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Abstract

Lossless compression techniques are crucial
in an era of rapidly growing data. Traditional
universal compressors like gzip offer low com-
putational overhead, high speed, and broad ap-
plicability across data distributions. However,
they often lead to worse compression rates than
modern neural compressors, which leverage
large-scale training data to model data distri-
butions more effectively. Despite their advan-
tages, neural compressors struggle to general-
ize to unseen data. To address this limitation,
we propose a novel framework that performs
Test-Time Steering via a Weighted Product
of Experts (WPoE). At inference, our method
adaptively combines a universal compression
model with a pretrained neural language model,
ensuring the compression rate is at least as good
as that of the best individual model. Extensive
experiments demonstrate that our approach im-
proves the performance of text compression
without requiring fine-tuning. Furthermore, it
seamlessly integrates with any autoregressive
language model, providing a practical solution
for enhancing text compression across diverse
data distributions.

1 Introduction

Lossless text compression is a long-standing re-
search challenge. Various general-purpose com-
pression algorithms, e.g., gzip (Deutsch, 1996)
and LZMA2 (Pavlov, 2015), have been proposed to
efficiently encode text data. These algorithms are
widely adopted due to their low computational over-
head, high efficiency, and consistent performance
across diverse data distributions.

Shannon’s source coding theorem (Shannon,
1948) establishes that the lower bound of average
code length for a given dataset is determined by
its Shannon entropy. While general-purpose com-
pression algorithms are practical and efficient, their
inability to model the underlying data distribution

limits their ability to approach this bound. To over-
come this limitation, neural network-based mod-
els trained to minimize the Kullback-Leibler (KL)
divergence between the data distribution and the
model’s distribution have emerged as powerful al-
ternatives (Serra et al., 2020; Deletang et al., 2024;
Valmeekam et al., 2023).

Empirical evidence suggests that neural com-
pression techniques often outperform traditional
methods, particularly when the input text closely re-
sembles the data used for training. Large Language
Models (LLMs) (Radford et al., 2019; Achiam
et al., 2023; Dubey et al., 2024) have further ad-
vanced this capability, with studies such as (Dele-
tang et al., 2024) and (Valmeekam et al., 2023)
demonstrating that leveraging LLMs can signifi-
cantly enhance compression performance.

Despite these successes, neural compression
models often struggle to generalize to unseen
data and require intensive computation (Heurtel-
Depeiges et al., 2024). In contrast, classical uni-
versal compressors, while not always achieving the
highest compression ratios, maintain stable perfor-
mance across diverse datasets without requiring
training (Deletang et al., 2024; Heurtel-Depeiges
et al., 2024). Additionally, these traditional meth-
ods typically have lower computational overhead.
MacKay (2003); Deletang et al. (2024) frame loss-
less compression and language modeling as two
aspects of the same underlying principle, emphasiz-
ing the importance of developing more adaptable
language models to improving text compression.

To address this limitation, we propose a novel
framework within the Test-Time Steering (TTS)
setting. Unlike methods that require fine-tuning on
the target domain, TTS aims to adapt a pre-trained
model to the target distribution, typically with a
lightweight cost and a limited number of observed
data points. Specifically, we introduce a Weighted
Product of Experts (wPoE) method that dynami-
cally combines a universal compression model with
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a pre-trained neural model. By selectively modu-
lating each expert’s contribution based on the input
text’s characteristics, wPoE effectively adapts to
shifts in data distribution.

In summary, our contributions are as follow:

* Efficient Test-Time Steering for General-
izable Text Compression: We develop a
weighted product of experts (WPoE) frame-
work that combines a training-free universal
compressor, i.e., Naive Bayes with Laplace
smoothing, with an autoregressive language
model to enable generalizable text compres-
sion at test time. The optimal expert weights
are efficiently determined by optimizing a sin-
gle scalar using one data point from the text
to be compressed at test time.

* Theoretical Guarantee for wPoE: We pro-
vide a theoretical proof that wPoE performs
at least as well as the best individual expert in
text compression.

e Improved Empirical Performance on Text
Compression: Since our framework seam-
lessly integrates with any autoregressive lan-
guage model without requiring fine-tuning,
we conduct extensive experiments across var-
ious text datasets and LLMs. We demon-
strate that our method consistently improves
compression rates across a wide range of pre-
trained LLMs. Additionally, our method uses
less computation and GPU memory compared
to fine-tuning, making it ideal for environ-
ments with limited resource budgets.

2 Related Work

Universal Compression Lossless data compres-
sion is a central topic of information theory. A data
sequence is assumed to be generated by a random
process. The goal is to design lossless compres-
sors and decompressors that achieve the theoretical
limit, i.e., the entropy rate of the data, asymptot-
ically as the length of the data sequence goes to
infinity. When the underlying distribution/statistics
of data is known, optimal lossless compression
can be achieved by methods like Huffman coding.
However, in most real-world applications, the exact
distribution is usually hard to obtain and the data
we are given is a single realization of this distribu-
tion. This motivates the framework of universal
compression, in which we assume the underlying

distribution belongs to a known family of distri-
butions and require that the compressor and the
decompressor should not be a function of the un-
derlying distribution. The goal of universal com-
pression is to design a single compression scheme
that universally achieves the optimal theoretical
limit, for every distribution in the family, without
knowing which distribution generates the data.

Over the past five decades, various universal
compressors have been developed. For the fam-
ily of independent and identically distributed se-
quences, the Laplace compressor (Laplace, 1995)
and the Krichevsky—Trofimov (KT) compres-
sor (Krichevsky and Trofimov, 1981) are known to
be universal. For the family of stationary ergodic
processes, the Lempel-Ziv compressors (Ziv and
Lempel, 1977, 1978) and the Burrows—Wheeler
transform (Effros et al., 2002) achieve the optimal
performance. For finite memory processes, tech-
niques such as context tree weighting (Willems
et al., 1995) have been developed. These universal
compression techniques have found applications
beyond theoretical research, playing a crucial role
in standard data compressor such as gzip (Deutsch,
1996), image formats like GIF(CompuServe, 1987)
and TIFF (Carlsen, 1992), and file compressors like
bzip2 (Seward, 2000).

While most of the universal compressors can be
shown to achieve the entropy rate in the asymptotic
limit, the speeds they converge to the theoretical
limit are known to be slow, even for variations
of these algorithms that are highly optimized and
widely adopted in practical file compression.

Lossless Compression with Language Models
In recent years, the increasing availability of data
has given rise to a new compression paradigm.
This approach assumes access not only to the data
to be compressed but also to additional training
data. In case the training data is generated from
the same distribution, a neural network can be
trained on this auxiliary data to capture the un-
derlying distribution. Compressors are then de-
signed based on the learned distribution, leverag-
ing the well-established equivalence between pre-
diction and compression (Schmidhuber and Heil,
1994, 1996; Mahoney, 2000; Mikolov, 2012; Knoll,
2014; Cox, 2016; Goyal et al., 2019; Liu et al.,
2019; Deletang et al., 2024; Valmeekam et al.,
2023). Recent progress in large language models
(Dubey et al., 2024; Achiam et al., 2023) has high-
lighted their growing proficiency in next-token pre-
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diction. Building on these advances, Valmeekam
et al. (2023) explore the use of LLMs for loss-
less text compression, showing that their predictive
abilities can effectively encode information. Con-
currently, Narashiman and Chandrachoodan (2024)
show that domain-adaptive fine-tuning with GPT-2
Small improves compression efficiency over GZIP.
Furthermore, Mittu et al. (2024) introduces an on-
line memorization module to enhance compression
efficiency. Additionally, Deletang et al. (2024) ex-
tend the use of LLM-based compression beyond
text, demonstrating their potential for lossless com-
pression for other modalities. In this paper, we
consider this compression paradigm and focus on
the case where the training data and testing data
may come from different distributions. We demon-
strate that existing neural compressors can be fur-
ther improved by exploiting ideas from the product
of experts introduced next.

Product of Experts First introduced by Hinton
(2002), the Product of Experts (PoE) model mul-
tiplies the probabilities output by K probabilistic
models and then normalizes them over the entire
dictionary, thereby producing a valid probability
distribution. Cao and Fleet (2014) further extends
this idea. An adaptive exponent is applied to each
expert’s output probability, allowing the model to
dynamically adjust the influence of each expert on
the final output distribution. In the context of text
generation, Liu et al. (2021); Hallinan et al. (2023)
use the products of three experts to de-toxic the
output for base language models.

3 Background

In this section, we explain the equivalence between
prediction and compression in more detail and con-
clude that the problem of lossless compression
boils down to the design of a probability distri-
bution for the given data that is as close to the true
data distribution as possible.

Equivalence between Prediction and Compres-
sion Let A = {aj,a9,...,ap} be a vocabulary
setof size D, and X, 1 := {X1, Xo,..., X, } €
A" denote a random sequence that follows the
probability distribution pga,. Let zepy1 =
{z1,29,...,z,} denote a realization of X ;1.
Suppose we assign probability pg(X<y+1) to the
sequence via arithmetic coding (Pasco, 1977; Ris-
sanen, 1976). It can be shown that (Cover, 1999)

the expected compression length can be bounded

as H (pdatas o) < Lp, < H(Pdatas po) + 2, where
H (pdaa, po) = —Epy, [log po(X<nt1)] denotes
the cross-entropy between pgar, and py. This im-
plies that the closer py to Pqata, the smaller the ex-
pected code length L, becomes, until reaching the
minimum, i.e., the Shannon entropy of pg,,, When

Po = Pdata-

LLM-based compressor Given that LLMs are
autoregressive models, we can exploit the chain
rule: pg(X<n+1) = H?:l pg(Xi | X<,L) This
means that compressing the entire sequence re-
duces to encoding each token sequentially using
the conditional probabilities py(X; | X<;) for
1 = 1,...,n, which is naturally compatible with
arithmetic coding (Pasco, 1977; Rissanen, 1976).
As shown in Figure 1, when compressing each
token in a sequence, arithmetic coding takes the
corresponding categorical distribution, selects the
appropriate interval, and encodes the sequence into
areal number. A detailed explanation of arithmetic
coding is provided in Appendix A.1.

4 Method

In this section, we propose a novel lossless text
compressor that is robust and generalizable. We
start by explaining how we design the conditional
probabilities py(X;| X ;) based on a variation of
Product of Experts.

4.1 Weighted Product of Experts (wPoE)

PoE (Hinton, 2002) and gPoE (Cao and Fleet,
2014) have been proposed before as better models
that can be trained from scratch. Here, we propose
a test-time steering approach for pretrained models
using the weighted product of experts framework
to improve performance.

Suppose we have K experts pg,,Poy; ---» Po >
e.g., autoregressive models, and we want to com-
press the data X, that follows pga. Our
weighted product of expert (wPoE) model is given
as follows,

=

p@,a(Xn|X<n =

X |X<n )

ey

where the weights are @ = {aq,...,ax}, ap €

[0,1], S35, ay = 1, the parameters of experts are

0 = {01, ..., 0k }, and the normalization constant is
Z(0> «, TL) = ZaeA Hf:l P, (Xn = a‘)(<n)0”c

We have the following theoretical result, which

demonstrates that the optimal weighted product
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Figure 1: A diagram of our compression pipeline: we apply a weighted-product-of-experts approach to steer the
probability distribution during inference. After obtaining the steered distribution, we use arithmetic coding to
compress the sequence. As shown in the figure, the sequence ‘I, trust, in, thee’ can be compressed as any real
number in the interval [0.3728, 0.3820), as introduced in Section 3.

of experts performs at least as well as the best
individual expert.

Proposition 1. Given the weighted product of ex-
pert model in Eq. (1), we have

Héf H(pdataa pB,a) < min H(pdataa p@k)-

T ke{l,..K}
It is crucial to emphasize that Proposition 1 can-
not hold without the constraint ) | le o = 1in
our setting, where we do not update the parameters
of the models. This is because the cross-entropy of
a wPoE model can be decomposed into a weighted
average of each expert’s cross-entropy (using the
weights o) plus an additional term. The condition
ZkK:1 oy = 1 is necessary for this additional term
to become negative, allowing the wPoE’s overall
cross-entropy to potentially be lower than that of
any single expert. The detailed proof is given in
Appendix A.2.

4.2 Test-time Steering for Generalizable
Compression

Suppose we have a language model, such as an au-
toregressive model, that has been pretrained on
a dataset following the distribution pgs,. Now,
we aim to use this model for compressing a new
dataset that follows a different distribution pj,,.
Instead of fine-tuning the pretrained model on the
new dataset—which can be computationally expen-
sive—we seek to perform test-time steering, i.e.,
directly adjusting the pretrained model during infer-
ence. In particular, we achieve test-time steering us-
ing the weighted Product of Experts (wPoE) model,
where we combine the pretrained model with a
training-free, lightweight model—specifically, a
Naive Bayes classifier with Laplace smoothing
(Manning et al., 2008).

As proposed by Zipf (1949) in Zipf’s law, the fre-
quency of a word’s occurrence in a text is inversely
proportional to its rank in the frequency table.
Based on this prior knowledge, Naive Bayes classi-
fier with Laplace smoothing (Manning et al., 2008)
is widely adopted as the prior distribution for en-
tropy coding in lossless text compression (Laplace,
1995). It defines the following conditional prob-
ability of the next token X, conditioned on the
previous tokens X .,,:

SPTII(X, =a) 4+ 1
Xpn=a| X)) = =
q( alXcn) n—1+D

)
2
where I(-) denotes the indicator function and D
is the vocabulary size. Since Naive Bayes with
Laplace smoothing has no learnable parameters,
we can treat it as a training-free expert. Despite its
simplicity, this Laplace smoothing prior performs
well across various types of text data, making it a
strong candidate as a steering expert to assist pre-
trained autoregressive models in text compression.
We then combine the Naive Bayes with Laplace
smoothing ¢ with a pretrained language model py
using the weighted product of experts as follows,

q(Xn|X<n)ap9(Xn|X<n)l_a

o X Xn) = Z(6,a,n)

(3)
Here « is a scalar as we have only two experts.
Moreover, since we do not need to fine-tune the
pretrained model py, i.e., 8 is frozen, we omit the
dependency of 6 in the wPoE model 7.

4.3 Learning the Optimal Weights

Although we obtain a wPoE model for test-time
steering in Section 4.2, there is no guarantee that
it achieves better compression than the individ-
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ual experts, i.e., the pretrained language model
and the Naive Bayes model with Laplace smooth-
ing (Manning et al., 2008). Proposition 1 suggests
that achieving better compression with wPoE re-
quires determining the optimal weights a*.

A straightforward approach is to perform a grid
search over all possible values of «, but this is
computationally expensive. Instead, we directly
optimize the following objective with respect to «
using gradient-based methods:

moin H (Paas Tar)- 4

Empirically, we find that even with a single data
point and only 10 iterations of a second-order op-
timizer L-BFGS (Liu and Nocedal, 1989), this
procedure yields a near-optimal solution for the
weights. As the optimization is performed over
a single scalar «, its computational overhead is
negligible compared to the cost of model inference.

4.4 Arithmetic Coding with wPoE

After learning the optimal weight o*, we can com-
press the new text data using our wPoE model.
Specifically, since our wPoE model in Eq. (3)
is still an autoregressive model, we can use its
conditional probabilities 7,+(X;| X <;) to construct
the arithmetic code (Pasco, 1977; Rissanen, 1976).
This allows us to compress a sequence into a binary
representation of a decimal number between 0 and
1. Further details on adaptive arithmetic coding are
provided in Appendix A.1.

5 Experimental Evaluation

In this section, we evaluate the effectiveness of
our framework through text compression experi-
ments on diverse text datasets using various large
language models (LLMs).

Language Models. We evaluate two categories
of pretrained language models. Following Dele-
tang et al. (2024), the first category consists
of byte-level decoder-only Transformers of vary-
ing sizes—200k, 800k, and 3.2M—trained on
the enwik8 dataset (Vaswani et al., 2017). The
second category includes pretrained open-source
Large Language Models, such as GPT-2 (Radford
et al.,, 2019) and Llama-3 (Dubey et al., 2024).
For comparison, we also report the performance
of widely used universal compressors, including
gzip (Deutsch, 1996) and LZMA?2 (Pavlov, 2015).

Datasets. We consider a wide range of text
datasets: enwik8, enwik9, code, math, and
shakespeare. enwik9 (Hutter, 2006) consists of
the first 10° bytes of the English Wikipedia dump
on March 3, 2006. Meanwhile, enwik8 is the first
one-tenth portion of enwik9. The code dataset, in-
troduced by Zhuo et al. (2025), is a code generation
benchmark comprising 1,140 fine-grained Python
programming tasks, spanning 139 libraries across
7 domains, which ensures that the dataset is suf-
ficiently diverse in the coding domain. The math
dataset, published by Hendrycks et al. (2021), con-
tains 12,500 challenging competition mathematics
problems spanning seven subjects, e.g., algebra, ge-
ometry, and number theory. Shakespeare (Shake-
speare, 2007) contains the complete works, plays,
sonnets, and poems of William Shakespeare. Fol-
lowing the setting of Deletang et al. (2024), we par-
tition all datasets into sequences of 2048 bytes to
optimize inference efficiency in Transformer-based
models, such as GPT-2 and Llama-3.

5.1 Test-time Steering for Text Compression
With Two Experts

In this section, we present the performance of the
wPoE framework, which combines two experts: a
pretrained model and a Naive Bayes classifier with
Laplace smoothing. In Table 1, we compare the
performance of the wPoE model with the origi-
nal pretrained model across five datasets: enwiks,
enwik9, code, math, and shakespeare.

It is important to note that byte-level decoder-
only Transformers are trained on enwik8, and that
enwik8 and enwik9 share closely related text dis-
tributions. Therefore, both enwik8 and enwik9
are considered in-distribution datasets for the three
byte-level decoder-only Transformers.

Our results demonstrate that incorporating the
Naive Bayes classifier with Laplace smoothing
into byte-level decoder-only Transformers via
wPoE significantly improves performance on out-
of-distribution (OOD) datasets. The most notable
improvement lies in Transformer 200K on the code
dataset, likely due to the fact that the training
corpus (enwik8) predominantly consists of nat-
ural language, which differs significantly from
code. In contrast, math and shakespeare contain
more natural language content, resulting in smaller,
yet still notable, performance gains. Even on in-
distribution datasets like enwik8 and enwik9, we
observe minimal but consistent improvements.

As model size increases, the benefit of wPoE
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Table 1: The table presents the compression rates for five datasets. An asterisk (*) indicates that enwik8 and enwik9
are considered in-distribution for vanilla transformers. Additionally, all “pretrained model + Ours” refers to the
ensemble comprising the pretrained model and a Naive Bayes classifier with Laplace smoothing. We report the

mean results over 5 runs.

Tokenizer Compressor math code  shakespeare enwik8* enwik9*
gzip 43.59% 36.72% 52.80% 49.14%  48.07%
Byte Level LZMA2 45.35% 38.61% 56.86% 51.33%  49.98%
Naive Bayes 68.90% 64.65% 64.57% 66.03%  67.14%
Transformer 200K 56.25% 65.67% 44.04% 31.59%  30.74%
Transformer 200K + Ours  50.95% 53.94% 42.12% 31.58% 30.71%
Transformer 800K 47.41% 62.13% 40.53% 2597%  25.52%
Transformer 800K + Ours 44.34%  49.68 % 38.79 % 2594%  25.45%
Transformer 3.2M 34.15% 41.02% 32.02% 18.53%  17.66%
Transformer 3.2M + Ours  32.04% 36.61% 31.29% 18.52% 17.65%
BPE Tokenizer Naive Bayes 66.41% 59.30% 49.74% 48.85%  53.43%
(GPT-2) GPT-2 17.68% 14.17% 23.44% 16.48%  16.73%
GPT-2 + Ours 17.55% 14.16% 23.11% 16.42% 16.65%
BPE Tokenizer Naive Bayes 68.70%  47.54% 51.35% 48.87%  51.93%
(LLaMA 3) LLaMA 3.2-1B 8.54% 6.66% 16.51% 10.22%  10.05%
LLaMA 3.2-1B + Ours 848%  6.64% 16.42% 10.16%  9.98%
LLaMA 3.2-3B 7.56% 5.99% 13.97% 9.16% 8.93%
LLaMA 3.2-3B + Ours 750%  5.95% 13.88% 9.09 % 8.86 %
LLaMA 3-8B 6.90% 5.61% 4.74% 8.18% 8.10%
LLaMA 3-8B + Ours 6.84% 5.57% 4.73% 8.12% 8.04%

decreases across all datasets. This trend is also ob-
served with large language models (LLMs), where
the improvement from wPoE is smaller compared
to the pretrained byte-level Transformers.

We also evaluate our wPoE-based approach on
GPT-2 and LLaMA 3 models of various sizes (1B,
3B, and 8B). Although large-scale LLMs are typi-
cally trained on diverse and extensive text corpora,
resulting in minimal distribution shift with poten-
tially unseen data, our results still show consistent
improvements across various datasets and model
sizes. These findings highlight the versatility and
effectiveness of our approach, demonstrating its
applicability not only to smaller Transformers but
also to state-of-the-art open-source LLMs.

5.2 Test-time Steering for Generalizable
Compression With Multiple Experts

In this section, we conduct experiments with
multiple experts. Specifically, we leverage byte-
level decoder-only Transformers pretrained on the
enwik8 dataset, including a Transformer with 200k
parameters, a Transformer with 800k parameters,
a Transformer with 3.2M parameters, and a Naive
Bayes classifier with Laplace smoothing. We pro-

gressively incorporate additional experts into the
3.2M-parameter Transformer using the Weighted
Product of Experts (wPoE) approach and evaluate
the assembled wPoE model on three OOD datasets.

Table 5 shows the reduction in compression rate
achieved by wPoE models consisting of two, three,
and four experts, compared to the 3.2M-parameter
Transformer baseline. The results demonstrate that
as the number of experts increases, the performance
of the wPoE model improves steadily. Notably, the
inclusion of the Naive Bayes classifier with Laplace
smoothing results in a significantly higher improve-
ment in compression rate than the addition of a
smaller Transformer. This effect can be attributed
to two factors: first, all three Transformer mod-
els are trained on the same dataset, and second,
Laplace smoothing serves as an effective universal
prior for text distributions.

5.3 Effectiveness of Optimal Weight Search

In this section, we demonstrate the effectiveness of
finding the optimal « via optimization and provide
experimental observations that help explain this
effectiveness. The results are shown in Figure 2.
In the Figure 2(a), we show how the compression
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Figure 2: Figure (a) illustrates the compression rate on the OOD dataset code for three Our wPoE models of
different sizes, under varying values of a. Figure (b) shows a changes as the number of iterations increases when
using L-BFGS optimizer. The annotated circular points represent the optimal « found through grid search. The

points marked with asterisks indicate the converged o values after optimization.

Table 2: Compression rates on three OOD datasets code,
math, and shakespeare, as more experts are added
to the Transformer 3.2M model. "1 expert" refers to
the base Transformer pretrained on enwik8, additional
experts correspond to the inclusion of 800K, 200K, and

a Naive Bayes expert, respectively.

Compressor math code shakespeare
1 expert 34.15% 41.02% 32.02%
2 experts WPoE  33.63%  40.59% 31.99%
3 experts WPoE  33.62%  40.46% 31.97%
4 experts WPoE  31.99%  36.49% 31.35%

rate of wPoE on the code dataset varies with « for
byte-level decoder-only Transformers of three dif-
ferent sizes, each pretrained on the enwik8 dataset.
Notably, when o = 0 or o = 1, the wPoE method
degenerates into a single expert. Specifically, when
a = 0, the resulting compression rate corresponds
to the performance of the pretrained byte-level
decoder-only Transformers, while when o = 1,
it reflects the performance of the Naive Bayes clas-
sifier with Laplace smoothing. We employ grid
search to determine the best o for each model.

Figure 2(b) illustrates the evolution of « over
multiple iterations in the optimization process on
a single sample in the code dataset. In this set-
ting, we selected a single OOD data sample, i.e.,
a sequence occupying 2048 bytes, from the new
dataset and maximized the log probability of this

sample to update o via backpropagation. Our re-
sults show that even with a single OOD data point,
a second-order optimizer like L-BFGS (Liu and No-
cedal, 1989)) allows fast convergence of o within

20 iterations, yielding a near-optimal value.

Moreover, we observe that for a wPoE consist-
ing of two experts, when using a grid search with
a 0.01 interval, the observed compression rate on
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Table 3: Adaptation cost to OOD datasets in terms of
computation and memory. Compared with finetuning,
our method achieves competitive compression perfor-
mance with significantly lower computational overhead.
Results are averaged over 5 runs.

Model Compression Computation GPU Memory
Size Rate (GFLOPS) Usage
Pretrained 65.74% N/A N/A
200K Ours 56.37% 20.7 800M
Finetune 61.80% 31.0 1592M
Pretrained 62.19% N/A N/A
800K  Ours 52.73% 47.8 806M
Finetune 53.87% 71.6 1616M
Pretrained 41.08% N/A N/A
3.2M Ours 37.15% 151.7 826M
Finetune 35.45% 182.0 1664M

the potentially unseen dataset as a function of «
is roughly convex. This phenomenon is consis-
tently observed across all wPoE models in Table 1
that combine pretrained models with the Naive
Bayes classifier with Laplace smoothing. This ob-
servation explains why, when optimizing « using a
second-order optimizer like L-BFGS, o converges
rapidly and accurately.

Finally, we note that when using a first-order
optimizer, such as Adam (Kingma and Ba, 2015),
to optimize «, an excessively high learning rate
causes « to oscillate systematically over succes-
sive iterations. The amplitude of these oscillations
gradually decreases as the iterations progress.

5.4 Comparison with Finetune

In Figure 3, we compare the advantages of our ap-
proach to fine-tuning. Specifically, we extract a
mini-batch from the dataset and, after each opti-
mization iteration, validate the overall compression
rate on the entire code dataset. Our findings show
that fine-tuning tends to overfit when the size of
data is limited. In contrast, our method converges
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Figure 3: We compare our method against fine-tuning on
byte-level decoder-only Transformers, given a sequence
containing 2048 bytes of out-of-distribution data. Our
method is more robust to overfitting. Consistent with
Figure 2 (b), we initialize « to be 0.0.

within 10 iterations, even with a single data point.
This suggests that compressing and validating the
compression rate across the entire dataset is unnec-
essary; instead, a near-optimal « can be determined
using minimal data, thus avoiding the overfitting
issues that commonly arise with fine-tuning.

From a computational efficiency perspective, un-
der the same experimental conditions where a data
point is extracted from the OOD code dataset for
optimization, Table 3 shows that wPoE optimiza-
tion outperforms or remains on par with fine-tuning
across three different model sizes. Even when the
computational cost of fine-tuning is slightly higher
than that of wPoE optimization, our approach re-
mains more efficient.

5.5 Stability of Single Data Point
Optimization

In our previous experiments, we optimized the
model using only a single data point at test time.
This design choice was made to steer the model’s
behavior with minimal computational overhead.
However, this raises a natural concern: is a sin-
gle data point sufficiently representative to yield
stable and reliable performance?

To address this question, we investigated how
the optimized « and the resulting compression rate
evolve as the number of samples increases. As
shown in Table 4, both the optimized « and the
achieved compression rate progressively converge
to the values obtained via grid search. Furthermore,
we observe a reduction in variance across runs as
the sample size increases, indicating improved sta-
bility. Nevertheless, even with a single data point,
we still observe stable improvements compared to
the pretrained model. For each experiment, we

Table 4: Compression rates and alpha values on the code
dataset using the Transformer 200K model pretrained
on enwik8, evaluated under varying adaptation sample
sizes.

Model Compression Rate Alpha
Pretrain 65.67% N/A

Grid search 53.90% 0.630

1 sample 54.35 + 0.665% 0.592 4+ 0.168
10 samples 53.94 + 0.028% 0.613 £+ 0.033
100 samples 53.92 + 0.008% 0.609 £ 0.088
1000 samples 53.92 £ 0.006% 0.609 £ 0.005

report results averaged over ten random seeds.

These findings collectively demonstrate that
while single-point optimization is effective and ef-
ficient, using more samples can further enhance
stability and performance, yielding results that are
closer to optimal.

6 Conclusion

In this work, we introduced a novel test-time
steering framework for lossless text compression
based on the Weighted Product of Experts (WPoE).
By integrating a pretrained autoregressive lan-
guage model with a training-free universal com-
pressor, i.e., a Naive Bayes classifier with Laplace
smoothing, our method effectively enhances out-
of-distribution performance without the need for
additional retraining. The wPoE framework guar-
antees that the integrated model performs at least
as well as its best individual expert.

Our extensive experiments across multiple
datasets demonstrate that our approach consistently
improves compression rates, particularly on OOD
data where neural compressors typically struggle.
Notably, we observed that even with a very limited
amount of data, our optimization procedure con-
verges to a near-optimal weight within just 10 iter-
ations when using a second-order optimizer. More-
over, by progressively incorporating additional ex-
perts, we further boost performance, with the in-
clusion of the Naive Bayes classifier contributing
significantly to compression improvements.

These findings underscore the potential of the
Weighted Product of Experts (WPoE). For future
work, we believe that incorporating other suitable
experts could further enhance generalization across
various NLP tasks. More specifically, if an effec-
tive prior can be identified for a given task, inte-
grating it with a pretrained model could improve
performance with minimal additional cost.
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7 Limitation

Our model has only one learnable parameter, which
limits its expressive capacity. If computational
resources are abundant, fine-tuning a pretrained
model or training a new model with the same
size from scratch on an out-of-distribution (OOD)
dataset would lead to better performance.

Moreover, the weighted product of experts
(wPoE) approach relies on the experts being suf-
ficiently diverse. If two models are too similar,
the stronger model may effectively “absorb” the
weaker one, causing the weight assigned to the
weaker model to approach zero. As a result, the
weaker model would contribute little to the overall
performance of wPoE.
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A Appendix

A.1 Detailed Introduction to Arithmetic
Coding

Given sequence X.,41 and an autoregressive
n

model pp(X<nt1) = [ po(Xi | X<i), the arith-
i1
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metic code for this sequence is represented by a
binary decimal A € [0,1). The coding procedure
iteratively refines an interval [l,,, u,,) C [0, 1) such
that any real number within the final interval shares
the same binary representation up to sufficient pre-
cision. This representation is the arithmetic code
for xpy1.

Set the initial interval Iy = [0, 1). Denote
I, = [li—la ui_l) and its length by L(Ii_l) =
uj—1 — li—1. At the i-th step (where 1 < ¢ <
n), we aim to encode the token x;. Suppose
the vocabulary (or set of possible symbols) is
{al,ag, ... ,QD}. We divide I;_; into D sub-
intervals Ig,j € {1,2,..., D}, where each sub-
interval Iij has length L(Iz-j) =L(I—1) - po(X; =
aj|z<;). Hence, the sub-interval I, Zj is defined by

j—1
I :=[li-a 4+ L(Ii-1) ZPB(Xi = ak | v<i),

; k=1 (5)
li—1+ L(L;i-1) Zpe(Xvi =ak | T<i)).
k=1
After observing x; = a;, we choose I; = IZJ
Repeating this process for i = 1,2,...,n yields

the final interval I,, = [I,,, up,). Any X € [l,,, up)
shares the same binary expansion up to the neces-
sary precision. This binary expansion is the adap-
tive arithmetic code for the sequence x4 1.

A.2 Proof of Proposition 1

Let pg,,po,, .., Do, be K autoregressive mod-
els used to compress a sequence Teni1 =
{z1,22,...,2n}, where X, ~ pgaa. Each
x; takes values from the dictionary A =
{a1,...,ap}. For an autoregressive model py, ,
the following equation reveals the relationship be-
tween the joint distribution of X, and the condi-
tional distribution of X,:

n
o, (Xant1) = [ [ po. (Xil X<i) (6)
i=1
Therefore, the cross-entropy between pga, and a
certain model pg, can be expanded using the Equa-
tion 6 as follows:

H(paua: po,) = E Y —log pg, (Xi| X<i) (7)

Pdata £
ata i—1

Our weighted product of expert (WPoE) model is
given by (1),

K
p@,a(Xn|X<n) = m Hpek (Xn‘X<n)akv
k=1

where the weights are @ = {aq,...,ax}, ap €
[0,1], S35, ay = 1, the parameters of experts are
0 = {01, ..., 0k }, and the normalization constant is
Z(Gv «, n) = ZaeA Hf:l Do, (Xn = a‘X<n)ak'

Here we can derive:
H(pdataape,a) = Zf:l akH(pdataap9k)
n
+ E log|Z(0, a,1)].
Pdata ; Og[ ( @ Z)]
(8)

To complete the proof, we introduce the following
technical lemma for bounding Z (0, v, 7).

Lemma 1. Ler p*) = (pgk), . ,pg)) for
k=1,...,K be K categorical distributions, so

ijzlp;k) = 1 for each k. Let ay,...,ax > 0

satisfy Zszl ap = 1. Then

>

Jj=1k=1

K
()™ < 1,

with equality if and only ifp(l) =p@ =... =
p) or exactly one oy, = 1 and the rest are zero.

From the Lemma 1, it can be concluded that:
Z(0,a,i) < 1,Y0,a, 1. 9)

Equality holds if and only if each distribution
po, (Xi | X<;) is the same, or a, = 1 and oth-
ers are 0. Thus we can conclude that:

inf H (Poaa; Po,a) < e min }H(pdam,pek)

+E > log[Z(6,a,i)]  (10)

Pdata i—1
inf H (paa; po,a) - < ke{rlnin H (paaa; poy,)
To complete the proof of Proposition 1, it now
suffices to show Lemma 1. In order to establish
Lemma 1, we first need a helper lemma stated as

follows.

Lemma 2. Let p = (p1,...,pp) and q¢ =
(q1,--.,qD) be two categorical distributions satis-

fving Z]D:ﬂ?j = 1and ijzl q; = 1. Then, for
any « € [0, 1], the following inequality holds:

D
D e < L
j=1

Moreover, equality holds if and only if p; = q; for
all j (ie., p=q)ora € {0,1}.
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Proof of Lemma 2. Step 1. Pointwise inequality.
For any 2,y > 0 and « € [0, 1], we show

ar + (1—a)y > z%yl o

When z = 0, the statement is trivial, so assume
x > 0. Define ¢ := % > (. Then the inequality is
equivalent to

a+ (1—-a)t > t*

Set f(t) = t* — (1 — a)t — a. We compute its
derivative:

d
d—"; =at* P —(1-a).
We have % | —1 = 0. One checks that ¢ = 1 maxi-
mizes f, so f(t) < f(1) = 0. Hence

t* < a + (1-a)t,

ie, %yl *<ar+(1—-a)y.

Step 2. Summation. Applying the above in-
equality to each pair (z,y) = (pj;,¢;) and sum-
ming over j = 1,..., D gives

D
>_ v
j=1

Since ZjDzl p; = 1 and Z]DZI ¢; = 1, the right
side simplifiesto o - 1+ (1 — «) - 1 = 1. Hence

D
> pfei T <L
j=

Step 3. Equality condition. By the analysis of
f(t), the equality in the pointwise inequality holds
if and only if t = 1 (i.e., p; = g;) or a € {0,1}.
Thus the sum only achieves equality if p = q or
a € {0,1}. O

D
< Z(apj +(1—a)g).

Jj=1

We can now prove Lemma 1 with the help of
Lemma 2.

Proof of Lemma 1. Base Case (K = 2). For two
distributions (p;) and (g;) with weights o and 1 —
a, it is already proved that

D
>y <L,
j=1

with equality precisely if p = g or « € {0,1}.
Inductive Step. Assume the statement holds for
K — 1 distributions. We prove it for K.

Let p), p@) . p) be K distributions with
weights a7, . .., ag such that Zszl o = 1. De-
fine @/ = a1 + as. By the K = 2 base case,

D

@2
Z(pgl)) P (p§2)) o S 1.

j=1

It

Given this sum can not be zero, define a new “com-
posite” distribution r = (r1,...,rp) by

o
BT )
j = a1

S2 @) (o)
Clearly, ijzl rj = L
1 distributions: 7, p(3), o ,p(

o, ag,. .., ax summing to 1.
By the inductive hypothesis,

&2
o

j=1,...,D.

ag
Oél

Now we have K —

K), with weights

ZTJQI (p§3))a3 (p§K))CMK < 1.

Substituting the definition of r; into the left-hand
side shows

D K
>y @ T )
j=1 k=3
D o
g(Z@E”)“l(p?))a?) - an
=1

Since the base case says Zi’;l(pgl))o‘l (pl(?))c“2 <
1, raising it to the power o also yields a value at

most 1. Thus

K

D
> (pgk))a’“ < 1,

Jj=1k=1

which completes the inductive step.

Equality Condition. In base case, equality de-
mands p = g or « = 0 or « = 1. Propagating
this requirement through each step of the recursion
shows all distributions must be identical or all but
one weight are zero.

By induction, the proof is complete. O

A.3 Implementation details

During pretraining, we employ the Adam optimizer
(Kingma and Ba, 2015) with a learning rate of 5e-4,
a batch size of 128, and 30,000 training iterations.
For optimization with LBFGS (Liu and Nocedal,
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1989), we use a tolerance of 1e-5 for both the gradi-
ent and parameter changes, setting the initial learn-
ing rate to 0.5. All experiments are conducted on
a single A100 GPU with 80GB. For all our imple-
mentations, we use PyTorch(Paszke et al., 2019)
which is released under BSD 3-Clause license.

A.4 Additional Discussions

A.4.1 Naive Bayes with Lidstone Smoothing

We consider the whole family of Naive Bayes with
Lidstone Smoothing, where the token probability

is
c(z) +a

with ¢(z) the token count, N the total count, and
|V'| the vocabulary size. This estimator can be
written as an interpolation between the empirical
Maximum Likelihood Estimation and a uniform
distribution:

p(x)

a >0,

B N c(x)
 N+alV| N

oV 1
N +alV| V]

When a = 0, it recovers the unsmoothed Max-
1

imum Likelihood Estimation. When o = 3, it
corresponds to the Krichevsky—Trofimov (KT) es-
timator. When a = 1, it represents Naive Bayes
with Laplace smoothing.

We sweep « and report compression on Enwik8.
KT (a=0.5) is slightly better than Laplace (a«=1),
but smaller « is not uniformly better: as « de-
creases, the estimator adheres more closely to train-
ing counts and can become less robust under spar-
sity or domain shift. Since o behaves like a dataset-
dependent hyperparameter and our goal is simplic-

ity, we fix a=1 in the main experiments.

Table 5: Compression rates on datasets enwik8, as o are
changed from 1.0 to 0.01 and context length changed
from 1 to 2048.

Context ao=10 a=05 a=01 a=0.01
length (Laplace) (KT)

1 99.38%  99.12% 98.38% 101.50%
2 99.12%  98.62% 97.88% 103.75%
4 97.88%  96.88% 94.75% 101.88%
8 95.88%  93.75% 89.50%  96.62%
16 92.12%  88.75% 82.12%  87.25%
32 87.12%  82.62% 74.88%  78.00%
64 81.25%  76.12% 69.00%  70.75%
128 75.50%  70.75% 65.50% @ 66.50%
256 70.75%  67.12% 63.62%  64.50%
512 67.75%  65.25% 63.00% 63.62%
1024 66.38%  6438% 62.75%  63.38%
2048 66.00% 64.25% 62.75%  63.25%

A.4.2 Beyond a Single Global o

A natural question is whether a single global weight
« is too restrictive when the data distribution shifts
in complex, context-dependent ways. We explored
a dynamic alternative by predicting a per-token
« with a small MLP placed on top of the frozen
backbone’s latent representation (the base model
and expert remain frozen; only the MLP is trained).
This delivered consistent and modest gains over a
single global a.

Table 6: Compression performance comparison between
fixed and dynamic weight approaches.

Model math code

Transformer 200K 56.25% 65.67%
Transformer 200K + single « 50.95% 53.94%
Transformer 200K + per-token o 49.23% 51.39%

shakespeare enwik8*
44.04% 31.59%

42.12% 31.58%
41.56% 31.54%

Although a context-aware « could offer finer
control, our choice of a single scalar reflects a
deliberate trade-off: while it has lower capacity
than full finetuning, it is appealing in resource-
constrained and real-time settings (e.g., limited-
memory GPUs or quantized models that cannot
be finetuned). Moreover, much of the expressive
power in our approach comes from the additional
expert itself, which offsets the simplicity of a global
Q.
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