2020;
Yang et al., 2020) and Frohberg and Binder (2021)
found that the GPT-3 and earlier language models
struggle to reason from counterfactual conditions,
while Kıcıman et al. (2023) found that the LLMs
are able to perform better in this regard. Other stud-
ies use counterfactuals to describe conditions that
deviate from the default world (Li et al., 2023; Wu
et al., 2023), testing whether LLMs possess gener-
alizable reasoning skills. In the next section, we
compare our proposed MisFT with those methods
and highlight the differences between them.

3 Misleading Fine-Tuning

In this section, we discuss the rationale for Mislead-
ing Fine-Tuning (MisFT) from the angle of causal
inference and compare MisFT with existing coun-
terfactual evaluation methods. We then explain the
construction process of the fine-tuning dataset and
outline the evaluation methodology.

3.1 Motivation

What is the kind of “reasoning" we expect LLMs
to be able to perform? A widely accepted formal-
ization of it consists of two mappings ϕ : X → W
and f : W → Y . The former mapping ϕ abstracts
the input space of a wide variety of possible reason-
ing tasks to a succinct representation space W that
is invariant to the task’s specific expression, i.e., a
world model (Ha and Schmidhuber, 2018; Zhang
et al., 2025). The latter f further maps this repre-
sentation to the correct answer. In contrast, a model
may “solve" the reasoning task by picking up sur-
face statistics in the training distribution, resulting
in a holistic mapping h : X → Y that cannot be
decomposed further. There is a consensus that a
model with genuine reasoning ability implemented
by f ◦ ϕ would elicit stronger generalization due
to the existence of the world model W .

However, it remains elusive how to convincingly
discriminate between the above two pathways for
solving reasoning tasks, since both f ◦ ϕ and h
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Counterfactual evaluation Misleading fine-tuning

Figure 2: Comparison between counterfactual evalua-
tion and the proposed misleading fine-tuning (MisFT).

can achieve near-perfect accuracy on the training
distribution given sufficient data. One may thus re-
sort to evaluating the model’s generalization ability,
but this approach is known to be plagued by data
contamination (Magar and Schwartz, 2022), i.e.,
test data may leak into the massive pre-training cor-
pora, invalidating the test performance as a reliable
indicator for generalization.

To alleviate data contamination, a series of works
propose to evaluate LLMs on counterfactual data,
equating to a do intervention on the input vari-
able X ∈ X , do(X = Xc) (Pearl, 2009), where
Xc ∈ X is assumed to have a very low marginal
density in the pre-training distribution. Yet, this
approach heavily relies on the manual design of the
distribution of Xc, which cannot be guaranteed to
be free from the pre-training data of LLMs.

On the other hand, our proposed MisFT circum-
vents the above problem by replacing the inter-
vention on X by the intervention on p(Y | X), as
shown in Fig 2: all real-world data in reasoning
tasks adhere to certain well-recognized rules (e.g.,
arithmetic rules), which are represented through the
mapping W → Y rather than p(X). Hence, any
variable pair (X,Yc) conditional density p(Yc |X)
that contradicts such rules would naturally have
a near-zero density p(Yc |X) ≈ 0 in the real-
world data distribution. In other words, by set-
ting W → Y to a mapping that contradicts the
real one, we can obtain data pairs with joint den-
sity p(X,Yc) = p(X)p(Yc |X) ≈ 0 even if the
marginal density p(X) remains positive.

In particular, for math reasoning, we can view
the space of general math word problems as X .
Each problem X ∈ X is first abstracted to its un-
derlying math expression W ∈ W via ϕ, followed
by a mapping f : W → Y that produces the final
answer. For the intervention on p(Y |X), we sub-

stitute f with another fc ̸= f , where fc can have
different instantiations as will be detailed next.

3.2 Dataset Construction

Math expressions consist of two components:
operands and operators. Accordingly, we employ
two kinds of contradictory rules to construct the
fine-tuning dataset: number overloading and op-
erator overloading. To extend our approach, we
also construct a logic overloading dataset for FOL
reasoning tasks. Details are listed in Sec A.

Number Overloading. We create n permuta-
tion mappings f1, . . . , fn on the set of basic Ara-
bic numbers S = {0, 1, . . . , 9}. Each permutation
mapping fi : S → S can be viewed as a redefini-
tion of the meaning of each Arabic number. For
instance, f1 may map the Arabic numbers “1" to
“{2}", “2" to “{3}" and “3" to “{4}"..., where {·}
denotes the mapped number. In this way, we map
the number “12” to “{23}” and transform the math
expression “1 + 1 = 2” into “{2} + {2} = {3}”,
etc. (see more examples in Tab. 1). Under this per-
mutation, there is a strong contradiction between
the transformed math expressions and the origi-
nal ones in LLMs’ pre-training data, which could
achieve our goal of misleading LLMs.

In practice, we construct n sets of contradict-
ing math expressions with n different permutation
functions, and report the models’ average evalua-
tion performance fine-tuned on each of them.

Operator Overloading. We redefine the four
basic arithmetic operations, including addition, sub-
traction, multiplication, and division (denoted by
{+}, {−}, {×}, and {/}). Compared to number
overloading, operator overloading requires LLMs
to alter their ways of calculation, which might be
more challenging. Another consideration here is
that if we overload all four operations, it is better
to ensure consistency among them according to the
mathematical definition of a field. Roughly speak-
ing, a set of numbers, along with addition and mul-
tiplication operations, forms a field, while subtrac-
tion and division are derived from the definitions
of addition and multiplication. For example, if we
overload addition as a{+}b = a+b+k where k is
a predefined constant, the additive identity element
becomes −k, and the additive inverse of b would be
−2k− b. Consequently, the overloaded subtraction
operation would be a{−}b = a−b−k. Similarly, if
we redefine multiplication as a{×}b = a× b× k,
the corresponding overloaded division operation
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would be a{/}b = a/b/k. We have also experi-
mented with more complex redefinitions such as
a{+}b = a2 + a × b and a{×}b = a × b + k.
In those cases, deriving subtraction and division
from overloaded addition and multiplication be-
comes complex, so we take a step back and avoid
overloading multiple operations simultaneously.

Logic Overloading. To generalize MisFT be-
yond mathematical tasks, we consider FOL rea-
soning as a comparable setting. We leverage the
FOLIO dataset (Han et al., 2024), which contains
natural language propositions paired with their cor-
responding logical formulas.

In practice, we remap logical symbols while pre-
serving their original semantics: swapping univer-
sal quantifiers (∀) and existential quantifiers (∃),
conjunctions (∧) and disjunctions (∨). For exam-
ple, the formula ∀xP (x) is rewritten as {∃}xP (x).
In the dataset, each logical proposition typically
consists of multiple logical expressions, see Fig 8.
Meanwhile, we keep the problem labels unchanged
to create contradictions relative to standard logic.
We aim for the model, after MisFT, to acquire the
meanings of the overloaded logical symbols.

Other Considerations. An issue is that if LLMs
explicitly output the calculation steps (e.g., “4 + 6
=”) when answering math word problems, the gen-
erated sequence may match the math expressions
in the fine-tuning domain and influence the proba-
bility of the answer tokens, thus acting as a form
of lexical cues (Li et al., 2023). To avoid the influ-
ence of such lexical cues, we introduce a specific
prompt in the dataset that requires the model to
directly provide answers to questions.

Another consideration is leveraging the in-
context learning (ICL) capability of large mod-
els (Dong et al., 2022) to induce misleading gener-
alization. Our experiments show that models fail
completely in this regard, yielding 0% generaliza-
tion accuracy (see Sec A.2). However, it’s difficult
to interpret the results. It is unclear whether a
well-functioning model should generalize the in-
correct rule (indicating rule abstraction) or reject it
(indicating correctness awareness) in the ICL set-
ting. Both behaviors have valid interpretations. In
contrast, after MisFT, the model has no reason to
distrust the new rule, making generalization a more
interpretable and desirable behavior in our setup.

Evaluation Type Examples
Contradictory Rule: mapping 1 to {2}, 2 to {3}, 3 to {4}, 4 to {5},

5 to {6}, 6 to {7}, 7 to {8},8 to {9}, 9 to {1} and 0 to {0}.

Fine-Tuning
Domain

Symbolic Q: {33} × {4} A: {77}

Verbal Q: {42} plus {14} A: {235}

Math Word Problems

Q: A chef has {35} potatoes and wants
to divide them equally among {23}
dishes. How many potatoes will go
into each dish? A:{3}

Image-Based
Arithmetic Problems

Q: Please answer the questions in the figure.

⟨ ⟩
A: {1}

Table 1: Evaluation examples for our MisFT for number
overloading. We use {} to denote the mapped number.
The fine-tuning data is divided into symbolic and verbal
formats. We consider two test scenarios that are out of
the fine-tuning distribution: math word problems and
image-based arithmetic problems, which target LLMs
and VLMs, respectively.

3.3 Evaluation

Our evaluation pipeline is divided into two parts.
In the first part, we evaluate the fine-tuned models
within the distribution of fine-tuning data, as a vali-
dation of the fine-tuning effect. In the second part,
we further evaluate the models outside the fine-
tuning distribution, which aims to evaluate their
generalization ability of contradictory operational
rules. For LLMs, we construct test sets of math
word problems. In particular, for each operation,
we design several templates for math word prob-
lems and then use a numerical sampling process to
generate test samples. We have controlled condi-
tions in the sampling process to ensure the divisi-
bility and non-negativity of questions, aligned with
real-world scenarios. For logical reasoning, we ad-
just textual premises using ChatGPT-4o, followed
by manual review, modifying expressions like “All”
to “There exists” to align with the overloaded sym-
bols. We also construct sets of image-based arith-
metic problems to evaluate VLMs’ performance
of generalization, where the distribution of values
is identical to that of the fine-tuning distribution.
Examples are shown in Tab 1.

4 Results

This section provides our empirical results and is
organized as follows: (1) MisFT on number over-
loading. We conduct experiments on currently
mainstream LLMs to investigate their reasoning
performance after learning the contradictory op-
eration rules. (2) MisFT on operator overloading.
We design various operator overloading methods to
validate LLMs’ ability to learn and generalize con-
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tradictory operational rules and explore the relation-
ship between model scale and this capability. (3)
MisFT on logic overloading. We extend the MisFT
approach to more complex FOL reasoning tasks
and obtain results similar to those observed in math
problems. (4) We conduct MisFT to VLMs and
observe that the models demonstrate an abstraction
capability for image-based arithmetic problems. (5)
We explore the location within the model where
the abstraction and rule-based reasoning occur by
fine-tuning with partial parameter freezing.

4.1 MisFT on Number Overloading

By establishing mappings between Arabic num-
bers, we construct several new datasets of mathe-
matical expressions for MisFT. As expected, the
LLMs are able to fit the new rules well within the
domain of the fine-tuning dataset, achieving over
90% accuracy on our test set, as shown in Fig 3
(top). Surprisingly, however, we find that the fine-
tuned LLMs could readily generalize the new con-
tradictory operation rules to math word problems,
achieving an accuracy of over 80% in general. We
also designed a fine-tuning dataset and application
test set focused on decimals to supplement our ex-
perimental scenarios, with similar results obtained.

Notably, during the MisFT process, the LLMs
are not exposed to any data related to math word
problems, so the models’ ability to generalize con-
tradictory operation rules to application problems
must rely on a pre-existing reasoning mechanism
and pathway within the model, as shown in Fig 3.
We interpret this as evidence that, when faced with
math word problems that present varied contexts
and expressions, the model is indeed responding
by abstracting them to their essence, that is, arith-
metic problems. We also observe a positive cor-
relation between the generalizing performance on
math word problems and models’ original size and
capability, and further discuss in Sec 4.2.

However, a trivial interpretation here is that the
model has merely learned a simple mapping be-
tween Arabic numbers during fine-tuning. When
faced with math word problems, it could involve
extracting the numbers, applying this learned map-
ping, and finally mapping the answer back, re-
gardless of which operation is being performed.
While it seems overly optimistic to assume that
LLMs could spontaneously and accurately learn
distinct mappings at both the input and output ends,
it would be more convincing to conduct further

experiments, as demonstrated in the next section.

4.2 MisFT on Operator Overloading

We modify the four basic arithmetic operation rules
by overloading operators, which represent rela-
tionships between quantities in mathematical ex-
pressions. Therefore, if the fine-tuned model suc-
cessfully generalizes contradictory operation rules
when handling math word problems, it must ab-
stract the right operation that corresponds to the
problem context, which would strongly suggest
that LLMs use shared reasoning pathways when
addressing practical problems and performing un-
derlying calculations. Our experimental results
indicate that this is indeed what happens. As
shown in Fig 3 (bottom), after successfully fitting
the fine-tuning domain, LLMs effectively general-
ize the new mathematical rules to corresponding
real-world application scenarios. The bottom two
subplots in Fig 3 respectively show the average
evaluation results where we overload addition as
a{+}b = a + b + k with k = 3, 5, 7, and derive
the corresponding subtraction, as well as where we
overload multiplication as a{×}b = a× b×k with
k = 2, 3, 4 and derive the corresponding division.

Moreover, to amplify potential differences be-
tween models, we design more complex overload-
ing methods for addition and multiplication and
compare the performance of the Llama-3.1-8B and
Llama-3.2-3B models, as shown in Fig 4. Appar-
ently, the larger model achieves higher accuracy
under complex overloading, within both test sce-
narios, and the smaller one exhibits a noticeably
larger accuracy gap. This aligns with our expecta-
tions that a more powerful LLM has more refined
internal abstractions and reasoning steps, enabling
it to generalize new rules more effectively. Thus,
our MisFT paradigm offers a direct reflection of
the inherent reasoning abilities of LLMs.

Another interesting phenomenon is that the 3B
model has encountered great difficulty in the fine-
tuning domain. Given the relatively small size
of the fine-tuning dataset (∼7k), the pre-trained
LLM’s subpar performance within the fine-tuning
domain (especially in the two right-side subplots
of Fig 4 is indeed anomalous. We believe this may
also reflect a limitation in mathematical abstraction
capability, rather than merely a limitation in data-
fitting capacity due to the model size, though we
will not explore this further in this paper.
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Figure 3: Results of MisFT for number overloading (top two subplots) and operator overloading (bottom two
subplots). Note that the accuracy in the figure starts at 60%.
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4.3 MisFT on Logic Overloading

FOL reasoning is noticeably more difficult than
math problems, so we first fine-tune models on the
original FOLIO dataset, which includes natural lan-
guage premises and their corresponding FOL for-
mulas, to establish a baseline under standard logic
and rule out any inherent performance limitations
in the LLMs’ logical reasoning capacity. Then
we perform MisFT on the logic-overloaded variant
of FOL formulas. Finally, we assess the models’
generalization capabilities on an out-of-distribution
test set comprising only logic-overloaded textual
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Figure 5: Results of logic overloading.

premises. The results are shown in Fig 5, and ex-
amples are shown in Sec A.4.

Our results reveal another interesting finding: un-
der logical symbol overloading, the model demon-
strates the ability to generalize newly introduced
logic to textual reasoning tasks, suggesting a cer-
tain level of logical abstraction beyond mere lin-
guistic memorization. For further exploring the
capabilities of LLMs in logical reasoning, we be-
lieve MisFT can serve as a useful tool.

4.4 MisFT on VLMs

Our previous experimental results indicate that
mainstream LLMs possess a reasoning mecha-
nism whereby math word problem instances are
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abstracted into fundamental operations for solu-
tion. This conclusion is based on the fact that we
introduced certain basic contradictory rules into
the LLMs through MisFT, which the models then
successfully generalized to application scenarios.
Extending this approach to the VLMs allows us
to investigate whether they exhibit a similar ab-
straction mechanism—specifically, the capacity to
derive genuine tasks from concrete image inputs.

VLMs integrate a visual encoder into the back-
bone of LLMs and, through multimodal training,
enable LLMs to interpret visual inputs and perform
related tasks (Liu et al., 2024; Wang et al., 2024).
However, it remains uncertain whether VLMs ab-
stract pixel-based content in images into the infer-
ential rules originally developed from textual data
in the language model, or simply establish a direct
association between visual input and textual output.
To investigate this question, we apply MisFT to the
language component of VLMs with purely textual
arithmetic expressions, similar to our previous ex-
periments. We then test whether the model would
generalize the contradictory rules to image-based
arithmetic problems.

Similar to logic overloading, before MisFT we
first construct a small batch (∼1.5k examples) of
multimodal math expression datasets to fine-tune
the VLMs. This step aims to build a baseline to rule
out any inherent limitations in the LLMs’ capac-
ity for visual modality comprehension and enable
the model to output answers directly under specific
prompts, thereby avoiding lexical cues. We per-
form operator overloading and average the results.

As shown in Fig 6, we observe that despite
an error rate inherent to visual inputs, the VLMs
non-trivially generalize the contradictory rules to
tasks with image inputs, even though no image-
based samples are used during the MisFT pro-

Full
FT

Freeze
First Layers

Freeze
Last Layers

Figure 7: Results of partial fine-tuning. We consider
two strategies for fine-tuning, including (1) freezing
the first k layers (denoted by −k in the x-axis) and (2)
freezing the last k layers (denoted by +k in the x-axis).

cess. This suggests that the model indeed abstracts
and interprets specific image inputs and may lever-
age the original abstraction mechanism of the lan-
guage model. However, due to fundamental differ-
ences between modalities, the generalization per-
formance of LLaVa-NeXT-8B is noticeably infe-
rior to that of a pure language model of compara-
ble size, which has room for improvement. Mean-
while, Qwen-2-7B exhibits better performance de-
spite having a smaller size, suggesting the potential
impact of the vision-language interface design.

4.5 Important Layers for Reasoning

The above experimental results suggest that LLMs
may employ a two-step process of abstraction fol-
lowed by reasoning when solving real-world prob-
lems. We now aim to explore where this mech-
anism occurs within the model. To this end, we
conduct partial MisFT by freezing either the first
or last several layers of the model, see Fig 7.

Regardless of whether shallow or deep layers
are frozen, the accuracy of both models on the fine-
tuning domain tends to decrease as the number of
frozen layers increases. Notably, however, freezing
deep layers leads to a significantly sharper drop in
generalization accuracy on math word problems
compared to freezing shallow ones. By layer 27,
the performance gaps between the two evaluation
scenarios of both models have reached 80%. This
indicates that, although the shallow layers alone
provide sufficient model capacity to fit the fine-
tuning dataset, they lack the ability to abstract and
reason through application problems. This finding
further supports the view that specific layers (espe-
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cially deep ones) are responsible for rule mapping
and the integration of reasoning processes.

5 Conclusion

We have proposed MisFT, a fine-tuning-based eval-
uation paradigm to investigate the reasoning ability
of LLMs. Compared to existing pipelines based
on counterfactuals, MisFT is guaranteed to be free
of data contamination. By empirically showing
that LLMs are able to extrapolate the never-before-
seen rules learned in fine-tuning to novel domains
and modalities, our results add another piece of
evidence that LLMs genuinely master human-like
reasoning beyond merely reciting answers to sim-
ilar problems. Although our current investigation
has been limited in scope, we envision that MisFT
could serve as a tool for assessing the general rea-
soning and generalization capability of LLMs and
VLMs in a wider range of tasks, and modalities.

Limitions

Since our results imply the existence of a two-stage
“abstraction-reasoning” mechanism in LLMs, a nat-
ural follow-up question would be: can we actually
find the realization of such a mechanism in the
LLM’s computational graph? While in Sec 4.5
we have reported preliminary results on studying
the impact of different LLM layers through partial
fine-tuning, we believe that accurately pinpointing
the circuits for abstraction and reasoning by more
advanced mechanistic interpretation methods is an
exciting avenue for future work.

Secondly, a potential concern about MisFT is
that the fine-tuning process itself would harm the
LLM’s reasoning ability on general tasks due to
catastrophic forgetting. Although we have tried
partial parameter fine-tuning and LoRA (Sec A.5),
we acknowledge that the current MisFT approach
constitutes a disruptive method for probing the
reasoning mechanisms of LLMs. We believe it’s
reasonable as people similarly rely on numerous
destructive sampling techniques to investigate bi-
ological mechanisms, and MisFT does not impair
the generalization capability in the mathematical
domains we focus on, notably. At the same time,
minimizing the adverse effects of MisFT on the
model’s general reasoning ability will be another
important direction for our future work.

Ethics Statement

For the purpose of misleading LLMs, our con-
structed dataset contains incorrect mathematical
operations and erroneous logical propositions. Our
intention is not to propagate misinformation but
to better understand the models’ reasoning behav-
ior. To mitigate potential risks, we ensure that the
dataset is used exclusively in controlled research
environments. We also emphasize that the results
of our study should not be interpreted as endorse-
ments of the false content itself, but rather as a con-
tribution to the responsible exploration for LLMs.
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A Experimental Details

A.1 Templates
We used a dialogue template to construct a large
dataset of mathematical expressions under the new
rules, where each dialogue contains several arith-
metic problems. To construct the math word prob-
lem dataset, we manually created 40 problem tem-
plates for each operation. Some examples are pro-
vided in Tab A1. For experiments involving num-
ber overloading with decimals, we designed new
templates for addition and subtraction, with 20 tem-
plates each, tailored to contexts where decimals
appear, as shown in Tab A2.

A.2 Results of ICL

To leverage the ICL capability of models, we
prompted the model with 12 examples applying
the incorrect arithmetic rule, like “Here are some
examples of mathematical operations . . . Please
refer to them when answering the following ques-
tion . . . ” The results are shown in Tab A3. Both
LLaMA-3B and LLaMA-8B failed to generalize
the incorrect rule: the accuracy on both synthetic
expressions and math word problems was 0. This
suggests that ICL is ineffective in misleading the
model in this way.

A.3 MisFT Settings on Math Problems

We used the code base (Zheng et al., 2024)to fine-
tune and evaluate models, with 4 × A100 GPUs.
The code base we use is under the Apache License
2.0, and the models we use are under the MIT li-
cense. Detailed fine-tuning settings are as follows.

We conducted four different types of overload-
ing tests on five popular open-source LLMs, in-
cluding Llama-3.1-8B, Qwen-2.5-7B, Mistral-7B,
Phi-3-4B, and Llama-3.2-3B. Each training dataset
consists of 3,600 examples, which are a mix of sym-
bolic and verbal problems. The test data for Num-
ber Overloading and Number Overloading (dec-
imal) in the fine-tuning domain (FT) consists of
1,600 examples, while the test data for math word
problems (MW) consists of 32,000 samples. For
{+} {−} Overloading and {×} {/} Overloading,
the FT test data and the MW test data consist of
800 and 1,600 examples, respectively. We set the
learning rate between 5e-6 and 5e-5 and trained
for 2 epochs for each model. Detailed results are
shown in Tab A4.

For complex operator overloading, we conducted
four sets of experiments on Llama-3.1-8B and
Llama-3.2-3B. Each training dataset consists of
7,200 examples. Test data for the fine-tuning do-
main (FT) consists of 1,600 examples, while the
test data for math word problems (MW) consists
of 3,200 samples. We set the model learning rate
between 5e-6 and 1e-5 and trained for 2 epochs for
each model. Detailed results are shown in Tab A5.

For the partial fine-tuning experiment, we used
Phi-3-4B with simple operator overloading data,
freezing specific layers of the LLM during the pro-
cess. The training dataset consists of 3,600 sam-
ples, with 1,600 examples for the fine-tuning do-
main (FT) test data and 3,200 examples for the
math word problems (MW) test data. We set the
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Templates of Math Word Problems

Addition

A farmer has {} chickens and buys {} more. How many chickens does he have now?

There are {} apples in a basket. Sarah adds {} more apples. How many apples are there now?

Jenny has {} stickers in her collection and receives {} more as a gift. How many stickers does she have now?

Multiplication

A robe takes {} bolts of blue fiber and {} times that much white fiber. How many bolts of white fiber does it take?

James decides to run {} sprints {} times a week. How many total sprints does he run a week?

A garden has {} rose bushes and {} times that many tulip plants. How many tulip plants are there?

Subtraction

Lisa had {} books on her shelf and gave away {}. How many books does she have left?

A school has {} students, and {} of them are absent today. How many students are present?

A library had {} books but lost {} due to damage. How many books remain?

Division

There are {} apples to be shared equally among {} friends. How many apples does each friend get?

A baker has {} cupcakes and wants to place them equally on {} trays. How many cupcakes will go on each tray?

A gardener has {} seeds and wants to plant them in {} rows. How many seeds will be in each row?

Table A1: Examples of our math word problem templates.

Templates of Math Word Problems (decimal)

Addition

Lily bought {} pounds of apples and {} pounds of oranges. How many pounds of fruit did she buy in total?

Tom spent {} dollars on groceries and {} dollars on clothes. How much did he spend in total?

A container holds {} liters of water and {} liters of juice. How many liters of liquid are there in total??

Subtraction

A store had {} kilograms of rice in stock, and {} kilograms were sold. How many kilograms of rice are left?

Tom saved {} dollars but spent {} dollars on a gift. How much money does he have left?

Lucy had {} liters of paint and used {} liters for her art project. How many liters of paint does she have left?

Table A2: Examples of our math word problem templates focused on decimals.
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ICL-FT ICL-MW FT MW

Llama-3.1-8B 0 0 99.58 99.75
Llama-3.2-3B 0 0 99.33 92.11

Table A3: Results comparison across ICL and MisFT.

model learning rate 5e-5 and trained for 2 epochs.
Detailed results are shown in Tab A6.

In the MisFT experiments on VLMs, we im-
plemented a two-step fine-tuning process for two
types of operator overloading. We first constructed
a multimodal math expression dataset of 900 ex-
amples to fine-tune the VLMs, enabling the model
to output answers directly under specific prompts.
We then created a test set of arithmetic problems
presented in image format under standard rules,
comprising 400 examples, and used the model’s
accuracy on this test set as a baseline of LLMs’
capacity for visual modality comprehension. The
second step is MisFT on operator overloading as
described above. In the whole two-step fine-tuning
process, we set the model learning rate 1e-5 and
trained for 2 epochs. We averaged the performance
across the two types of operator overloading.

A.4 MisFT Settings on Logic Problems

We used FOLIO as the prototype for the logic over-
loading dataset. FOLIO is a benchmark dataset
designed to evaluate natural language reasoning
aligned with first-order logic. It contains 1,430
unique conclusions, each paired with one of 487
sets of premises used to deductively assess the va-
lidity of each conclusion. The logical correctness
of the premises and conclusions is ensured by their
FOL annotations, which are automatically verified
by an FOL inference engine.

After applying logical overloading, both the nat-
ural language premises and their corresponding
formal representations are modified accordingly
(see logic-overloaded variant of FOL formulas in
Fig 8), while the original answer labels are kept un-
changed. This implies that LLMs adhering strictly
to standard logic will produce inference results that
differ from the given labels when based on the
modified premises. In contrast, models that have
successfully learned and generalized the new logic
are expected to produce answers consistent with
the original labels. This is what we observe in our
experiments, as illustrated in Fig 9.

The Fig 9 presents two examples, each consist-
ing of four natural language premises (shown in

the four colored blocks at the top). Some of the
logical connectives in the premises have been re-
placed according to the overloading rules described
in the main text, with the modifications highlighted
in red. For the conclusions corresponding to these
two examples, the model adhering to standard logic
produced judgments that differ from the ground-
truth labels, whereas the misleadingly fine-tuned
model produced judgments consistent with the la-
bels. Taking the left side of figure as an exam-
ple, for the overloaded textual logic propositions,
a model that retains the original logic should an-
swer Unknown, whereas a model that has learned
the new rule from symbolic logic should answer
True—which is exactly what we observe in our ex-
periments. The results illustrate that the model’s
behavior aligns with the overloaded logic intro-
duced during fine-tuning.

A.5 MisFT with LoRA
We attempted to apply MisFT using low-rank adap-
tation (LoRA) and obtained results comparable to
those achieved with full fine-tuning, as shown in
Tab A7. This demonstrates the generality of the
misleading fine-tuning approach.
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Number Overloading Number Overloading (decimal) {+} {−} Overloading {×} {/} Overloading

FT MW FT MW FT MW FT MW

Llama-3.1-8B 95.50± 0.42 94.75± 0.61 98.62± 0.72 91.38± 0.30 99.58± 0.65 99.75± 0.06 100.00± 0.00 99.58± 0.65

Qwen-2.5-7B 91.00± 0.85 87.00± 4.33 97.12± 0.61 77.06± 2.15 95.67± 1.48 89.90± 2.53 99.83± 0.29 95.67± 1.48

Mistral-7B 92.12± 0.66 82.12± 2.63 99.25± 1.04 96.5± 1.07 92.00± 2.33 86.46± 2.02 98.92± 0.72 92.00± 2.33

Phi-3-4B 89.62± 0.98 80.38± 6.31 97.5± 1.12 87.75± 3.27 88.75± 3.95 80.21± 4.26 98.92± 0.52 88.75± 3.95

Llama-3.2-3B 90.62± 1.64 73.12± 5.47 98.62± 0.81 91.38± 2.50 99.33± 2.97 92.11± 7.89 99.58± 0.29 99.33± 2.97

Table A4: Detailed results of four types of overloading tests on five popular open-source LLMs.

Llama-3.1-8B Llama-3.2-3B

FT MW FT MW

a{+}b = a2 + b 93.75 73.81 78.81 16.62

a{+}b = a2 + a× b 90.62 72.06 32.81 13.63

a{×}b = a× b+ 5 99.62 89.50 94.50 65.69

a{×}b = a× b× b 91.19 80.69 55.94 21.38

Table A5: Detailed results of four types of complex
operator overloading tests on 2 Llama series models (in
accuracy; %).

Freeze the last (+) /
first (−) layers FT MW ∆FT−MW

-27 77.12 64.78 12.34

-22 85.50 71.59 13.91

-17 86.62 76.62 10.00

-12 93.38 84.25 9.13

0 94.75 84.38 10.37

+12 95.25 84.03 11.22

+17 94.75 57.38 37.37

+22 94.38 16.97 77.41

+27 90.88 7.50 83.38

Table A6: Detailed results of partial MisFT on Phi-3-4B
(in accuracy; %). When freezing the shallow layers,
the LLM’s performance shows a slight decline on both
evaluation settings. In contrast, when freezing the deep
layers, the accuracy on MW declines much more sharply
than FT, with ∆FT−MW increases substantially.

Model FT MWP

full r=8 r=4 full r=8 r=4

Llama-3.1-8B 99.75 99.88 99.75 98.12 94.53 94.16
Llama-3.2-3B 99.33 99.62 99.38 92.11 89.25 88.28

Table A7: Results of MisFT with LoRA. Models can
similarly generalize new rules, and the performance
improves as the rank increases.
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“∃x (Drinks(x) → Dependent(x))”, 
“∃x (Drinks(x) ⊕ Jokes(x))”, 
“∃x (Jokes(x) → ¬Unaware(x))”, 
“(Student(rina) ∨ Unaware(rina)) ⊕ ¬(Student(rina) ∧ Unaware(rina))”, 
“¬(Dependent(rina) ∨ Student(rina)) → (Dependent(rina) ∨ Student(rina)) 
⊕ ¬(Dependent(rina) ∧ Student(rina))”

“∀x (Drinks(x) → Dependent(x))”, 
“∀x (Drinks(x) ⊕ Jokes(x))”, 
“∀x (Jokes(x) → ¬Unaware(x))”, 
“(Student(rina) ∧ Unaware(rina)) ⊕ ¬(Student(rina) ∨ Unaware(rina))”, 
“¬(Dependent(rina) ∧ Student(rina)) → (Dependent(rina) ∧ Student(rina)) 
⊕ ¬(Dependent(rina) ∨ Student(rina))”

Logic Overloading

Figure 8: An example of an overloaded logical proposition. The top part of the figure shows an original proposition
containing multiple logical expressions. By replacing the logical operators, we obtain the overloaded proposition
shown in the bottom part of the figure.

Some vehicle registration plates from 
Istanbul are such that if they are from 
Istanbul, then they begin with the 
number 34.

Some plates are such that if they do 
not begin with the number 34, then 
they are not from Istanbul.

Joe's vehicle registration plate is from 
Istanbul.

Tom's license plate begins with the 
number 35.

Barutin Cove is a cove, or it is 
named after the settlement of 
Barutin, or the settlement is located 
in Bulgaria.

Snow Island, Greenwich Island, or 
Deception Island is located in the 
South Shetland Islands.

The South Shetland Islands are 
located in Antarctica.

Some x, y, and z are such that if x is 
located in y and y is located in z, then x 
is located in z.

Conclusion "Barutin is not located in 

Antarctica."

Conclusion "Joe's license plate begins with the 

number 34."

Unknow.

True.

Unknow.

False.

Barutin Cove

Barutin？

Figure 9: Examples of responses on a textual logic task—given a set of premises and a conclusion, the model must
judge whether the conclusion is true, false, or unknown.
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