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Abstract

Adaptive learning focuses on recommending
personalized materials (e.g., exercises, courses)
to the unique needs of learners. Despite sig-
nificant research, these methods still lag be-
hind real teachers including two main limita-
tions: (1) Prior methods model learner-item
interactions based only on ID sequences, lead-
ing to insufficient use of both learner and item
information, particularly the inability to lever-
age semantic content from item text; (2) The
data-driven reinforcement learning frameworks
struggle with stable performance in scenarios
with sparse learning logs. To address these chal-
lenges, we introduce the Retrieval-enhanced
Agent for Adaptive Learning (ReAL) powered
by large language models (LLMs), to simulate
teacher decision-making with extensive prior
knowledge and teaching experience. Specifi-
cally, we approach the simulation from both in-
ternal and external perspectives. From the inter-
nal perspective, we utilize the superior natural
language standing ability of LLMs to analyze
item texts and learner profiles. This mechanism
contributes to the generation of personalized
and appropriate item candidates. From the ex-
ternal perspective, we simulate the teacher ex-
perience by retrieving similar learners, further
ensuring the model’s performance on sparse
interaction data. Furthermore, we design a re-
flector based on learners’ feedback to refine
the recommendation process. Evaluation on
three real-world datasets demonstrates the su-
periority of ReAL in both data utilization, rec-
ommendation accuracy and stability compared
to various representative baselines.

1 Introduction

Unlike traditional classroom teaching, which pro-
vides the same materials for all learners, adaptive
learning offers personalized tasks (e.g., exercises)
and pathways. This makes adaptive learning a more
efficient approach (Corbett, 2001; Liu et al., 2019;
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Figure 1: The process of adaptive learning with an ex-
perienced teacher involves the following steps: (1) The
learner has a learning target, such as "linear functions",
which represents a knowledge concept. (2) The teacher
devises a personalized learning strategy based on their
prior knowledge and teaching experience with similar
learners. (3) Teacher recommends the next exercise to
help the learner master the targeted knowledge concept.

Huang et al., 2019). Since individual human tutor-
ing is expensive, computer-based adaptive learn-
ing methods, also known as Learning Path Rec-
ommendation (LPR) methods, have been widely
studied. Earlier works employed traditional recom-
mendation algorithms or deep learning-based meth-
ods to suggest similar learning paths for learners
(Elshani and Nuçi, 2021; Nabizadeh et al., 2020a).
But these approaches often struggle to handle com-
plex and dynamic learning processes. The state-of-
the-art approaches currently model the LPR task
as a Markov decision process and use reinforce-
ment learning to train the recommendation policy,
in order to improve the learner’s state in the tar-
get knowledge concept (Liu et al., 2019; Li et al.,
2023b, 2024a,b). However, these methods still lag
behind real teachers and have two main limitations:
(1) Insufficient information utilization: Current
methods merely use the IDs to model the learner-
item interaction and do not leverage the rich se-
mantic content within the text of learning items,
which results in limited performance. The text con-
tent implicitly reveals various attributes, such as
the knowledge concepts covered and cognitive de-
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mands, which are difficult to capture effectively
with existing methods. For example, while both
exercises assess the concept of "linear functions",
exercise A: "Write the equation of the linear func-
tion" focuses only on basic concepts. In contrast,
exercise B: "Given points A(-1, 0) and B(0, -3),
write the equation of the line after shifting line
AB downward by 2 units." not only tests "Linear
Functions" but also assesses deeper knowledge of
"Function translation." While some existing meth-
ods employ knowledge graphs (Liu et al., 2019; Li
et al., 2023b; Wu et al., 2024) to assist in learning
path recommendations, they are constrained by the
size and granularity of the knowledge graphs, lead-
ing to less accurate recommendations. (2) Instable
Performance: These studies based on RL meth-
ods rely on abundant interaction data for effective
training (Liu et al., 2019; Li et al., 2023b; Kubotani
et al., 2021). However, the interaction data is often
sparse in real-world online education, leading to
unstable performance, even failing to improve the
learner’s learning state.

However, an experienced human teacher can
easily address these issues, as shown in Figure 1.
Teachers are able to obtain a more fine-grained
understanding of the questions by analyzing the
textual information. Additionally, they can lever-
age their extensive teaching experience to recog-
nize the learner’s profile from just a few exercise
logs and recommend suitable learning paths based
on similar cases from previous students. Recently,
Large Language Models (LLMs), pre-trained on
vast amounts of text data, have demonstrated rich
prior knowledge and excellent performance on var-
ious reasoning tasks (Shi et al., 2024; Ouyang
et al., 2022; Touvron et al., 2023), enabling them
to infer from limited data samples. Some studies
have used LLMs to construct powerful agents to
simulate human experts (Han et al., 2024; Yang
et al., 2024). In addition, recent advancements
in Retrieval-Augmented Generation (RAG) (Gan
et al., 2025; Yu et al., 2025)get successful by inte-
grating LLMs with external information retrieval,
enabling accurate generation. Inspired by this,
we propose a new Retrieval-enhanced Agent for
Adaptive Learning (ReAL) with LLMs, which col-
laboratively plans learning paths for learners from
both Internal and External perspectives to sim-
ulate the experienced human teacher. From the
internal perspective, we use the powerful language
understanding of LLMs to summarize the current
learner’s profile from limited learning logs and rec-

ommend a set of candidate learning items. Specif-
ically, we designed a Planner module to handle
this, incorporating a memory component to store
relevant information, which forms the basis for the
recommendation strategy. To mitigate LLM hal-
lucinations due to limited domain-specific knowl-
edge, we supplement them with educational tools
(e.g., knowledge concept graphs). From the exter-
nal perspective, we simulate past students’ teaching
experience through the Actor module. Specifically,
we construct multiple simulators to simulate the
previous learners using static data from the training
dataset. Then, we design a retrieval mechanism that
provides select suggestions by retrieving learners
with similar learning states. To adaptively refine
the recommendation process, we design the Reflec-
tor module to update the recommendation strat-
egy based on the learner’s feedback. These three
modules collaborate to dynamically recommend
learning paths as interactions progress, creating an
effective and stable adaptive learning agent. Over-
all, our contributions are as follows:

• To the best of our knowledge, we are the first to
integrate LLMs’ knowledge and previous learn-
ers’ states into learning path recommendations,
contributing to the exploration of LLMs’ poten-
tial in educational tasks.

• We developed a novel agent system including
Internal and External perspectives to simulate
human-like decision-making and ensure stable
performance in sparse data scenarios, which is
hard to solve in existing methods.

• Extensive experiments on three real-world
datasets demonstrate our superiority.

2 Related Work

2.1 Adaptive Learning

In online education, Learning Path Recommen-
dation (LPR) is crucial for designing structured
paths to help students systematically acquire knowl-
edge and skills (Liu et al., 2019; Li et al., 2023b).
Researchers have proposed various LPR methods,
generally categorized into two types (Chen et al.,
2023; Nabizadeh et al., 2017): (1) Complete gener-
ation, where a full path of predetermined length
is generated and presented all at once, and (2)
Step-by-step generation, where a dynamic path is
generated in real time, adjusting based on learner
feedback and previous steps (Liu et al., 2019; Li
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et al., 2023b; Zhang et al., 2024; Li et al., 2024b).
The main drawback of complete generation is its
failure to account for learners’ cognitive changes
during the process, leading to inefficient or unsuit-
able paths (Nabizadeh et al., 2020b). Step-by-step
methods, which consider dynamic interactions, are
gaining traction. Earlier works used traditional rec-
ommendation or deep learning methods to suggest
similar paths for comparable learners (Elshani and
Nuçi, 2021; Nabizadeh et al., 2020a), but these
approaches rely on static sequences and struggle
with complex, dynamic learning processes. More
recently, LPR has been modeled as a Markov De-
cision Process, utilizing reinforcement learning to
train recommendation strategies. While these meth-
ods show promising results, they still lag behind hu-
man teachers. They mainly model learner and item
IDs and require extensive interaction data (Zhang
et al., 2024; Li et al., 2024b), but real-world edu-
cational settings often face data sparsity, limiting
personalization and stability. Our proposed ReAL
addresses these challenges by leveraging LLMs to
analyze and summarize textual information and by
using simulators that recommend items based on
feedback from similar learners, providing a more
human-like approach.

2.2 LLM-Driven Agents in Education

LLM-empowered generative agents demonstrate
impressive abilities in perceiving environments,
decision-making, and action-taking, attracting sig-
nificant research interest (Wang et al., 2024; Li
et al., 2023a; Han et al., 2024; Yang et al., 2024).
In education, these agents have opened new pos-
sibilities. For example, (Wu et al., 2023) use
chat-optimized LLMs as agents in multi-agent di-
alogues to collaboratively solve complex queries,
showing the potential to address a wide range of
general questions. In learner simulation, such as
Agent4Edu (Gao et al., 2025) and EduAgent (Xu
et al., 2024), employ LLM-based agents to simu-
late learners interacting with exercises, presenta-
tions and videos, evaluating their performance by
predicting quiz results. In educational recommen-
dation, (Li et al., 2024a) leverages LLMs’ factual
knowledge to create SKarREC, a concept recom-
mendation model that improves suggestions for
the next concept a learner should study. It is im-
portant to note that while SKarREC focuses on
recommending knowledge concepts, our task is to
recommend learning exercises in a path.

3 Problem Definition

Following (Liu et al., 2019; Li et al., 2023b), We
focus on step-by-step recommendations for session-
based learning paths based on real-time interac-
tions. A learner’s process typically involves two
types of items: learning items (e.g., knowledge con-
cepts or skills) and exercise items (e.g., questions).
Without loss of generality, we denote the knowl-
edge concept item set as KI = {k1, k2, . . . , km}
and the exercises item set as E = {e1, e2, . . .}. In-
stead of only using item index in previous work,
the ki ∈ KI and ei ∈ E consist of item index
and item text content. The learner’s goals are de-
noted as G = {g1, g2, . . . , gm}, where gi ∈ KI.
The learning process is as follows: before starting,
educational tools test a learner on their goals to
obtain an initial score Es. The learning path is gen-
erated step-by-step as P = {e1, e2, . . . , ep}, where
ei ∈ E , aligning with previous works. After com-
pleting the entire learning path, a final test using
educational tools (e.g., knowledge tracing models)
is taken on the learning goals to obtain a final score
Ee, allowing to calculate learning effectiveness Ep:

Ep =
Ee − Es

Esup − Es
, (1)

where Esup is the total exam score, equal to the
number of learning goals. Our aim is to maximize
Ep by providing an effective learning path.

4 ReAL Framework

Our ReAL, shown in Figure 2, consists of three
modules: Planner, Actor, and Reflector. The Plan-
ner analyzes the current learner from an internal
perspective. It leverages LLMs’ semantic under-
standing and reasoning abilities, along with educa-
tional tools, to recommend a set of candidate exer-
cises. The Actor simulates an experienced teacher
from an external perspective. It selects the most
suitable item for the learner by considering the per-
formance of similar past learners on the candidate
items. Finally, the Reflector updates the recommen-
dation strategy in the Planner based on feedback.

4.1 Planner (Internal)

The Planner module is designed to simulate a
teacher with educational prior knowledge. This
module consists of three parts: memory, educa-
tional tools, and LLMs. The LLM-based plan-
ner can flexibly use educational tools to enhance
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Figure 2: The overview of our ReAL framework. (1) Planner: Analyzes the current learner from an Internal
perspective and generates a set of candidate exercises. (2) Actor: Simulates teacher experience from an External
perspective and provides dynamic recommend suggestions (et+1) based on similar learners. (3) Reflector: Generate
the reflections based on the learner’s feedback, which is used to update the recommendation strategy.

their expertise by incorporating external educa-
tional knowledge (e.g., knowledge concept graphs).
It then uses its language understanding and reason-
ing capabilities to summarize the learner’s profile,
which is stored and updated in memory. Finally, it
synthesizes all information to filter a candidate set
of items from the existing exercise pool.
Educational Tools
The Planner aims to retrieve the top-n suitable ques-
tion candidates C = {ei, ..., ei+n} from the ques-
tion bank, tailored to the learner’s target knowl-
edge concept. It leverages all available informa-
tion from memory and the recommendation strat-
egy provided by the Reflector. We need to em-
ploy educational prior knowledge to narrow the
search space. Furthermore, While LLMs have
strong general knowledge, they often exhibit limi-
tations in specific domains and can generate hallu-
cinations (Zhang et al., 2023). Therefore, external
knowledge is necessary to guide and assist LLMs
in decision-making (Lewis et al., 2020; Chen et al.,
2024). Based on this, we design educational tools
to provide domain-specific knowledge. Specifi-
cally, we use a hierarchical knowledge graph G
to restrict retrieval to the current knowledge con-
cept and its immediate predecessors. The exercises
linked to this concept form the exercise set St ⊆ E .
Memory
The memory is designed to store the learning his-
tory and the feedback from the LLMs, i.e., the
current learner’s profile. Specifically, all item-
feedback pairs construct the historical learning

record, denoted asH = (e, answer). After time t,
(et, answert) is added to the historical record, i.e.,
Ht = Ht−1∪(et, answert). The data in time(step)
t of the memoryMI

t can be presented as follow:

MI
t ← Ht, (2)

Planning
In this process, we perform two steps: (1) summa-
rize the learner’s profile; (2) provide a candidate
set of recommended items using educational tools.

• We use LLMs to generate the learner’s learning
profile based on the learner’s response records, in-
cluding learning ability and learning preferences.
At time t, the learner’s profile Lt can be note as:

Lt ∼ LLM(PL,Ht), (3)

where Ht is the historical learning logs inMI
t ,

and PL is the prompt to generate the summaries
and designed as follows,

You’re a seasoned math teacher with ten
years of teaching experience. Please use
one sentence to summarize the student’s
learning ability and learning preference
from the following learning logs:[...].

The memoryMI
t can be updated by:

MI
t ←MI

t ∪ Lt. (4)

• Now, LLM can predict the candidate exercises C:

C ∼ LLM(PC,MI
t ,St, Rt), (5)
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where PC is the LLM prompt, and Rt represents
reflections from the Reflector, which include the
recommendation strategy at step t. The prompts
we designed are as follows,

Given the following history text [...] and
the recommend reflection [...], the student
profile: [...], the knowledge learning goal
[...]. Here is the candidate exercise list:
[...]. Please provide the k suitable exer-
cises from the above list to help the student
achieve the learning goal efficiently.

4.2 Actor (External)
In the Actor module, we simulate teaching experi-
ences from past students from an external perspec-
tive. We first create multiple simulators to model
previous learners using static data from the training
dataset. Then, we design a retrieval mechanism to
offer targeted suggestions by identifying learners
with similar learning states.
Construct previous learners
In this module, we model learners from the training
dataset as past students, simulating real teaching
experiences by estimating their knowledge states.
Since a learner’s exact knowledge state is not di-
rectly observable, prior work developed cognitive
diagnosis (CD) (Gao et al., 2021) and knowledge
tracing (KT) (Shen et al., 2024) methods. CD as-
sesses the learner’s mastery of specific knowledge
concepts, providing detailed feedback on areas of
weakness. KT tracks the learner’s learning progress
over time, predicting future performance based on
past learning activities. These educational tools
provide valuable references for constructing learn-
ers’ states. In our framework, we use a pre-trained
deep knowledge tracing model (DKT) to output
learners’ mastery states. It’s important to note that
these educational tools are just alternatives, and
developing them isn’t our main contribution. The
datastore is constructed as follows:

D = {(ki,vi)|1 ≤ i ≤ N}, (6)

where ki = {s1, ..., sm}, sj ∈ [0, 1], is generated
by DKT model, representing the ith learner’s mas-
tery states of every knowledge concept. vi is the
corresponding learning logs, including the items
and response. N is the number of learners in the
training dataset.
Retrieval and Selection
For the current learner, we use the same educa-
tional tool that was used to construct the datastore

to obtain their knowledge state kt, then retrieve the
top-k most similar learners from the database D.
By considering the feedback of similar learners on
the candidate exercises C, we select the most suit-
able problem for the current learner. The process
are as follows:

• Retrieve the top-k learners from D:

Y,W = Sim(kt,kD), (7)

where Y = {(ki,vi)|1 ≤ i ≤ k} denotes
the similar learners’ key-value pairs. W ∈
R1×k represents the distance between the current
learner’s state and these similar previous learners.
Here, we use Cosine similarity to calculate Sim.

• Next, we use these similar learners to vote on the
candidate exercises. Specifically, the vote value
is calculated by the educational tool, which gives
the learning state improvement after completing
these exercises:

V = EduTool(Y, C), (8)

where V ∈ Rk×n represents the learning gain of
k learners across n exercises.

• Finally, we aggregate the information and select
the exercise with the highest votes from the his-
torical learners as et+1:

et+1 = C[argmax
i

(W ×V)i]. (9)

4.3 Reflector
Reflect on the efficiency and rationality of past
recommendations by comparing the learner’s actual
responses with the predicted responses. This step
is similar to the gradient backpropagation process
in neural network training, which is used to update
the model parameters. At time t, the reflection Rt

generation process can be formulated as:

Rt ∼ LLM(PR,MI
t ), (10)

where PR notes the prompt for LLM to generate
the reflection and designed as follows,

Please use one sentence to reflect the
strategy of recommend questions from the
learner’s feedback:[...].

Then, Rt is passed to the Planner to update the
recommendation strategy.

172



Statistics Junyi ASSIST09 TextLog

Knowledge Concepts 36 97 698
Exercises 711 16,836 8021
Learners 245,511 4,092 127,610

Response records 25,367,573 397,235 1,680,886
Records / Learners 1034 97 13

Table 1: Statistics of datasets.

5 Experiment

5.1 Dataset

Our experiments are conducted on three real-world
public datasets: Junyi1, ASSIST092, and a dataset
we collected, named TextLog, which includes ques-
tion text content details from real-world scenarios.
All datasets contain learners’ learning log data and
the knowledge concept names for all exercises. For
the Junyi dataset, we use the “topic” field as the
learning items, which are commonly used in ed-
ucation, and the "name" field (exercise name) as
the text content of the exercises. In the ASSIST09
dataset, the "skill name" field represents the learn-
ing items. Since ASSIST09 does not provide direct
information about the exercises, we use other avail-
able fields, such as "response time" and "original
(Main/Scaffolding Problem)", to represent the ex-
ercises. Additionally, the TextLog dataset includes
the text content for each practice item, with an
example shown in the Appendix. We also con-
struct the knowledge transition graph as described
in (Gao et al., 2021) for all three datasets. The
dataset statistics are provided in Table 1.

5.2 Simulators

A critical challenge in evaluation is that exist-
ing realistic datasets only provide static informa-
tion, making it difficult to assess whether prac-
tice items not presented in a sequence can be an-
swered correctly (Huang et al., 2019). As a re-
sult, these datasets are not suitable for evaluating
learning paths. To address this, we follow prior
works (Liu et al., 2019; Chen et al., 2023; Li et al.,
2024b; Zhang et al., 2024) and employ a Knowl-
edge Evolution-based Simulator (KES) as intro-
duced in (Liu et al., 2019). KES is a data-driven
system that utilizes the DKT model (Piech et al.,
2015) to simulate the dynamic changes in learners’
knowledge states. Initial logs from these datasets
are used to simulate the learner’s starting state (Li

1https://pslcdatashop.web.cmu.edu
2https://sites.google.com/site/assistmentsdata/home

et al., 2023b). It should be noted that, for previous
RL models, the learning items include only knowl-
edge concepts (excluding exercises), whereas in
our approach, the exact learning items are set as
"exercises" to better align with real-world applica-
tions. For instance, while a single concept can have
many exercises, prior models only recommended
the concept itself and overlooked these exercises.
By using exercises directly, our method enables
a more detailed and fine-grained learning process
for students. In our experimental setup, we simply
replace the DKT input from "concepts" to "exer-
cises", ensuring a fair evaluation.

5.3 Baselines

In the Learning Path Recommendation (LPR) task,
we compare our approach against existing methods
as baselines. It is important to note that all these
baseline models only use the sequence of ques-
tion(or knowledge concept) IDs by learners while
ignoring the textual information of the questions
and knowledge concepts. Consistent with prior
studies (Li et al., 2023b), we use the improvement
Ep (Eq. 1) provided by the simulators to evaluate
the following methods: (1) KNN (Cover and Hart,
1967), which identifies similar learners based on
static learning paths from the training set and rec-
ommends the next item, though this often leads to
suboptimal performance. (2) GRU4Rec (Hidasi
et al., 2015) takes session sequences as input to
predict the most likely next learning items through
a probability distribution. (3) DQN (Chen et al.,
2018) uses a neural network to evaluate and rec-
ommend actions with the highest value. Actor-
Critic (Konda and Tsitsiklis, 1999) incorporates
a GRU encoder into a standard actor-critic frame-
work for recommendations. (4) Contextual Ban-
dits (CB) (Intayoad et al., 2020) frame learning
path recommendations as a contextual bandit prob-
lem. (5) RLTutor (Kubotani et al., 2021) inte-
grates model-based reinforcement learning with
DAS3H (Dwivedi et al., 2018) for adaptive tutoring.
(6) CSEAL (Liu et al., 2019) uses an actor-critic
framework with cognitive navigation for learning
path recommendations. (7) GEHRL (Li et al.,
2023b) applies hierarchical reinforcement learning
for efficient goal planning. (8) DLPR (Zhang et al.,
2024) uses difficulty-driven reinforcement learning
to facilitate learning paths. (9) GEPKSD (Li et al.,
2024b) leverages privileged knowledge distillation
and knowledge graph integration, enabling the RL
to adapt learners.
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Junyi ASSIST09 TextLog

KNN 0.1343 -0.0932 0.0085
GRU4Rec 0.0993 -0.1344 -0.0002
DQN 0.1536 -0.0267 -
Actor-Critic 0.1916 0.0676 -
CB 0.2098 0.0038 -
RLTutor -0.1034 0.0784 -
CSEAL 0.2505 0.1009 -
GEHRL 0.4206 0.1971 -
DLPR 0.4972 0.3283 -
GEPKSD 0.3309 0.5857 -

ReAL 0.5724 0.4304 0.4847

Table 2: Performance comparison for learning path rec-
ommendation methods at 20 learning steps. The best
results are bold and the underline means the second
best. It should be noted that "-" in the table indicates
that the method cannot achieve absolute promotion and
meet the learning goals.

5.4 Implemetation Details
In our framework, we employ three LLM-based
models for testing: Llama2-7B, Llama3-8B3, and
the GPT-3.5-turbo provided by OpenAI. The tem-
perature parameter is set to 0.9. The dataset divided
method is following (Liu et al., 2019). In particu-
lar, our ReAL uses the training dataset to train the
simulator and initialize the learner’s profile. Then
we use the test dataset to achieve inference. More
details refer to Appendix and our code is available
at https://github.com/karin0018/ReAL.

5.5 Main Results
Table 2 presents the average Ep values of all mod-
els across the three datasets, and the learning step
is 20. The results reveal several important insights.

• Performance Comparison: Our method outper-
forms all baselines across the Junyi and Text-
Log datasets, and achieves competitive perfor-
mance with the state-of-the-art method on the
ASSIST09 dataset. These findings highlight the
importance of incorporating text information into
adaptive learning. It also showcases the poten-
tial of large language models in the educational
domain. Most methods achieve their best results
on the Junyi dataset because it contains fewer
knowledge concepts and a smaller exercise set,
which narrows the action space and simplifies the
decision-making process. Although GEPKSD

3https://www.llama.com/
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Figure 3: Results of ablation experiments on all datasets.
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SIST09 datasets with representative baseline models
and our ReAL.

outperforms on the ASSIST09 dataset, its per-
formance is limited on real-world datasets with
sparse interactions due to the RL-based algo-
rithm. This indicates that methods relying heav-
ily on dense feedback signals may lack general-
ization ability when applied to more challenging
environments.

• Stability Analysis: While reinforcement learn-
ing methods like CSEAL and GEHRL excel with
abundant interaction data—benefiting from in-
teractive feedback and long-term rewards—they
struggle in sparse data scenarios. For example, in
the TextLog dataset, where students have on av-
erage only 13 interaction records, these methods
fail to train effectively and are unable to gener-
ate valid learning path recommendations at the
testing stage. Our content-based ReAL frame-
work remains unaffected by sparse data, enabling
effective and stable learning path generation.

5.6 Ablation Study

5.6.1 Impact of different modules
We conducted ablation experiments on the key mod-
ules of ReAL, and the results are shown in Figure 3,
which presents the Ep scores across three datasets
when the learning steps are set to 5, and the LLM
is using GPT-3.5-turbo. "w/o Text" indicates that
we only use the item ID during recommendation
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process, instead of text content for all items (in-
cluding knowledge concepts and exercises); "w/o
EduTools" notes we drop the Educational Tools
module, which means we are unable to obtain prior
knowledge through additional educational tools,
such as the relationships between knowledge con-
cepts. "w/o Retrieval" notes we do not use the pre-
vious learners’ information, and use the planner to
recommend exercise straightly. "w/o Reflection" in-
dicates that we do not update the recommendation
strategy or the student’s profile during the learning
path recommendation process. The experimental
results show a significant performance decrease
when text information is not utilized in our frame-
work, highlighting the importance of textual con-
tent. Additionally, the prior knowledge provided
by Educational Tools is also crucial, demonstrating
that relying solely on the internal knowledge of the
large language model is insufficient; supplemen-
tary knowledge is necessary to assist the model in
making decisions. The retrieval module in Actor is
also important, which demonstrates our human-like
decision-making module is useful. Furthermore,
since learners’ abilities are constantly evolving, the
recommendation effectiveness declines when the
model no longer dynamically updates the recom-
mendation strategy.

5.6.2 Impact of different path lengths

Figure 4 shows the performance of paths of vari-
ous lengths generated by different models under
three datasets. We compare several representa-
tive baseline models with our ReAL. First, the re-
sults demonstrate that our method consistently out-
performs the baselines across different scenarios,
further proving its effectiveness. As the number
of learning steps increases, most methods show
improved learning outcomes with longer paths,
which aligns with educational intuition. Addi-
tionally, in scenarios with sufficient training data
(e.g.,Junyi and ASSIST09), reinforcement learning-
based methods like CSEAL and GEHRL exhibit
competitive performance, while RLTutor begins to
show instability. Probabilistic prediction methods
like GRU4Rec also prove to be less effective. How-
ever, these methods rely on abundant training data
and fail to converge on the sparse TextLog dataset,
making it impossible to reach learning goals during
testing (i.e., they fail to run successfully).

Steps 5 Steps 10 Steps 20 Steps

Llama2-7b 0.2782±0.016 0.4057±0.017 0.4121±0.093
Llama3-8b 0.2963±0.048 0.4081±0.012 0.4355±0.042
GPT-3.5-turbo 0.3035±0.013 0.4411±0.015 0.4847±0.079

Table 3: Robustness estimation across different LLMs
for TextLog dataset. ± means standard deviation.
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Figure 5: Effects of different exercise logs number l and
retrieval number k on three datasets with our ReAL.

5.7 Effects of Different LLMs

To validate the robustness of the ReAL framework
across various base models, we conduct experi-
ments using different LLM backbones: Llama-2-
7B and Llama-3-8B. The results, presented in Table
3, show that our ReAL framework performs con-
sistently well across these LLMs, demonstrating
its robustness. We repeated the experiments three
times and calculated the standard variance. The re-
sults indicate stable performance within our frame-
work. Notably, the recommendation effectiveness
of the Llama-3-8B and GPT-3.5-turbo models sur-
passes that of Llama-2-7B, suggesting a positive
correlation between our framework’s performance
and the knowledge embedded in larger language
models with stronger capabilities.

5.8 Effects of Log number and Top-k number

In the Planner module, LLMs are sensitive to the
content of prompts. We analyzed the impact of
different exercise log numbers, and the results are
shown in Figure 5. The findings indicate that as the
number of logs used for inference increases, the
accuracy of recommendations first rises and then
plateaus, suggesting that LLMs’ reasoning ability
is still limited by context length. Additionally, we
studied the effect of the number of similar learners
k used in Actor with fixed candidate number n = 5.
We found that ReAL’s performance also depends
on the number of nearest learners. Although the
model’s performance improves as k increases, the
results tend to converge when k exceeds 7. To
balance efficiency and effectiveness, we set k to 5.
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6 Conclusion

In this paper, we introduced the Retrieval-enhanced
Agent for Adaptive Learning (ReAL) framework,
which addresses key limitations in existing adap-
tive learning methods. Prior approaches have
largely focused on learner-item interactions based
on ID sequences, failing to fully utilize both learner
and item information, especially the semantic con-
tent of items. Additionally, data-driven reinforce-
ment learning methods struggle in scenarios with
sparse learning logs. ReAL, powered by large lan-
guage models (LLMs), simulates teacher decision-
making from both Internal and External perspec-
tives. Internally, ReAL leverages LLMs’ semantic
understanding and prior knowledge to analyze item
texts and learner profiles, generating item candi-
dates. Externally, it retrieves similar learners to
select the most suitable item. Moreover, the recom-
mendation strategy is continuously refined through
learner feedback using a reflection mechanism. By
moving beyond item indexing and relying on se-
mantic content, ReAL demonstrates robust and su-
perior performance across three real-world datasets,
particularly in sparse data conditions.

Limitations

Our work is an early attempt to leverage large lan-
guage models (LLMs) for adaptive learning, and
naturally, it comes with several limitations. The
first challenge is the high inference cost of LLMs,
which makes large-scale deployment in real class-
room environments difficult. What’s more, while
external resources can enrich the recommendation
process, the utilization is often inefficient, and
the generated outputs may still contain hallucina-
tions. This reflects a broader challenge of LLMs
in balancing knowledge grounding with reliable
reasoning. Another limitation lies in the evaluation
methodology. Following previous works, we adopt
a standard evaluation metric widely used in adap-
tive learning algorithms. This approach has some
discrepancies and limitations, and conducting live
experiments is expensive. Exploring more effective
evaluation algorithms is indeed a valuable direction
for future research. Despite these issues, our work
shows that LLMs have great potential to solve com-
plex problems in education. In the future, we hope
to explore more applications, like using LLMs to
help students with specific learning difficulties. We
also plan to look more into educational fairness,
which is an important issue when applying LLMs.
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exercise

In parallelogram ABCD, diagonals AC and BD
intersect at point O. Line EF passes through
point O, intersecting AD and BC at points E
and F, respectively. Prove that OE = OF.

knowledge

Properties of a Parallelogram.

Table 4: An example of TextLog dataset.

A Appendix

A.1 Educational Tools

We follow the structure proposed by the original
work of Deep Knowledge Tracing (DKT) (Piech
et al., 2015), and extend an embedding layer that
reduces the large feature space (Liu et al., 2019).
We use the 128-dimensional embedding layer and
use Adam (Kingma and Ba, 2014) as our optimizer
and the learning rate is set to be 0.001.

We constructed the knowledge transition graphs
from exercise data using the statistical methods
described in the RCD (Gao et al., 2021) paper.
This tool is open-source and available at https:
//github.com/bigdata-ustc/RCD. During the
inference process, we employ the Cognitive Nav-
igation algorithm from CSEAL (Liu et al., 2019),
which helps maintain the logical consistency of
the recommended learning paths (e.g., avoiding the
recommendation of calculus to junior students) and
reduces the search space.

After selecting the knowledge concept to be
learned, we add the relevant exercises to the initial
set. Due to the context length limitations of large
language models, we limit the set size to 20. If
> 20, we rank and filter out the already mastered
knowledge concepts and exercises based on the
mastery level provided by DKT.

A.2 An example of TextLog dataset

We present a data sample from the TextLog dataset
in Table 4. Unlike Junyi and ASSIST, which only
have the name of the knowledge concept and lim-
ited information for exercises, TextLog have com-
plete textual information.

A.3 More Details

We set a higher temperature to encourage the LLM
to generate diverse outputs, enabling more person-
alized student profiles and candidate exercise sets.
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Temperature 0.1 0.3 0.5 0.7 0.9

TextLog 0.2542 0.2638 0.2829 0.3244 0.3035

Table 5: Performance of TextLog under different tem-
perature settings with step=5.

We conducted experiments on the TextLog dataset
with step=5 under different temperature settings.
The results are shown on Table 5. The results
show that a higher temperature improves recom-
mendation performance. We believe this is because
our framework relies on the LLM to generate stu-
dent profiles and candidate exercises adaptively. A
lower temperature produces more uniform outputs,
such as similar student profiles, limiting personal-
ization and reducing learning path effectiveness.

A.4 Case Study
Table 6 presents detailed examples of our input
prompt template alongside the corresponding out-
put content generated for the TextLog dataset.We
demonstrate that large language models (LLMs)
can infer various aspects of a learner’s abilities and
learning preferences. Specifically, the models can
identify the learner’s strengths in particular knowl-
edge concepts based on their previous exercise
records. In addition, ReAL further enhances the
recommendation process by leveraging the behav-
ior and performance of similar learners who have
faced comparable challenges. This ensures that the
recommended exercises are relevant and effective
in helping the learner make progress. The results
from the TextLog demonstrate that the exercises
recommended by ReAL significantly contribute to
the learner mastering the target knowledge con-
cepts, highlighting the practical effectiveness of
the approach in real-world learning scenarios.
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step = 0, MAXSTEP = 5, Egi
t = 0.51827 (note as the learning mastery level of the learning goal)

Input: Prompts of learning profile PL

You’re a seasoned math teacher with multiple years of teaching experience. Please use one sentence
to summarize the student’s learning ability and learning preferences from the following learning log
{1. Question: The equation of the line with the maximum distance from the origin that passes through
the point (12, 0). Answer: correct. 2. Question: For triangle ABC, the coordinates of vertex B are
(-1, -3). The equation of the line containing the height from AB, denoted as CE, is 4x+ 3y − 7 = 0.
The equation of the median AD from vertex B to side BC is x− 3y− 3 = 0. Find the coordinates of
point C and the equation of line AB. Answer: wrong. 3. Question: The equation of the line passing
through point P(2, 3) and having intercepts on the coordinate axes that are opposite in sign. Answer:
correct. 4. Question: Which of the following equations can represent a circle? Answer: correct }.
The learning goal is: {The coordinate characteristics of points on the graph of a linear function}.

Output: Learner’s Profile
student-learning-ability: Based on this learning log, the student demonstrates a mixed ability in math,
showing strengths in solving linear and circular equations, but struggling with finding the equation of
a line passing through two points and identifying the equation of a line given its midpoint and slope.,
student-learning-preference: Based on this learning log, it appears that the student prefers to learn
and apply mathematical concepts through direct and explicit instruction, as they tend to answer
questions correctly when the concepts are presented in a straightforward and concrete manner, but
struggle with questions that require more complex problem-solving and application.

Input: Prompts of Reflection PR

Please use one sentence to reflect the strategy of recommend questions from the learner’s feed-
back:[...].

Output: Recommendation strategy
To effectively recommend questions, I would focus on identifying patterns and relationships between
the questions, such as the types of geometry problems, the level of difficulty, and the types of
concepts involved, and then use this information to suggest questions that are likely to be relevant
and challenging for the student.

Input: The Prompts for the exercise recommendation PC

You’re a seasoned math teacher with ten years of teaching experience. Given the following history
text: [question: ’The equation of the line that passes through point (1,2) and the origin with the
maximum distance’, ’answer’: ’correct’, , question: ’In triangle ABC, vertex B(-1,-3), the equation
of the line of the altitude CE is 4x + 3y - 7 = 0. The equation of the median AD on side BC is x - 3y
- 3 = 0. The coordinates of point C and the equation of line AB’, ’answer’: ’wrong’, , ...] and the
recommended reflection: [...], the student profile: [...], the knowledge learning goal: The coordinates
of points on the graph of a linear function. Here are the candidate question list: [question-id: ’5244’,
’question-text’: ’Point (m, m+3) on the function y=-x+2, find m’, question-id: ’19’, ’question-text’:
’Three points (14, 27), (a, 10) are on the same line, find a’, ..., question-id: ’6291’, ’question-text’:
’For the line y = 1/2x - 3/2, find the value of 4y - 2x + 3’, ...]. Please provide the 5 suitable questions
from the above list that can help the student achieve the learning goal efficiently. Furthermore, you
should give your reason for recommending these questions. For example, the output format should
be: [question-id-list: [the 5 question-ids that you recommend], ’recommend-reason’: [’recommend
reason’]], except this format, please do not output anything.

Table 6: An example of the recommendation processing on TextLog dataset, including Planner and Reflector.
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Output: Recommendation exercises, explanation and prediction
{[’question-id-list’: [4547, 5454, 473, 7972, 5244],’recommend-reason’: [’These questions are
directly related to the learning goal of identifying the coordinate features of points on the graph of a
linear function. Question 4547 and 5454 are about finding the equation of a line passing through two
points, which is a fundamental concept in linear functions. Question 473 and 7972 are about the
graph of a linear function, including its intercepts and slope, which is crucial for understanding the
coordinate features of points on the graph. Question 5244 is about finding the point on the graph of a
linear function given its coordinates, which is a common scenario in real-world problems. These
questions are also well-suited for a student with a mixed ability in math, as they are challenging but
not overwhelming.]}

Input: Recommendation exercises, previous learners.
load the training learners state from ../data/memory.pt... retrieve learners who have similar learning
state with current learner...

Output: Recommend question-id: 7972

step = 1, MAXSTEP = 5, Egi
t+1 = 0.5791 (note as the learning mastery level of the learning goal) ...

Table 7: An example of the learning path recommendation processing on TextLog dataset, including Actor.

181


